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We have investigated the up-down asymmetry in inelastic electron scattering from polarized protons. It
is shown that the contributions from (possible) 7" violation and o effects can be separated experimentally.
We have demonstrated that the contribution of bremsstrahlung emission to the asymmetry is negligible.
An expression for the two-photon-exchange contribution is obtained, assuming a proton intermediate state
and N*(1238) final state. The expression has been evaluated numerically and found to be one order of
magnitude smaller than the observed asymmetry. A general formalism for calculating the up-down asym-
metry is presented and its physical significance discussed. The relation between T violation and the mea-
surement of the asymmetry given by Christ and Lee is sharpened and the experimental results of the

Berkeley-SLAC collaboration are discussed.

I. INTRODUCTION

NELASTIC electron scattering from a polarized
proton was suggested by Christ and Lee! to test
time-reversal invariance in electromagnetic interactions
involving hadrons. The experiment was carried out at
CEA by Chen ef al.,? and more recently at SLAC by a
Berkeley-SLAC collaboration,® and the results of the
latter show some up-down asymmetry as shown in Fig.
1. Christ and Lee! showed that in the 2 cross section the
up-down asymmetry should be zero if parity conser-
vation and time-reversal invariance hold. It is obvious
that if the up-down asymmetry is due to a violation of
time-reversal invariance, the asymmetry should have
the same sign whether the incident particle is an elec-
tron or a positron, because in the lowest-order Born
approximation the cross section is proportional to the
square of the charge of the electron. On the other hand,
the a? cross section has two parts*: one which changes
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Fic. 1. Experimental results of Rock (Ref. 3).
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sign and one which does not, when ¢~ is replaced by e*.
In Sec. II we show that only the part which changes
sign contributes to the up-down asymmetry if 7" and
P invariances hold. Therefore, if 7 invariance holds,
the experimental points for etp and e7p in Fig. 1
should be symmetric (up to e? in cross section) with
respect to the line representing no up-down asymmetry.
This simple consideration shows that up to o® in cross
section the effects of T violation and a? cross sections
can be separated out experimentally and are given,
respectively, by :

A(T violation) =

T t—0e i F0ett—0ets

ot toeitootttoety

(1.1)

and
et —0e 4 —0 0o+

A(e?) = (1.2)

o ttoeytoctttoety

Hence, in order to test the 7 invariance, it is not neces-

7 K Ps f' Pz ! Ps f
k
+ X y f
A Ky A q
P Py P Py b p.

2
(a)
Pt
q
Xp' n
k
P, Py
(b)

F1c. 2. Two classes of Feynman diagrams which contribute to
the up-down asymmetry. f, f’, and » are arbitrary states. .
represents the polarized target proton. p; and p; are incident and
outgoing electrons, respectively.
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sary to calculate the up-down asymmetry due to o®
cross sections.

Nevertheless, we have investigated the part of the o®
cross section which gives the up-down asymmetry for
its own interest.® From the discussion in Sec. II, the
most general classes of a® diagrams contributing to the
up-down asymmetry are as shown in Figs. 2(a) and 2(b).
Figure 1 shows that no statistically significant evidence
of T violation was found. The positron and electron data
were taken at different incident energies so no meaning-
ful separation of two effects is possible from the data.’
However, if we ignore the possibility of T violation, the
electron data do show some evidence of o effect
between one-pion threshold and two-pion threshold.
It happens that the nature of the final states in this
kinematical region is better known than in other regions
from other experiments. Therefore, we shall concen-
trate our discussion in this region. In this kinematical
region, f’ in Fig. 2(a) is either p or N+, and f in Fig.
2(b) is N+

The purpose of this paper is the following: (1) to
develop a general formalism for calculating the up-down
asymmetry; (2) by assuming some simple intermediate
and final states for Figs. 2(a) and 2(b), and actually
calculating their contributions to the asymmetry, to
learn not only many of the salient features of the prob-
lem, but also to obtain a rough order of magnitude of
the asymmetry; (3) to investigate what physics one can
learn from this kind of experiment in general.

In Sec. II, we first generalize the theorem given by
Christ and Lee to include the higher-order electro-
magnetic effects and to show that only the imaginary
parts of two classes of diagrams shown in Figs. 2(a)
and 2(b) contribute to the up-down asymmetry if T
and P invariances hold. From Figs. 2(a) and 2(b), it is
obvious that phases of the final states always get
canceled out; hence one can always use the convention
that the Feynman diagrams on the left of each figure
are real, and an imaginary part can occur only when all
the particles in the intermediate states of the right-hand
side of each figure are on the mass shell.

We also show that 4 (7" violation) is proportional to
the interference between the normal current j; and the
abnormal current 7% where PT7;"(PT)'=4;" and
PTjo(PT)'=—j;* This is very similar to the effect
of parity nonconservation in weak interactions where

5 A. O. Barut and C. Fronsdal, Phys. Rev. 120, 1871 (1960);
F. Guerin and C. A. Piketty, Nuovo Cimento 32, 971 (1964).

6In the kinematical region between the one-pion threshold
and the peak of the 3-3 resonance, the main contributions to the
cross sections are from the p-wave 3-3 resonance and the s-wave
pion production. The latter contributes about 109, to the cross
section at the peak. However, the s-wave part can be roughly
reproduced by Born diagrams which are real; hence we do not
expect the s-wave part to contribute to the up-down asymmetry
in Fig. 2(a). In Fig. 2(b), the up-down asymmetry is independent
of the phase of the final state; hence the argument given above
does not apply. In a more complete treatment of the problem, the
s-wave part has to be included in both the denominator and the
numerator of 4, in Eq. (4.13).
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the observable effects show only in the interference
terms between the vector and axial-vector currents.

In Sec. III, we treat the class of diagrams represented
in Fig. 2(a). We find that these diagrams contribute a
negligible amount to the up-down asymmetry compared
with the experiment. In Sec. IV, we treat Fig. 2(b)
assuming that the final state is an N*(1238) and the
intermediate state is a proton. For these particular
final and intermediate states, the contribution to the
up-down asymmetry is found to be roughly 1% of the
maximum observed asymmetry. In Sec. V, we sharpen
the Christ-Lee theorem and show that the measurement
of A(T violation) gives a lower bound for the ratio
of the magnitude of the abnormal current to that of
the normal current. It is pointed out that unless there
are some conspiring cancellations among the prod-
ucts of the matrix elements of j,* and 7.» and those of
7.2 and 7,* at all energies and angles, the smallness of
the asymmetry found by Rock et al.? indicates the
smallness of j* compared with j». Hence, it is unlikely
that the apparent CP violation in the decay K,— 27
is due to the T violation in the electromagnetic inter-
action of hadrons. We also give a general formula for
calculating 4(a®) for arbitrary final and intermediate
states in terms of a product of three currents. Possible
refinements of our calculation of A4(a?) are discussed.
The relations between the two-photon exchange which
appears in the calculation of 4 (a?) and other observable
two-photon interaction phenomena are discussed.
Appendix A gives an alternative derivation of some of
the results of Sec. IT using 7" and P invariances and
unitarity of the S matrix. Appendix B gives an example
of how to use Cutkosky’s rule to obtain the imaginary
part of a two-photon-exchange diagram. Appendix C
shows why the infrared divergent parts of Figs. 2(a)
and 2(b) do not contribute to the up-down asymmetry.
In Appendix D we show that owing to the current con-
servation, no singularity is induced by ignoring the
mass of the electron in calculating the up-down asym-
metry, and hence no terms such as In(s/m?2) or In(—¢/m?)
occur in the up-down asymmetry.

II. PRELIMINARY CONSIDERATIONS

In this section we summarize all those observations
which can be made without lengthy calculations. The
incident and outgoing electrons are labeled p; and ps,
respectively, and the target proton is denoted by pe.
s is the polarization vector of the target proton.

A. Since we are dealing with an experiment which
detects only one final electron, we have only four inde-
pendent vectors pi, ps, p3, and s to construct an invari-
ant representing the asymmetry. This invariant must
be linear in s. Since s is a pseudovector, Lorentz invari-
ance and parity conservation demand that the asym-
metry be proportional to

€afysPrapssp2ySs =M [ (P1XPs) S Jiab - (2.1)
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Thus as long as only one final electron is detected, only
the component of the polarization vector perpendicular
to the scattering plane can enter into the expression for
the asymmetry. This is true no matter what the final
states of other unobserved particles are, and true to
all orders in strong and electromagnetic interactions.
Let us denote the initial proton state by |ps]) if the

number of protons with spin up—number of protons with spin down
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spin of p is parallel top;Xps and | po| ) if it is antiparallel
to piXps. Let us define a coordinate system in the
laboratory frame as shown in Fig. 3. In the laboratory
system, s can be written as

§= (So,S,;,Sy,Sz) = (070,570) ) (22)

where”

(2.3)

Later we shall use the rest frame of the final undetected
particle or particles (rest frame of N*, hereafter referred
to as the R frame) to perform the spin sum and the c.m.
system (p1+p2:=0, hereafter referred to as the C frame)
to perform the integration in the two-photon-exchange
diagram. Since both the C frame and the R frame are
obtained from the laboratory system( hereafter denoted
as the L frame) by Lorentz transformations in the scat-
tering plane (the xz plane), the components of s given
by Eq. (2.2) are unchanged by the Lorentz transfor-
mations, i.e., s has only the y component in L, C, and
R frames.

B. We show that if 7 invariance holds, those terms
in the a? cross sections which do not change sign when
¢~ isreplaced by et will not contribute to the asymmetry.
These terms can be classified into three categories:
(1) interference between the lowest-order Born term
(e?) and the next-order terms (e¢*) which still contain
only one photon exchange—such as vertex corrections,
self-energy diagrams, and the vacuum polarization
diagram; (2) squares of bremsstrahlung diagrams all
of which contain one real photon emission from electron
lines only; (3) squares of bremsstrahlung diagrams all
of which contain one real photon emission from hadron
lines only. The e* terms in the category (1) have the
same structure as the e? term but with different form
factors; hence, from the Christ-Lee theorem they should
not contribute to the asymmetry if 7" invariance holds.
The Christ-Lee theorem also applies to category (3).
Hence we need to consider only category (2). However,
we observe that for all three categories (a) only one
virtual photon is exchanged between the electron cur-

8 _ . .
L @=5-p
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p:/ =P, %p; Y

F1c. 3. Coordinate system used in the calculation.

number of protons with spin up+number of protons with spin down

rent and the hadron current, and (b) there is no inter-
ference between photons emitted by electrons and those
emitted by hadrons. We prove in the following that no
asymmetry can be produced under these two assump-
tions. Our proof can be regarded as a generalization of
the Christ-Lee theorem. With these two assumptions,
the asymmetry can be written as

A=o()—o(l) = f A L(1/AYB,,  (24)

where A is the four-momentum of the photon exchanged
between the electron system and the hadron system
(note that A is not necessarily equal to g=pi1—ps
because we are allowing the possibility of bremsstrah-
lung emission by electrons). B,, is the second-rank
tensor representing the product of two hadron sides of
the matrix elements:

Buv=; [(Pﬁl]u!f><f|]le2T>'_<p2“.7ulf>
X(f!]vlﬁ2l>]64(A+P2_Pf) )

where the final state f is allowed to have any number of
photons emitted by hadrons in addition to the hadrons.
L# is a similar tensor representing the product of two
lepton sides of the matrix elements, except that the sign
between the two terms in Eq. (2.5) should be changed
to plus because the incident electron is not polarized.
Current conservation requires A*B,,=A’B,,=0; there-
fore, we need to consider only the space components
B, of B,, with i,j=1,2,3, the fourth component being
determined by the other three. Hermiticity of the elec-
tromagnetic current j; requires

(2.5)

Bi*=B;:. (2.6)

On the other hand, taking the complex conjugate of
Eq. (2.5) directly and using the antiunitarity of the

7In the calculation of the asymmetry do(1)—do(l), s is set
equal to (0,0,1,0) and hence

_[oy 0
v = I:O —oy
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X =PT operator, we obtain

Bij*=>; LX) | X5 X1 X AUX | X 55X X (p21))

— (X (D) | XjX X FUXf| XX X (p2]))]

X4 (A+pe—pp). (2.7)

In the laboratory system p, is at rest, and our states
[p21) and |pal) are eigenfunctions of the angular mo-
mentum operator J, with eigenvalues 3 and —1%,
respectively. Using Wigner’s convention, we have

X|[pal)=—1p21) (2.8)

and

X[pT)=+1pal). (2.9)

If PT invariance holds, the current operator j; satisfies

Obviously we have

= X7l 54 (A+pa—11)
=Zf | {flo(A+pa—ps). (2.10)

Substituting Eqgs. (2.8)-(2.11) into Eq. (2.7), we obtain

Bij*= —B,‘j. (212)
Comparing Eq. (2.6) with Eq. (2.12), we conclude that
Bi=—Bj;. (2.13)

Using a similar argument we obtain L%=L% hence
L#B,,=0. Since all three categories of terms can be
written in the form of Eqgs. (2.4) and (2.5), we have
proved our assertion. In other words, the terms in the
a® cross section which contribute to the up-down asym-
metry are (a) interference between the lowest Born
approximation and the two-photon-exchange diagram,
and (b) interference between bremsstrahlung originat-
ing with the electron and that originating with the
hadron. In both of these cases the cross section is pro-
portional to the cube of the charge of the electron.
Hence when ¢~ is replaced by e*, this asymmetry
changes sign.

C. We show that if the up-down asymmetry is pro-
duced by an interference between two diagrams T and
T, then only the imaginary part of 71T, contributes
to the asymmetry. By definition the asymmetry pro-
duced by the interference between 7y and T is pro-

portional to
A= Z TI")’sS(TlTTz'FTJTl) ,

spin of
all particles

(2.14)

where s=1v*s,, and > .in 7177 can in general be ex-
pressed as a sum of terms each of which is expressible
as a product of v matrices and an invariant function.
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Let us write, therefore,

Z Tr75ST11T2=Z TryﬁsI‘;Fi,

spin 7

(2.15)

where T'; is a product of ¥ matrices, and F; an invariant
function. The second term in Eq. (2.14) is then

Z Tr’)’aSTsz] “—'Z Tl"YaSI‘,;."F,;'* .

spin '3

(2.16)

Because of parity conservation, v; in I'; should always
occur in pairs and hence they can be eliminated by com-
muting through other v matrices. We can write, there-
fore, P,"‘—‘ aaz- - Aapya, where %_>_ 1 and ai=aiYo— 1Y
Because of Eq. (2.2), s has only the y components;
hence,

TrysSTi" =Tryssvo(@2nta’ - - @2'ai)yo.

Using the identities yo?=1, v¢'=v¢, v:if=—v;, and
YoYuYo="4, We obtain

70(02n+11' . '02T01*)'Yo=¢12n+1' c @@y,

Hence,
TrysSTit = —Traz,y1- - - @2a18ys= —TryssT;. (2.17)
From Egs. (2.14)-(2.17), we obtain
A=Y TryssT:2i ImF;. (2.18)

This proves our assertion. It should be noted that
TryssT'; is pure imaginary and hence A is real as it
should be. When Feynman diagrams are used for the
calculation, 7 invariance usually imposes a reality
condition on the coupling constants, and unitarity
implies that F; in Eq. (2.18) can have an imaginary
part only when it is kinematically possible for the inter-
mediate states to be physical. Using this fact we can
immediately conclude that diagrams shown in Figs.
4(a), 4(b), and 4(c) do not contribute to the up-down
asymmetry; hence the diagrams shown in Fig. 2 contain
all the diagrams needed to be considered for the up-
down asymmetry. We notice that in both Figs. 2(a)
and 2(b), the phases of the final states always get
canceled out; hence the diagram in the left-hand side
of Figs. 2(a) and 2(b) can be chosen to be real. If we
choose this phase convention, the imaginary part of the
matrix element in Fig. 2(a) can be obtained by replacing
the Breit-Wigner formula for the resonant intermediate
state f with its imaginary part

1
Im
(A+p2)2—M g*+iTM g

—TMpg
 [(A+p) =M 2P TM 5

where M g is the mass of the resonance and I is the width
of the resonance with a proper threshold behavior. The
imaginary part of the two-photon-exchange diagram,
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Fic. 4. Diagrams which change sign when ¢~ is replaced by e*

but do not contribute to the asymmetry because no intermediate
states are kinematically possible to be on the mass shell.

Fig. 2(b), can be obtained from the Cutkosky rule (see
Appendix B). Indeed, if we let T represent the matrix
element of the Born term and T, represent the two-
photon-exchange diagram, then Eq. (2.18) is equivalent
to the statement that

A=TryssT1'Ts out,

where T'ocqt is obtained from 7% by replacing the de-
nominator of each of the propagators in the intermediate
states by the following rule:

(2.19)

(p2—m) ™' — 2mid, (p—m?) .

When a set of Feynman diagrams is given, usually
there is no ambiguity whatsoever as to how the asym-
metry should be computed. The procedure sketched
above is exactly what happens in the actual calculation.
However, the reasoning given is not very rigorous. In
Appendix A we give a more satisfactory derivation of
the results of this section using 7" and P invariances
and unitarity.

D. Both the real and imaginary parts® of the two-
photon-exchange diagram shown in Fig. 2(b) have
infrared divergences when the hadron intermediate
state is either a proton or equal to the final state f.
However, it is well known that the infrared-divergent
part of the matrix element is proportional to a product

8 Since we are always dealing with the interference between
two matrix elements as given by Eq. (2.14), we need to know
only the relative phase between 7' and T'.. However, it is con-
venient to define the phase of a matrix element so that the absorp-
tive part of a matrix element corresponds to the imaginary part.
This is automatically accomplished if we use the T-matrix ele-
ments instead of the S-matrix elements. In the text books, usually
the Feynman rules for constructing the S-matrix elements are
given. In order to obtain 7-matrix elements, all one needs to do is
to multiply the S-matrix element by a factor —4 (see Appendix B).
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of the lowest-order Born diagram and a scalar function
containing an infrared divergence factor.* Since the
lowest-order diagram does not produce an up-down
asymmetry, we conclude that the infrared part of the
two-photon-exchange diagram does not contribute to
the up-down asymmetry. A simple demonstration of
this fact is given in Appendix C.

E. It is well known that the real part of the two-
photon-exchange diagram shown in Fig. 2(b) is not by
itself gauge invariant; one has to add the criss-cross
two-photon-exchange diagram Fig. 4(c) in order to
have gauge invariance. However, the imaginary part
of the two-photon-exchange diagram, Fig. 2(b), is gauge
invariant. This can be seen easily if we remember that
the imaginary part of this matrix element is obtained
by putting both the electron and the hadron inter-
mediate state on the mass shell. Since both the top and
bottom part of the diagram are gauge invariant if the
intermediate state is on the mass shell, their product
must also be gauge invariant.

F. Since we are dealing with a very-high-energy
electron, the mass of the electron can be ignored. In
In Appendix D, we show that because of gauge invari-
ance, no singularity is induced by ignoring the mass
of the electron when integrating with respect to the in-
termediate states in the two-photon-exchange diagram.

G. For completeness, let us reexpress the Christ-Lee
theorem! in the case where the electromagnetic current
operator j, has a component which does not transform
according to Eq. (2.10). Let us decompose the current
Ju into two parts (normal and abnormal) j,=j,"+ 7.
where j,” and 7, behave differently under X =PT":

Xj,'"X—l=]‘,‘" and Xj,'aX_1= —ji“.

Equation (2.7) becomes then
B,',-*=2; Ll jin—gael S| dim—= g% pal)
—(pel g — 7ol 1)1 57— 752 paT) ]

X (g+p2—ps). (2.20)
On the other hand, Eq. (2.6) gives
Bii*=Bif=; Cpal gt diel £ im+Giel pal)
—(pal | jirtgsl IS G752 p2l)]
X g+ pa—ps). (2.21)

In Sec. IT B, we have shown that when j,= 7;*, there is
no asymmetry. It is also obvious from the derivation
there that if j;= ;¢ there is also no asymmetry. Hence
only the interference terms between 7;* and ;% produce
asymmetry. Since L% is symmetric, only the symmetric
part of B;; contributes to the cross section. Equation
(2.6) says that the symmetric part of Bj; is its real part.
Summing Egs. (2.20) and (2.21), dividing the result by
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2, and taking the real part, we obtain
(Bij)*v™=3%(Bi+Bjq)
=Re g [Cpal 1 3| XS 1 G5 p21)

+ ol Giel ) i 22T

—(ped | 7| XSG pal)

—(pal | 3t XFL i p20)]
X§4(g+pa—ps).

Applying the symmetry under a rotation operator
R=¢'"s to the first two terms in Eq. (2.22), and
remembering that |p,]) is quantized along the y axis

[R|p:T)=ns|p2l), R|pel)=n_|p:T)], we obtain im-

mediately
Bzzsym = Byysym = Bzzsym = Bzysym —_ 0 .

Hence only B,,¥™ and B,,¥™ are nonzero.
When no photons are emitted by the electrons, we
have

Lw =3 Tr(ps+m)y*(ps+m)y”

=2(p1*ps+prpsi+3¢%¢™) . (2.23)

Hence L¥2=0, and

L7=[2(E—Es?)/Q%]|p1Xps]| ,

where all quantities are in the laboratory system and
Q*=(P:1—Pps)*.
Since L¥#=0, the asymmetry is proportional to

N = L#*(B s+ B.2) +L*(B o+ Bo,)

= Luo(BatB:s)g%/qo
4(E;2—E32)92
= ———;—2&—1 P1Xps|
e—iq-x
XRe (ZW)4d4x spigf m(i)z lvss

X[4a"(0) ()4 72°(0) 5" (x) | p2) -

Using the same normalization for 7, and |p,), the un-
polarized cross section do(f)+do(]) is proportional to
D=L»4,,, where

(2.24)

e—iq~z

d*x

uy

(2m)*
X 2

spinof p2

=ML pou—qu(p2 )/ ¢ b2 — 002 9)/*N(—¢°0™?)
X(Azz—q*q5 4 20) = (guv—quq*) . (2.25)
The asymmetry A(T violation) defined in Eq. (1.1) is

(b2l 4um(0) 3" () + u(0) 4 *(x) | po)

(2.22)
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A(T violation)=N/D. (2.26)

Contracting the tensor in Eq. (2.25), we obtain

D=2(E:Es+pips cosbist+m?) (=0 (Aaz— g0 A.22)
+4(E1E3 —Plps cosfliz— 2m2)A zz .

Now Eq. (2.26) can be shown to be completely equiva-
lent to Eq. (40) of Christ and Lee.! However, writing
the asymmetry in the form of Eq. (2.24) has certain
advantages: (a) It is more covariant looking, hence
easier to apply when one is using Feynman diagrams.
(b) It shows explicitly that the asymmetry is due to the
interference between the matrix elements of 7,” and 7,°
and between those of j.* and j,*. (c) It can be more
easily compared to the formal expressions of Sec. V
which relate to the asymmetry in the absence of T
violation (see Sec. V).

III. BREMSSTRAHLUNG DIAGRAMS

In this section we show that the class of diagrams
represented by Fig. 2(a) contributes negligibly to the
up-down asymmetry. To show this we first argue that
among all the diagrams which can be represented by
Fig. 2(a), only the mechanism represented by Fig. 5
can possibly have a large contribution to the up-down
asymmetry in the kinematical region we are interested
in. We then show by an explicit calculation that Fig.
5 contributes negligibly to the up-down asymmetry
compared with the experiment.

We are interested only in the kinematical region
where f’ in Fig. 2(a) is a proton or N+, but the only
hadron intermediate state f which can have any signi-
ficant imaginary part in this kinematical region is
N*(1238). When the final state f’ is N+, the photon
emitted is necessarily soft. The matrix element for
emission of a soft photon is proportional to the matrix
element for no-photon emission and hence does not
produce any up-down asymmetry. Therefore the final
state f must be a proton. This shows that only the
mechanism shown in Fig. 5 can possibly have any
significant contribution to the up-down asymmetry
in the kinematical region of interest.

In the following we proceed to calculate the up-down
asymmetry due to the mechanism shown in Fig. 5. We

k P
p. P p .
" 3 p 3 p 3 s Ton (k)

T P¢IN*(1238)
M f

Iad + yH v

k
Py P2 P P2 Py P2

(a) (b)

F16. 5. Bremsstrahlung diagram which is likely to contribute
to the up-down asymmetry when the missing mass is between
one-pion and two-pion thresholds. p represents the final proton.
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notice that this cross section can be calculated exactly
in terms of the known experimental form factor for the
ypN* vertex. However, we have made an order-of-
magnitude estimate of this cross section by making
several reasonable approximations. We present this
rough estimate of the cross section because the result
happens to be too small to account for the observed
asymmetry. We shall assume a pure M1 transition for
the ypN* vertex which can be written as’

e¥s(p7)Ca(q)vsmus(@u(ps) =eTs(p,)Cs(g))vs

q-prg6u _ Qﬂan>u 4. (1)

My My

X <qg13u —ggvut

where Wg(ps) is the Rarita-Schwinger spin-§ wave
function, ¢ is the momentum of the photon, ¢-+p.=p;,
and u(p,) is the spinor representing the initial proton.
C; is the form factor for the transition and can be

written as®

C3M ,=2.05¢=3-15V =149/ (—¢2) JV/2.
The covariant spin sum for the spin-§ wave function is
given by
> Va(p)Vs(p7)=Gas=(Ds+M 1) gap—3psapssM *
o (3.3

(3.2)

—3M 7 (pravs—ProYe) —FYavs]-

In the rest frame of the 3-3 resonance, py=(M,0),
Gog=Ga0=0, and the space components of G, assume
a very simple form

tai0;—8;5 O
G =l: :'(ZMf) . (3.4)
0 0
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Also, in the rest frame of the 3-3 resonance (R frame) the
energy of the photon emitted is independent of the
angle as long as the missing mass (p1— ps+p2)2= (k+p)?
is fixed. For these two reasons, we shall use the rest
frame of the 3-3 resonance in our calculation.

The ypp vertex in Fig. 5(a) can be written as!®

eit(p)[a(t)y,—b@) (p+p2)utu(ps)

Eed(p)l’“(l)u(jﬁz), 3.5)
where
=G = ————-——‘-* = 7 e )
a()=Gn(t) =20 2.79G (1)
Gn(t)—G.(1)
()= ——————,
(1—t/AM*)X2M

and

1=(p—p2)*.

The matrix element for Fig. 5(a) is

1 1 1
'I’Z(P3)l:7 e———Yu v —" E]M(Pl)“ﬁ(ﬁ)
PstHh—m Pi—k—m 1

XTu(Du(pa) .
Since % is small compared with p; and ps, we approxi-
mate Eq. (3.6) by ‘
Pire  Ppie

— ———] , (3.7
pg'k Plk

(3.6)

1
bt TP
q

where
g=(p1—p)*.
With this approximation, the asymmetry can be written

as (for e=+p)

1 d*ps d°k d°
P

do(1)—do(])=—e°

X Tr(pr+m)v (ps+m)y”

photon pol

X (qgp—qsv+q- psgeM 7' —qap M f“1)<

The trace involving the electron line is

Lw=3} Tr(pr+m)y*(ps+m)y
= p1#ps’+prpst+ (m2—p1- ps)g+.

The trace involving the baryon line is too complicated
to be evaluated using the standard covariant techniques.
We found that the easiest way to evaluate it is to go
to the rest frame of N* with coordinate axes defined
by Fig. 3, to write all ¥ matrices in terms of ¢ matrices,
and actually to multiply out the matrices. We use the

(3.9)

9A. J. Dufner and Y. S. Tsai, Phys. Rev. 168, 1801 (1968).

1
Zi[Im —I
(2m)? (Q+?2)2—M332+iFM33—|4MP11
Z TI"Y5S(p2+M)Pu(p—f-M)e)‘(kga)\—ka‘Y)‘-{—k . Pfga)\ijl—kapf)\Mf—l)'Y5Gaﬁ’}/5

2E; 2k 2E

p3-e
pa-k

pl-e 1
_ )—c3<0>cs(q2>. (3.9)
pr-k/ g

representation

1 0 [ 0 o I:O 1:' (3.10)
= y YVi= y V5= ) .
e [0 —1] —oy O:l L1 oo

and the radiation gauge for the photon.
We reduce the most complicated-looking part of the

10 Since we are going to evaluate the traces by explicitly multi-
plying ~ matrices, it is convenient to choose an expression which
contains the least number of 4 matrices. Equation (3.5) for the
vpp vertex was chosen for this reason.
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matrix in the baryon trace into a simple form

C, 0
e)‘ma(k)ﬂ/sG”B’YamB(q)=|: 0 0], (3.11)

where
Co=C,=0,
Co=—3M Q[ 2(eXk),—i{e,(0- k) —ky(0-2)} ],
Cy=2M ;0[2(eXKk) . —i{ex(0-K) —ko(0-2)} ],

and Q is the space component of g.

Co and C, are zero because we have assumed that the
transition y+p — N* is caused purely by a transverse
photon. The C’s can also be written in a vector form

C=ZM,QX[(2—io)X (eXk)]. (3.12)
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We see that C is proportional to (eXk), which is a
consequence of our assumption that the decay N* — p
-+ is a pure magnetic dipole transition.

After all the v matrices are multiplied together and
traces taken, we sum the photon polarizations and
carry out the integration with respect to the solid angle
of the photon. Everything is straightforward but
tedious. It is interesting to note, however, that the mass
of the electron can be set equal to zero without giving
any trouble in our integrations, and all the integrations
can be carried out analytically. In fact, ignoring the
mass of the electron, all the integrations with respect
to the solid angle of the photon can be reduced into the
following four types!!:

2 4 (cos?9, sin? sin%y, sin30 sin®y cosy, sinf cos? cosy)
/ iy / sinddo =@ /)LD, (19
0 0 E;— p1sinf cosyy
where Ey=(p2+m?)1/2~ p; is the energy of the incident electron.
After all the reductions and integrations, Eq. (3.8) can be written as
do do 203p31 T'M ;s 1
M =+ —C3(0)Cs(g*)Xs, (3.14)

AdEs | dQdEs
where

. pP1E*p3R?
Xo=[kr*(p1r—psr) sinfisr] {0(42)(E2R+M)(2_§"2“"

R

kr

q2
+b(q2)[—- —(Eyr+M)(Eg+M)+ —
2 pir—P3R

(prr+p3r)*P1rP3RG’
Qr%or?

Here the subscripts / and R denote the laboratory frame
and the rest frame of the N* respectively. In order
to compare with the experiment, we approximate the
cross section from an unpolarized proton target by the
e+p— e+N* cross section using the parametrization
given by Dufner and Tsai,® namely,

do
M+ )

d%dEs  dudEs
4a? pgz(M\ TM3s 1
3r pu\My) (M 2= M)+ T Ms* (—g?)

X C2(¢?) (Ear+M)[ Q2+ (EutEan)?]. (3.16)

sin20133 —'%qz‘*‘

[cosbisr (p1r*+p3r?) —2p1rps R](

3rMpu (M/2—M332)2+F2M332 q4

(prr+psr)? q?
0 PIRPSR

R Jor

2(1 —_ COSBlsR))

2p1R*psR?
—————sin%3R —q2>
R

(1 —-C0501313)[Q132+k3(ﬁ13—PsR)(1+C080133)]]} . (315)

From Egs. (3.14) and (3.16), we obtain

da(T) da(]) do(T)
Ab_l:dﬂsdEg B ngdEsl/ [d&)ngs +
« Mf C';;(O)
—2¢% M* Cs(¢%)

da(l) }
dQdEs ),

Xy
X )
(E2r+M)[Q24 (EutEs)?]

11 We notice that in Eq. (3.8) the trace involving the lepton
line L, is symmetric with respect to the interchange p: <> ps3
and thus we need to consider only the term pi-e/pi-k in
(ps-€/ps-k—p1-€¢/p1-k). The contribution from the other term
ps-€e/ps-k can be obtained by a simple substitution p:— ps
after the integration with respect to the solid angle of %. In order
to reduce the integrations into the forms shown in Eq. (3.13) we

(3.17)

have to rotate the coordinate system from Fig. 3 into a new one
where the &’ axis is along p; and the 2 axis is along piXps. In this
coordinate system, many terms drop out because they are odd in ¢.
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where C3(¢%) and X, are given by Egs. (3.2) and (3.15),
respectively. In terms of Ey;, Es;, and 613, all the quanti-
ties appearing in Egs. (3.15) and (3.17) can be computed
(mass of the electron ignored) as follows:
M=0.938 GeV, a=1/137,
¢?= —4EyEy sin?(36131)
M =@+ 2M (Eyy— Es)+M?2,
Ql2 =B+ E3,2—2Ey,E;; cosbiy ’
pu=Eu, pu=ZEs,
kp=(M—M*)/2M;, pie=(MEu+3¢)/My,
par=M*+2E,M—M?)/2M;, Qr=MQ)/M;,
sinbisp =M pupa sinbisy)/ (M spirpsz)
 qor=M 2 —M>+¢*)/2M,
Eop=(M+M*—g¢*)/2M ,

and
Er=(M>+M?/2M,.

In order to make an order-of-magnitude estimate of
A, we notice that various quantities appearing in
Egs. (3.15) and (3.17) can be classified according to
their magnitudes:

Ey,Es,p1r,Psr~15 GeV,
M7M/;E2R:ERN1 GCV,
—¢%0:4,0r*~0.5 GeV?,

kr~0.3 GeV,

Gor=p1r—psr~0.06 GeV.

Hence we can write, approximately,
kr* a(g*)Cs(0)
4Mqor  Cs(g®)
b(g")Qz*
X(l— T
a(g®)2M

A R —Q Sil’lalsm

)z —Q Sinelan )

and thus we have proved that the asymmetry due to
the bremsstrahlung emission is completely negligible.

IV. TWO-PHOTON-EXCHANGE CONTRIBUTION

In this section we consider a class of diagrams repre-
sented by Fig. 2(b). We are interested only in the hadron
final states consisting of one pion plus one nucleon. The
intermediate states can be a proton, various N*’s, and
continuum states. The only intermediate state one
knows how to handle reliably is a proton, so we treat
this case. In the kinematical region of interest, the final
state N4 is dominated by the formation of N*(1238)
and the nonresonant s-wave part. The N* excitation is
mainly via magnetic dipole transition; the other two

R. N. CAHN AND Y. S.

TSAI 2

Py Pt % q P _N*(1238)
N* r V5T (@)
yv 7’577;;;/(‘1) X p' W—Proion
4 rH 1K)
Py P2 Py P2

(a) (b)

F1c. 6. Interference between one- and two-photon-exchange
diagrams. The final hadron state is N*(1238) and the intermediate
hadron state is a proton.

multipoles, £2 and (Q2, contribute less than!? 109, to
the cross section. In this paper we ignore the nonreson-
ant s-wave part as well as £2 and Q2 multipoles of the
N* excitation. The contribution to the asymmtery from
the two-photon-exchange diagram with a proton as the
intermediate state can be obtained from Eq. (2.19)
with the help of the Cutkosky rule. The asymmetry
can be written (for =) as

do(1)—do(])
1 1

6. M

@* 4Mpie
X84 (prtpa—ps—ps) (2mi)*6:.(p"* —m?)
X8:((p1tp2—p' ) — M} Tr(pr+m)y* (bs+m)
XyMP' +m)y* Tryss(Pet-M)ms(q)ysGP*ysmaal(g)

d*ps dPps d*p’

2E; 2E; (2m)*

111
X(p—l—M)P“(k)—;E};;Cg((f)Cg(q’?). 4.1)
e q

The notations are given in Fig. 6. In order to simplify
the calculation we shall ignore the spin of the electron.'?
This appromimation is equivalent to modifying the trace
of the lepton current in Eq. (4.1) in the following way:

3 Tr(prt-m)y' (ps+m)y*(pr—k-+m)v*
X (2p1—q)(2ps+q' ) (2p1—k)*

ignore electron spin

=LM, (4.2)
Because of the current conservation ¢*, ¢’*, and k* can
be dropped from Z**#; therefore we have

Lv)\u=8P1vP3)\P1u-

The trace of the baryon current in Eq. (4.1) is almost
identical to that of Eq. (3.8); hence we use the rest
frame of the V* with the coordinate axes defined by

4.3)

12 C. Mistretta, J. A. Appel, R. J. Budnitz, L. Carroll, J. Chen,
J. R. Dunning, Jr., M. Goitein, K. Hanson, D. C. Imrie, and R.
Wilson, Phys. Rev. 184, 1487 (1969).

13 The severity of this approximation may be judged from its
effect on the Born term. There we find that in Eq. (3.28) the factor
[Q24 (Eu+Es)*] would be replaced by [—Q2+(Eu+Es)*]
in the spinless-electron approximation. This is a very slight change
in the kinematical region of interest.
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Fig. 3 to calculate the trace,

Bn=Tryss (ﬁ2+M )7" v (‘I)'Y5Gﬁa'Y rma(q') (IH‘M ) Pn(k)
= —Tryss(po+M)Tu(k)(D+M)mra(q')

XvsGagysms(g). (44)

The tensor B,y is nonzero only when » is either x or
y owing to Egs. (3.11) and (3.12). The tensor L"* is
zero when » is y. Hence we need to consider only v=x
for L*#B,y,. Similarly, B, is nonzero only when X is
%, ¥, or z, but L*» is zero when A=1y; hence we need to
consider only A=x and z for L"**B,,,,. We may write thus

LBy = —8p1or Tryss(pe+M)pr*T (k) (p+M)
sz pantaa(q)vsGPysmap(q) -

=,z

4.5)

From Eq. (3.12), we obtain
cC o0
2 pamaa(q)ysGPysmas(q) =[o 0] 49

A\=2z,2
where

C=—3M;Qr[2(psXq")yr+i¢ ye(@s-0)r]. (4.7)

The subscript R refers to the rest frame of the N* and
the coordinates are defined by Fig. 3. Substituting
Eqgs. (4.6) and (4.7) into Eq. (4.5), we obtain

LB = (16/3)iaQrp12rX, (4.8)

where

X=(Eor+M){2[p1or(k:r —Qr) —korps:r]
X (k:rpror—korpror) +Ryr2(P1.0r — p12°)}
—Qr{E1r~+[0(k)/a(k?)](2p1: pat-k-p1)}
X{2[pror(k:r—Qr) —kosrps:r Jkert+Fhyr*ps.r}
+2Qrkorp1or[ pror(kr —Qr) —karps:r]. (4.9)

In terms of X, the asymmetry for e~+p scattering, Eq.
(4.1), can be written as

doo(1)  doo-(])  20° Qrpror
dEadQs dEsdQs 37|' MWPlO
pa\Cs(g?)
(e o= 0,1, (410
pu/ —¢*
where
P1c?
I= / dQ, XCs(q'?)a(k?). (4.11)
c.m. kcquz

The d*p’ integration in Eq. (4.1) was reduced into the
form Eq. (4.1) with the help of two &, functions in
Eq. (4.1) in the c.m. system (p;+p»=0). The cross
section in Eq. (4.10) is the laboratory cross section.

X as given in Eq. (4.9) is expressed in terms of the
rest frame of NV* with the coordinate axes defined by
Fig. 3, whereas dQ,- integration is carried out in the
cam. system. The subscripts /, R, and C refer to the
laboratory system, the rest frame of N*, and the c.m.

INELASTIC:- - - 879
system, respectively. When p’ is parallel to pi, k¢ is
zero, and when p’ is parallel to ps, the absolute value of
¢'? becomes minimum. When (p;1+p2)?=W=>M ;% we
have

Q' *min=~ — (M ;2 —M2)2m2/W*, (4.12)

which is zero if the mass of the electron is set equal to
zero. These two singular points in the integrand of
Eq. (4.11) are not true singularities: The integrand is
finite at these two points ¢f we choose the variables of
integrations properly. To see this let us consider the case
when ' is almost parallel to p;. k¢? is then proportional
to 62 where 6 is the angle between p’ and p;. X is propor-
tional to k¢, hence it is proportional to 6, and the solid
angle dQ, is sinfd6dQ, which is linear in 6. Hence the
integrand in Eq. (4.11) is finite when p’ is parallel to p:
if the direction of p' is chosen as the z axis. This shows
also that the asymmetry does not have the infrared
divergence, as mentioned in the Introduction and
Appendix C. Next we consider the case when p’ is
almost parallel to p;. If we ignore the mass of the elec-
tron, ¢'? is proportional to 62, where ¢ is the angle
between p’ and ps;. Because of the relation p’—ps;=q’,
the quantity C in Eq. (4.7) is proportional to sin¢’
and hence X is proportional to siné’. The solid angle is
proportional to sing’ if the direction of p; is chosen as
the z axis. Hence the integrand in Eq. (4.11) is finite
when p’ is parallel to p; even if the mass of the electron
is ignored, provided that the direction of ps is chosen as
the z axis. This shows also that the mass of the electron
can be ignored in our problem, and that there is no
Inm? term in the asymmetry. In the numerical integra-
tion for Eq. (4.11), we divide the region of integration
into two parts. In region I, we choose the direction of
$1 as the z axis, then carry out the integration (4.11),
setting the integrand to zero whenever the angle be-
tween p’ and p; is smaller than 2613¢. In region II, we
choose the direction of ps as the z axis; then we integrate
¢’ from O to %613¢c. The sum of these two integrations
gives 1. We approximate again do(1)/dQdE;+do(])/
dQdE;s by Eq. (3.16) and obtain

do(T) do(l) do(T)
A = -
<d93dE3 dﬂsdE3),—+,,/ (dﬂadEa +
a M PQrpiarl

7 WE1eM*[Qi*+(Eu+Es1)*](Ee R+M)C8(92();

do(l) )
ddE;

13)
where I is given by Eq. (4.11).

In order to calculate 4, we have to perform two
Lorentz transformations (R— C-— L) and two ro-
tations [ps; as the z axis when p’ is almost parallel to
Ps, otherwise p; as the z axis; in Eq. (4.9) the z axis is
along Q7, in addition to the twofold integrations with
respect to the solid angle of p’. We have done all these
on a computer. Since it takes some effort to figure out
the best way to handle all these calculations on a com-
puter, we describe here how they can actually be done.
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The following presentation also serves as a compact
summary of the notation and kinematics. We first
define the constants: M =0.938, m=0.51X1073,
a=1/137, and the laboratory quantities: E;; (incident

pu=(E2—m?)12,
v=Ey—E;,
M= (M2,

Eye=(WHm*—M )20, pro=(Er2—m?)'/2,
Sin0130 = (1 - 00520130)1/2 )

c080130=(q2—2m*+2E,.E3.)/2p1psc,
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par=(Es?—m?)/?,
Q2=pu+psi®—2pups: cost,
We=m2+M?*42E,M, W=W2)l2,
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electron energy in GeV), Ej (outgoing electron energy
in GeV), 8; (electron scattering angle in radians). We
then compute all quantities appearing in Eq. (4.13) in
terms of Ey;, Es, and 6, in the following sequence:

q*=2m*—2(EyEy— pupsi coshy)
MPA=M>4-2Mv-+¢2,
Eyo=(m*+MEy,)/W,
pro=(Es2—m2)l2,

Eap=[MEu+ QG YM;, Esp=W—m>—M)/2M;, Esp=(Mv+M?)/M,,

Qr=MQi/M,,
pir=(E1r2—m?)12,

P3R= (E3R2—m2)1/2,

Integration in region I.
Variables of integration: 6 and ¢ [see Fig. 7(a)].
Quantities containing variables of integration:

x=c0s0 cosfy3.+sind sinfyz, cose,
k2=2p1.H(1—cosh), ke=(kHV?,
(k- P3)e=p1cP3c(cosb13c—x), kor=(K D)/ My,
k.r=[korqor+3k2—(k-ps)c]/Qr,

kyr=—p1csinf sing,

{[koREs r+ (k . ps) c]

kop= —
Qrpirpsr sinfisr

X (E1rqor—3%9%) — (korE1r+3k.2)
X (Esrqort+39%)},

1 2w P102
II=/ d cos(}/ d¢ Xa(k*)cs(q'?),
~1 0 kc2‘1,2

plx_p3 pl)(p3

(b)

F16. 7. Coordinate systems for the integration with respect to
the solid angle of the intermediate electron p’ in the two-photon-
exchange diagram. When p’ is almost parallel to p:, we choose p;
as the z axis. When p’ is almost parallel to p;, we choose 3 as the
z axis. These coordinate choices are essential in the numerical
integrations in order to avoid the apparent singularities due to the
two photon propagators.

qor=(g*+vM)/My,
plzR = (Ple_PlzR2) 1/2 )
psor=(psr®— P32,

p1.r=[E1rqor—(3¢)1/Qxr,
p3.r=[Esrqor+3¢*)/Qx,

sinbisr = (p1c sinbise)/pir .

where x=0 if x> cos}fi3.; otherwise X is given by
Eq. (4.9), ¢?=¢*—2(k-ps)., a(k?) =2.79(14+k2/0.71)72,
b(R)=1.79C2M) 1 (1+k2/AM?) 1 (1+k2/0.71)2, c3(q"?)
= M~12.05¢—3-15 (_4'2)1/2[1+9(_g12)1/2]1/2_

Integration in region I1.

Variables of integration: 6’ and ¢’ [see Fig. 7(b)].

1 27 pIOZ
f =/ d costf / d'——xa(k)cs(y'™)
cos3813c 0 kc2q/2
ko?=2p1.2(1—cosby3, cosd’ +sinbys, sinf’ cos¢’) ,
ko= (k)2
(k : p3) c= Plc;bsa(COSBlsc - Cosgl) ,

kyr= —p1.sind’ sing’.

All other expressions are identical to the integration in
region I.

Compute I =1,4-1, and then compute 4, using Eq.
(4.13). The resultis 4 ,~0.75X 102 for e~+p at E;;=18
GeV and ¢%=—0.6 GeV? for the missing mass ranging
from the one- to the two-pion threshold. The reason
why A4, is so insensitive to the missing mass is that the
threshold behaviors of ¢() —¢({) and o(T)+(]) cancel
out upon taking the ratio in Eq. (4.3). Our value for 4,
has the right sign compared with the experiment, but
has the wrong shape and is one order of magnitude
too small. Admittedly, we have made three drastic
assumptions: (a) We kept only the proton intermediate
state, (b) we ignored the s-wave background in the
final state, and (c) our 3-3 resonance excitation contains
only M1 and we ignored Q2 and E2 multipoles.

In order to see the effects of ignoring other inter-
mediate states, we let the form factors appearing in
the integration 7 in Eq. (4.3) be constant and we found
that there is no significant change in the value of 4,
thus obtained. This suggests (but does not prove) that
including more intermediate states will not, in general,
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make the asymmetry larger. In the radiative correc-
tions to the e-unpolarized proton scattering, the cor-
rection is roughly (2a/7) In(—¢2/m?) In(E/AE). In the
asymmetry there is no infrared divergence and also the
mass of the electron can be ignored; hence terms such
as InE/AE and In(—¢?/m?) cannot occur. Furthermore,
besides o we have a small sinf;; to make the asymmetry
small. Hence it is very difficult to make the asymmetry
one order of magnitude larger than « at small scattering
angles.

V. DISCUSSIONS

Bernstein, Feinberg, and Lee'* noticed that the ratio
of amplitudes®® of Ky — 27 to Ky — 27 is roughly o/7
and proposed the possibility that the CP noninvariance
in the K, decay might be due to the electromagnetic
interaction of hadrons. If we want to account for the
apparent CP violation in the decay K;— 27 in terms
of a possible CP violation in the electromagnetic inter-
actions of hadrons, the abnormal current 7,* and the
normal current 7,” of Eq. (2.24) must have strengths of
the same order of magnitude. The experiment of Rock
et al.® shows that the asymmetry is less than 69. This
6% asymmetry can be due to either a statistical fluctu-
ation, an o effect, or a genuine T violation. It is natural
to ask whether one can obtain a lower limit for the ratio
of the matrix element of 7;* to that of 7,» by assuming
that this 6%, asymmetry is all due to T" violation. It
should be noted that one cannot obtain an upper limit
of |(7:%/{4*)| from the asymmetry, because even if
[{7:%)/(4;™)| is large one can still get no asymmetry if
the phases of the matrix elements conspire in a certain
way. Ignoring the mass of the electron and using the
properties of 7 and 7, under the operator X=PT,
we can simplify Eq. (2.26) into

A(T violation)
_ (Es2—E3?) cot36 (—q%/0%)(1/q0®)B
24 4st-cot?(30) (— g%/ Q) Ase—(0/qc?) Ass]’

(5.1)

where
B=—4 Re; [(PZTl]z"lf><f|]za[1’2T>

(a1 7| XL 7o 1) 164 g+ 12— 1) ,
A2a=2 ; LIt dam I D11 da21 £)12]
X 8(g+pa—11)

=2[(J-")*+(+)%], (5.2)

14 J. Bernstein, G. Feinberg, and T. D. Lee, Phys. Rev. 139,
B1650 (1965).

15 J. H. Christenson, J. W. Cronin, V. I. Fitch, and R. Turlay,
Phys. Rev. Letters 13, 138 (1964).
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and

4;.=2 Zfl LIl 51 D12+ <pal | 7221 12D

X4 (g+p2—py)
= 2[(]271)2_{_(]3«)2] .

Here
Jo=[Z [(2T] 3271 N1 264(g+p2—p1) 112,
Te=LZ [l D) 1284+ pa—p )T,
Je=LE [l 71 D154+ =0T,
Te=LE il gae D25+ pa—pp) 1.
Using the inequalities A-B<|A| |B| and |A+B|
<|A|+|B|, we obtain
|Bl <4 T T T,
| B

27T J2 T
ol _ae (e 12y,
Ax! (]E”)2+(Jza)2 ]a;” Jz”

IBI R(]oz ]za jza
<[ lG )
sz ('—q2) ]zn jzn
g (_qz/g()z)Azz
ar B Azs .
From Egs. (5.1) and (5.4) we obtain
J 2@

J @
( + ——) > A(T violation)
Jn T

(5.3)

Hence

(5.4)

wherel®

2+cot?(36)(—g%/Q%) (1+R)
(ExtEs)gi cot30(—g2/Q%[1+Rge?/ (—¢?)] '5

In the kinematic region of the bump in Fig. 1, we obtain
J/T -T2/ T»> | A(T violation) | (1+R)/1.2.

Therefore the measurement of A(7T violation) of Eq.
(1.1) gives a lower bound on J,2/J,*+J,%/J . and if
R=o0,/0r is of order 1, then the magnitude of A(T
violation) is roughly equal to this lower bound. Since
we cannot give an upper bound for J,* and J,® from a
given A(T violation) even if A (T violation) is equal to
zero, we cannot say that the 7-violating current j,°
is equal to zero. However, it will take some miraculous
cancellations among various terms in Eq. (5.2) to give
zero asymmetry when j;* is comparable to 7;». This

18 L. H. Hand, Phys. Rev. 129, 1834 (1963).
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would be especially true if 4(7 violation) is zero at all
energies and angles. Hence the smallness of the asym-
metry found by Rock et al.? indicates that T is a good

symmetry in the electromagnetic interaction of hadrons, |

and the apparent CP violation of K,— 27 decay is
very unlikely to be due to the electromagnetic
interactions.

The maximum allowed asymmetry for any given
value of R can be obtained from the inequality (5.3) and

| B| S4(T1T 24T 2T 00 < 2(Aaad ) 2. (5.6)

The last inequality is equivalent to Eq. (27) of Christ
and Lee. From (5.5) and (5.1) we obtain

2(E1+E3) (ElEsR) 1/2 COS’%&
0*+2E,E5(14R) cos?(36)

* For small angles and small energy loss, the inequality
(5.7) reduces to

| A(T violation) | <2R'2/(1+R). (5.8)

The right-hand side is maximum when R=1, and the
maximum allowed | 4(Z violation)| is equal to 1 when
R=1.

Let us next discuss the asymmetry due to the o?
cross sections. We have shown that the asymmetries
due to both the bremsstrahlung and the two-photon
exchange have neither the infrared divergence nor the
divergence due to m2?— 0. For this reason it is very
difficult to obtain an asymmetry which is one order
of magnitude larger than a. The arguments given in
Sec. III to show that A; is small are convincing. For
A4, we do not know how to calculate the cross section
if the intermediate state is not a proton. We can improve
the treatment of final states in our calculation of 4,.
We can include the small Q2 and E2 amplitudes for the
N* excitation by using more recent data.l? The contri-
bution from the nonresonant s-wave part can be esti-
mated by first using the Nambu-Shrauner formula!” to
evaluate the blobs in Figs. 8(a) and 8(b), and then cal-
culating the contributions from these diagrams to the
asymmetry. It should be noted however that adding
more intermediate states or final states to the calcula-
tion does not necessarily increase the magnitude of the

Ps p o Ps o |

Pz p Pz p
7 77' . I'N

I % P P Py P P P

(5.7)

| A(T violation)| <

(a) (b)

F16. 8. Feynman diagrams for calculating the asymmetry due
to the s-wave pion production. Blobs in these diagrams can be
obtained from the Nambu-Shrauner formula.

17Y. Nambu and E. Shrauner, Phys. Rev. 128, 862 (1962);
S. L. Adler and F. J. Gilman, ¢bid. 152, 1460 (1966); Y. Nambu
and M. Yoshimura, Phys. Rev. Letters 24, 25 (1970).
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asymmetry. In fact, it has been shown by Guerin and
Piketty® for the case of the elastic scattering that
the various intermediate states give contributions of
roughly the same order of magnitude and with more or
less random signs. Hence, in order to estimate the order
of magnitude of the asymmetry, any reasonable choice
of intermediate states or final states will give a correct
estimate.

The general expression for the asymmetry due to
the two-photon exchange can be obtained from general-
izing Eq. (4.1) to include all intermediate and final
states [see Fig. 2(b) for notations]:

do(1)  do(]) ¢ P
- =117
andEg dQsdEg (27[')3 8M Pll

/ 4 IT( +m)y*(ps-tm)
X PR — v
2By s YT

eiq-:u e—ik-yd4x d4y

XYM +m)yr X

spinof p2

X<P2 ‘ 'Y5s.7.v(x)j)~(0)jn(y) I P2> ’ (59)

where g=p1—ps, k=p1—p’, and ¢’ =p’— p;. The minus
sign is for e=4-p scattering. Using the same normaliza-
tion, two times the cross section from an unpolarized
proton target can be written as

do(1)  do(l) et 11
oD W) & e
dQsdEs dQsdE3 (21!)3 8MP1; q4 2

XM pstmyyr 2 [ eivudly

spinof p2

X{p2] 72(0) ju(¥)| p2).

From Eq. (5.9) we can obtain the expression for the
contribution from any final and intermediate states by
simply inserting them between the currents 7,(x), 7,(0),
and j7,(y). For example the up-down asymmetry in
elastic ep scattering can be obtained from Eq. (5.9) by
inserting the final proton state D spinofp | 2P|
Xd¥p(2E)~'(2x)~% between j,(x) and 7,(0) in Eq. (5.9).
We obtain '

o M= ()

x/ g 1T<+)(+)
2El(2’ﬂ')3ql2k2q22 rpl my ,bs e

(5.10)

X' +myr X / e~k udty
spinof p2and p

X{p2|v587,(0) | p)(p] A (0) ju(¥) | p2). (5.11)
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In general, even if we know the unpolarized cross sec-
tion, Eq. (5.10), from experiment for all ¢ and go, we
still do not know how to calculate Eq. (5.9) or, for that
matter, even Eq. (5.11). The reason is that in Eq. (5.11)
both the spin and momentum of |p) can be different
from those of | p2).

The only thing common among Egs. (5.9)—(5.11) is
that they all involve products of currents at different
points in space-time. Hence if one has some model for
products of operators at different points in space-time,
it can be tested against the experimental results using
Egs. (5.9)-(5.11). As far as we know, no one has ever
proposed such a model.

For completeness of discussion let us consider the
contribution of two-virtual-photon emission and absorp-
tion from a hadron current to other observable physical
phenomena.

A. Radiative Correction to Electron Scattering from
an Unpolarized Proton Target

In this case only the real parts of the two-photon-
exchange diagrams, Fig. 4(c) and Fig. 2(b), contribute.
The two diagrams must be cousidered together because
of gauge invariance. Both diagrams have infrared
divergences when the intermediate state is equal either
to the initial or to the final state. The real part of the
two-photon exchange is related to the imaginary part
by dispersion relations. However, the imaginary part
required here is not the part which appears in the up-
down asymmetry, but the one obtainable from Eq.
(5.9) without v;s. These two ‘“‘imaginary parts” of
the two-photon-exchange diagrams are completely
independent of each other. This can be seen easily if
we go to the laboratory frame where |ps) becomes a
two-component spinor and <;s reduces to a 2X2
matrix s-e, and 7,(x)7x(0)7.(y) can also be reduced
into a 2)X2 matrix which can be represented in general
by A+B-¢. We have, then,

> (palrssi (@) in0) ju() | po) —

spinof p2
Tr[s-e(4+B-0)]=2s-B,
whereas
vZ{ (P2l 4(®) 70) ju(¥) | p2) =Tr(4+B-0) =24;
spin of p2

thus the two expressions are entirely independent of
each other.

B. Hyperfine Shift of Hydrogen Atom

Iddings!® showed that the two-photon-exchange con-
tribution to the hyperfine shift in the ground state of a
hydrogen atom is related to the cross section of polarized
electrons on polarized protons if there are no subtraction
terms in the dispersion relations. From Eq. (3.4) of

18 C, K. Iddings, Phys. Rev. 138, B446 (1965).
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Iddings’s paper we see that the quantity needed is

S et vd'y(pa| 758 2(0) 1u(y) | p2), (5.12)

spinof p2

which looks like the expression in Eq. (5.10) except
for the operator v;s. Using the same argument as in
Sec. V A, we see that the two expressions are inde-
pendent of each other. Let us consider the relation
between Eqs. (5.11) and (5.12). In Eq. (5.11), the factor
(p2]v587,(0)| p) is known for all combinations of spins
of p» and p. The expectation value in Eq. (5.12) can be
written as

spigf . (p2lrs8n0) 7u() | p2y= (p2T1 2 (0) ju() | £2T)
— (ol | N 0) 7. () | 220)
whereas the last factor of Eq. (5.11) contains
PO 7O [ 220, (PT110)7.0) 221D,

where in general p,>%p. Hence if one knows how to
calculate Eq. (5.11) one can certainly calculate Eq.
(5.12), but not the other way around.

etc.,
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APPENDIX A

In this appendix we give an alternative proof that the
a® contribution to the up-down asymmetry is given
completely by the imaginary part of the diagrams shown
in Figs. 2(a) and 2(b). In Sec. II C we have shown this
by using the properties of Feynman diagrams. In this
appendixwe show this directly using 7" and P invariances
and the unitarity of the .S matrix.

Let us write the .S matrix in the form

(F1Sli)=0b.s+i(2m)**(pr—po)(fl4]d), (A1)
where
A=(edr e Ayt dgt---). (A2)
Unitarity of S gives
(flat|iy=(f|A|i)—i(2m)*
XZ”: (14 |n)n]| AT|5)6* (pi—pn). (A3)
The asymmetry is proportional to
A=M§,M {{{pshapshs| Al prhapal)|?
— | {pshapsAs| A phapal} |7} . (A4)
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We consider this in the laboratory system, Fig. 3.
A1, A3, and Ay are helicity states and |T) and ||) are
eigenfunctions of angular momentum J, for the initial
proton. Decomposing |T) and |[) also into helicity
states

ITy=0/2)(13)+i —3)

[y=/V2)([3)—i] =),
we can write Eq. (A4) as

A=—=2Tm 3 {(phsphs| A]phipes)*

and

MAsAs
X{pshapshs| Al phape—3).  (AS)
The time-reversal invariance implies
(flA]iy*=(Tf|A"| Ti). (A6)

Let us use the coordinate system defined by Fig. 3 and
let R be a rotation by = about the y axis. Then we have

RT | pahs)=n|paa), (AT)

where 7 is a phase independent of A,.
Using Eqgs. (A6) and (A7), Eq. (AS5) can be written as

A=—2TIm )\E}\ <P3)‘3Pf)‘flATl?1)\1j72%>
1A3AS
X (pshsprhs| AT| papa—3)*.

Substituting the unitarity relation (A3) into (A8), add-
ing the resultant A to the A obtained in Eq. (A5), and
dividing the expression by 2, we obtain

A=—Im ¥ {—i@m)'[([s445){|4]-3)*

= (143|644 —5)*]+(2m)3( |64 4T|3)
><< }54‘4/1” —%>*} ’

(A8)

(A9)
where we have used the short-hand notations
(I=@aaponsl, 15)=[papei),
| =)= lpp2—13),
STAAY=Y" 54(pi—pa)A|n)n| AT.

and

Applying the antiunitary operator RT defined in (A7),
we see that the last term in Eq. (A9) is real and there-
fore can be ignored. The first two terms in Eq. (A9) can
be further simplified by using the invariance under
V=e¢i"/uP,

Since Y| pA)=n'(—1)*"*|p—N\), where n’ is a phase
independent of p and \, we have V'|$)V| —L)*=—| -1
X [4)*. Thus Eq. (A9) can be written as

A=2Re Y (2m)%(|64AAt|1)(|A|—1)*.

AAgAs

(A10)

For the a® contribution to A, 4 in ( |A|—1)* can be
either €24, or e34;. In the former case, ( |i84447|%)
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represents the absorptive part of the two-photon-
exchange diagrams. In the latter case, { |4|—3*
represents the bremsstrahlung emission from the elec-
tron lines and ( [824A4T|%) represents the absorptive
part of the bremsstrahlung emission from the hadrons.
In both of these cases ( | 4| —%)* in Eq. (A10) does not
have any absorptive part; hence, At=4 for this matrix
element. Changing from the helicity representation back
into the angular momentum representation, we have

A=Re ¥ i(2m)*(( |8 44T T)(14[T)*

= (et A4t DCIAT* (ot AT (1A T)*
= (1844t (1411, (A1)

Applying the invariance under P7T, Egs. (2.8) and (2.9),
to the first and third terms inside the parentheses and
using PTA(PT) '= A", we see that the first term is the
complex conjugate of the second and the third term is
(—1) times the complex conjugate of the fourth. Hence
the third and fourth terms and the Re symbol can be
dropped from Eq. (A11):

> [ Aayss IN)*( [ i(2m) 454 4245 [ Ns)

MA2Agd ¢
+{ | Asyss|Na)*(|1(2m) 6441457 | N2) ]

The first term corresponds to the class of diagrams
represented by Fig. 2(b) and the second term corre-
sponds to those diagrams represented by Fig. 2(a).
Hence we have reproduced all the results contained in
Sec. II C without using the properties of 4 matrices.
From Eqs. (A2) and (A3) we see that ( |1(2m)54 24 2"\s)
in Eq. (A12) is 27 times the imaginary part of the two-
photon-exchange diagram { | A4|\s), and hence can be
obtained from Cutkosky rule Eq. (B5).

A=¢b

(A12)

APPENDIX B

In Sec. IV we have used the Cutkosky rule® to obtain
the imaginary part of the two-photon-exchange diagram.
It is easy to see that the rule, as applied in our calcu-
lation, is equivalent to the unitarity relation. Using the
notation of Appendix A, the unitarity of the S matrix
gives

( ‘A4—A4TI)\2>=< "L.<27T)454A2TA2’>\2>. (Bl)

Suppose we are interested in the contribution from
an intermediate state consisting of one electron denoted

Pz Py
el avk | F1c. 9. Two-photon-exchange diagram
p for electron-electron scattering used to
1~k P2+k  illustrate Cutkosky’s rule, infrared diverg-
e K e ence, and the singularity due to m2?— 0.
P, pz...

1R, E. Cutkosky, J. Math. Phys. 1, 429 (1960).
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by p’ and one proton denoted by p. Inserting the states
of these two particles and summing their spins, Eqgs.
(B1) becomes

i( | A5t / @05 (prt-pa—p— 1)
By d5p

2E' 2E (27)°

(p+M) (B’ +m)As|N2)

a4y’
=i( | 45" / ? Ci(p+M)2mis, (p2—M?)]

(2m)*

XL +m)2mis . (p'2—m?) J42 | Ne).  (B2)
Now except for the factor ¢ in front of { |, the expression
(B2) is exactly what one obtains by applying the
Cutkosky rule to the usual Feynman rule for the two-
photon-exchange diagram. The origin of 7 in front of
(| is that the usual Feynman rule refers to the S-matrix
element which differs from the matrix element of 4 by
a factor of ¢ [see Eq. (A1)]. Since we are interested only
in the interference terms between two matrix elements,
only the relative phase between them enters into the
problem and the factor of ¢ above always get canceled
out as long as we use the same phase convention for
the two matrix elements.

In order to illustrate some of the interesting features
of the two-photon-exchange mechanism and the use of
the Cutkosky rule, let us consider an integration whose
real and imaginary parts are known?:

5 / d*k
) e —2p1 B B2 )L (R —0)* =\ (k2—2?)
7.‘.2 —n2 s
=—— lnﬂ(ln— —7ri> (B3)
s¢* AN\ m?

This integration occurs in the two-photon-exchange
diagram in the e-e scattering shown in Fig. 9. The
answer is correct in the limit $>m23>A2 and —¢Z>m?,
where s=(p1+92)?% ¢2=(p1—ps)? p12=ps>=m?, and
A% is the fictitious mass of the photon for handling the
infrared divergence.

Applying the Cutkosky rule, we can easily calculate
the following integration:

_ / 1(271'1) 25, (k2— 2ps1- k) 5+(k2+ 2po- k>d4k
[(k—q)*—\T](R2—22)

2%t —g?
= In—.
Sq2 2

20 M. L. G. Redhead, Proc. Roy. Soc. (London) A220, 219
(1953); R. V. Polovin, Zh. Eksperim. i Teor. Fiz. 31, 449 (1956)
[Soviet Phys. JETP 4, 385 (1957)7; Y. S. Tsai, Phys. Rev. 120,
269 (1960), and unpublished.

(B4)
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Comparing Eq. (B3) with Eq. (B4), we obtain

24 Tmbd = beys. (B5)

Equation (B3) is not easy to calculate, whereas Eq.
(B4) is relatively easy. Hence the Cutkosky rule is just
a quick way to obtain the imaginary part of a matrix
element. Equations (B3)—(BS5) give the correct sign and
numerical factors in applying the rule.

This example also shows that in general the two-
photon-exchange diagram has an infrared divergence in
both the real and imaginary parts. The reason that we
do not have an infrared divergence in the up-down
asymmetry is that the infrared-divergent part is always
proportional to the lowest Born diagram, which does
not produce any up-down asymmetry. We also notice
that the imaginary part is finite as m2 — 0, whereas the
real part diverges logarithmically as w2 — 0. (Compare
with Appendix D.)

APPENDIX C

In this appendix, we show explicitly that the infrared-
divergent part of the matrix element is proportional to
the lowest-order diagram and hence does not contribute
to the up-down asymmetry. The matrix element for
the two-photon-exchange diagram shown in Fig. 6(b)
can be written as (ignoring numerical factors)

T /' dk 2(52) )\Pl“k—-l—m ¥ b
v Q)¢ pa)y k2—2p1-k7 u(p)W(ps)ysmaa(g—Fk
() |

B2+2ps-k (g—F)2—\? b2 —)\2

Since the infrared divergence occurs at 2— 0, the
infrared-divergent part of M, can be obtained by letting
all the &’s in the numerator and in the denominator
(¢g—Fk)2—\? be equal to zero. We also note that

(p1Fm)vru(pr) =2p1*u(p1), Tu(k) B0 T

and
(PotM)yuu(p2) =2p2uu(ps) .
Hence the infrared-divergent part of M, is equal to
T2 intrared =8(p3) Y u(p1)T*(ps)ysmra(Qu(p2) (1/4%)
a*k 1
(@)t (k2 —2p1-R) (B2 2po- k) (B2 —2D)

><4(P1'P2)/

which is proportional to the lowest-order graph T4
shown in Fig. 6(a).

Even though there is no infrared divergence in the
up-down asymmetry, in practical calculations one has
to be careful in choosing the coordinate system in order
to avoid numerical difficulties near k22— 0 (see Sec.
IV and Appendix D).
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APPENDIX D

In this appendix we show that no singularity will be
induced by ignoring the mass of the electron in the two-
photon-exchange contribution to the up-down asym-
metry 4,. We have shown this explicitly in Sec. IV
when the hadron intermediate state is a proton and the
final state is V¥, via an M1 transition. Using gauge
invariance, we show that this is true also for an arbitrary
final and intermediate hadron state. When the mass of
the electron is ignored, ¢'? vanishes when p’ is parallel
to ps [see Fig. 7(b)]. When p’ is almost parallel to ps,
¢'? is proportional to 6’2, where 6’ is the angle between
ps and p’. The solid angle is proportional to 6’; hence
all we need to prove is that L#*B,,, is proportional to
¢ when p; and p’ are almost parallel to each other and
the mass of the electron is ignored. Let us choose the
direction of ¢’ =p’—ps as the z axis, and both p’ and p;
are on the xz plane in the c.m. system. When the mass
of the electron is ignored, we have

*=('—ps)*=q"*—¢.*= —E'Es6*.  (D1)

Let us consider first the case when the masses of the
final and the intermediate hadron states are not equal
to each other, so that g¢'0. Then from Eq. (D1) we
may write

o= (g0’ .92 ,9,",9:") =90’ (1,0,0, 14 (E E56'2/2¢¢%)) . (D2)

Equation (D2) together with current conservation
¢*Bun=0 yields

Buo=B.(1+E'E36'%/2¢,'?) .

In the same coordinate system, the four-vector p; (mass
ignored) can be written as

(D3)

paa=E3(1, sind,0, cosbs) ,
where
0:;=0'E'/Q'.
Hence
23"Bun=E3(B o — By, c0s03—sinbsB,,,)
~ —(EsE'0'/Q) Buwet0(87?).

When the spin of the electron is ignored, the lepton
trace L' is equal to 8p"ps*p1* as shown in Egs. (4.2)
and (4.3). Hence LB, « ¢ as desired. Now suppose
we restore the spin of the electron, but ignore its mass;
we have from Eq. (4.2)

LM =1 Tr(pry’ psy ' v*)= (bry"Dsv ' v*)
= p"My pry’ps) — g (B bry’bs) + (B vPyDs)
—gM (v pips)+ o (B v pry) .

(D4)

(Ds)
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Using the previous arguments, the terms proportional
to ps* and p'r=ps*4¢* in Eq. (D5) yield terms pro-
portional to ¢ in L*#B,,,. We notice that in the rest
of the terms in Eq. (DS), p; and p’ are next to each
other inside the trace. When p; and p’ are parallel to
each other, these terms are equal to zero separately if
the mass of the electron is ignored. Hence we have
proven that neglecting the mass of the electron does
not cause any singularity in the imaginary part of the
two-photon-exchange diagram for arbitrary final and
intermediate states of hadrons provided that they have
different invariant masses.

We next consider the case in which the virtual photon
is coupled to the hadrons with identical invariant masses
such as ypp or yN*N* couplings. The vertex labeled u
with momentum transfer % in Fig. 6(b) is such an
example. In this case the energy transfer is zero in the
c.am. system, and hence Egs. (D2) and (D3) are mean-
ingless. We notice that in this case the vanishing of ¢
in the forward scattering is independent of the mass
of the electron, as can be seen from Eq. (4.12) where
M?and M ;2 are now equal to each other. We also notice
that in this case the kinematics is such that in order to
have a vanishing ¢’2, all four components of ¢’ must
vanish, which is precisely the infrared limit. Since we
know there is no infrared divergence for the up-down
asymmetry independent of the value of the mass of
the electron, we conclude that the mass of the electron
can be ignored in this case as well. In contrast to the
previous case, the nonexistence of the infrared diver-
gence depends critically upon the fact that there are odd
numbers of v; in B,y ; hence itis true only for the asym-
metry, but not true in general for the imaginary part
of the two-photon-exchange diagram (see Appendices
B and C). ;

This observation not only enables us to ignore the
electron mass in this kind of calculation but also tells
us that there will be no terms such as « In(s/m?) or
aln(—g¢%/m?) in the asymmetry 4. It should be em-
phasized however that in the actual numerical integra-
tion with respect to the solid angle of #’, even though
we have proven that the singularities due to the two-
photon propagators are canceled by the zeros in the
numerator, one has to choose coordinate systems
properly—otherwise the integrand is too singular to
perform the numerical integration even if the electron
mass is not ignored. In Sec. IV, we have chosen the z
axis to be along p; and p’ is almost parallel to p;, and
along p; when p’ is almost parallel to p;. We have found
that no trouble arises even if the mass of the electron
is ignored.



