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CONCLUSIONS

We interpret these results to mean that while the
Regge model has certain distinct advantages, such as
its simplicity and small number of parameters, the
quality of the fits obtained is not substantially superior
to that of other models. ' In order to fit finer details of
the data, it will be necessary to destroy some of the
simplicity of the model. There is some hope that a
clever use of a dual amplitude in this reaction will
provide a better insight to the dynamics. There certainly
are resonances present in the data at this energy, and a
complete description of the data cannot be made with-
out taking them into account. In the meantime, multi-
peripheralism seems to be an excellent approximation.

There is some controversy over whether or not it is
necessary to Reggeize the pion exchange in a multi-
peripheral process. This study has not demonstrated
any such necessity, nor has it shown the Reggeization
to be bad. It seems at this point to be largely a matter of
taste. Clearly, one-pion exchange in one form or another

is here to stay, since reasonably good descriptions of a
wide range of data are obtained from such models with
a Iiiinimum of embellishment. For simple descriptions
of new data, the Regge form does have the advantage of
a simple parametrization.
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A formalism is presented by which absorptive corrections to single-particle and Regge-pole exchange am-
plitudes in quasi-two-body inelastic processes can be expressed as a highly convergent power series in t. This
representation does not require a partial-wave decomposition of the scattering amplitudes and can be
written down by inspection in terms of the single-particle or Regge-pole helicity amplitudes. The method is
used to calculate the effects of absorption in the determination, through Chew-Low extrapolation techniques,
of w~ phase shifts when the dipion effective mass is in the p region. These calculations show quantitatively
the importance of absorption in the choice of extrapolation procedures.

I. INTRODUCTION

HE consideration of absorptive effects in quasi-
two-body inelastic processes has received renewed

theoretical attention lately with the application of
absorptive corrections to Regge-pole exchange. ' ' The
absorption-modi6ed Regge-pole (i.e., Regge-cut) model

and the already successful absorption-modified one-

pion-exchange modeP seem together to form a useful
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phenomenonological framework through which a wealth
of experimental data can be described. '

Unfortunately these double-scattering models, achiev-
ing considerable success in describing experimental
results, have remained largely a tool of theorists and
have not been exploited fully by experimentalists in
extracting information from data. A basic reason for
this is that calculations of double-scattering effects
have been both cumbersome and slow. The original
approach to absorption-model calculations, ~ based on
the impact-parameter representation, requires a numer-
ical integration for every value of four-momentum
transfer for which the scattering amplitude is calculated.
A more recent, and perhaps more "exact," approach~
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Phys. Rev. 139, 3428 (1965).
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FIG. 1. Diagrams approximating the
Sopkovich formula. The intermediate states 8
are on the mass shell.

+e

necessitates a partial-wave decomposition of the single-
particle or Regge-pole exchange amplitude as well as a
partial-wave decomposition of the initial- and final-state
elastic scattering amplitudes. These partial-wave
amplitudes are always tedious to extract if spin is
taken into account and often require numerical integra-
tion. Further, the region of small four-momentum
transfer squared, t, where double-scattering models are
most reliable, is dominated by high partial waves.
Consequently, accurate calculations require summing
large numbers of terms (typically 100 or morel) in
the partial-wave expansion of the double-scattering
modihed amplitudes. The unwieldy character of these
calculations has long been an unattractive feature of
the absorption model and inhibits a widespread applica-
tion of double-scattering models to detailed analysis
of data.

In this paper a di6erent representation of the
double-scattering corrections to single-particle or
Regge-pole exchange amplitudes is derived. It is based
on an expansion in I,, as be6ts a peripheral model,
rather than on a partial-wave expansion. The represen-
tation enjoys the following properties: (a) It is applic-
able to all those quasi-two-body inelastic processes in
which the driving term is any t-channel single-particle
exchange amplitude or any Regge-pole amplitude
belonging to a general class described below; (b) the
double-scattering corrections can be written as an
expansion in I, directly from the single-particle or
Regge-pole exchange amplitude by Asspectioe with eo
partial-wave decomposition of any amplitude required;
(c) the expansion is highly covergent in t and. thus
yields fast numerical results on a computer; and (d) no
new approximation is made in addition to those
standard to the absorption model. ~ '*"

In Sec. II we develop the double-scattering correc-
tions to a driving amplitude of very general form
including, as special cases, single-particle and Regge-pole
exchange amplitudes. The application of this general
formulation yields in Sec. III the double-scattering
corrections to single-particle exchange and Regge-pole
exchange. Also in this section we apply the method. to
calculate the effects of absorption in the determination,
through Chew-Low extrapolation techniques, " of xm

phase shifts when the dipion effective mass is in the p

region. A discussion of our results and suggestions for
future applications are contained in Sec. IV.

II. THEORY

Consider the quasi-two-body inelastic process a+5 —+

d+e. Our normalization of the helicity amplitudes"
(8; 8e

~

M
~
0; np) is chosen such that the c.m. differential

cross section for this reaction with unpolarized particles
is given by

do'
—p ~(e;~.(m(0; p)~, (2.1)

dQ (25,+1)(25b+1) Neb.

where 8 is the c.m. scattering angle, 5, is the spin of
particle j, and n, P, 8, e are the helicities of particles
u, b, d, e, respectively. %e approximate' "" the
Sopkovich formula'6 by the contributions to the
reaction arising from the diagrams shown in Fig. 1,
which can be written in operator form

M=B+iA(TI B+BTr) (2 2)

in which B is the driving (single-particle, Regge-pole
exchange) term and TpB, BTr are the double-scattering
(absorption, Regge-cut) corrections. Tr and Tr are
the elastic scattering transition operators associated
with the initial and 6nal states, and A. is the "coherent
inelastic factor" introduced in Ref. 14 which phenorn-
enologically takes into account the contribution of
intermediate states other than the (mass-shell) states
u, b, d, e to the double-scattering correction.

In the c.m. system, Eq. (2.2) can be evaluated in
the linear momentum representation or, equivalently,
in the angular momentum representation. In terms of
the former,

P) =«; &e [BlO; ~P

bjt P
dQ'((0; ~.iT, iQ'; 'P')

4m' ~'P'

X(Q', 'P'(B[0; P)+(0; SetB[Q';n'P')

)&(Q'; o.'P'
~
Tr

~
0;nP)), (2.3)

'0 P. C. M. Yock and D. Gordon, Phys. Rev. 15'l, 1362 (1967).
"For comparison, see the simpli6ed absorption-model calcula-

tions of G. L. Kane, Phys. Rev. 163, 1544 (1967);P. K. Williams,
ibid. 181, 1963 (1969).

» G. Chew and F. Low, Phys. Rev. 113, 1640 (1959).

"M. Jacob and G. Wick, Ann. Phys. (N. Y.) '7, 404 (1959).
14F. Henyey, G. L. Kane, J. Pumplin, and M. Ross, Phys.

Rev. Letters 21, 946 (1968)."S. M. Flattb, Phys. Rev. 155, 1517 (1967).
'6 N. J. Sopkovich, Nuovo Cimento 26, 186 (1962).
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where for simplicity we have introduced high-energy
kinematics in which the c.m. momenta of the initial
and final states are equal to p. The amplitudes appearing
in (2.3) are normalized in accordance with Eq. (2.1).
In the angular momentum representation, Eq. (2.2)
takes the form

The amphtudes of Eq. (2.3) are related to those of (2.4)
as follows:

(8'8 IAI0 0)=(1/p)Z(»+1)A -'d. '(8), (25)

where X=n —P, v=8 —e, and di„~(8) are the reduced

It should be noted that Eq. (2.4) is equivalent to
the familiar absorption-model prescription'*' if the
initial- and 6nal-state elastic scatterings are taken as
equal. For high-energy peripheral processes, however,
the use of Eq. (2.4) in calculations is extremely un-

wieldy, requiring an often cumbersome partial-wave
decomposition of the amplitudes 8, Tl, and TI;, as well
as large numbers of partial waves (typically 100 or
more"), in order to get accurate results in the region
of small four-momentum transfer squared. t. It will be
shown for these processes that the scattering amplitude
(8;8e~3f ~0; nP) is much more conveniently calculable
from an expansion (to be derived below) in t, than from
a partial-wave expansion.

Consider the amplitude (8; 8etB ~Q'; n'P') The st. ates

~

8'P'; n'P') and
~
8; 5e) can be written in terms of angular

momentum states with the aid of the relation

2J+t &I

~8y, nP) Q —— Diri~(p 8 —Q) ~
JM'aP)

Jm
(2.6)

can be written

iAP
83fi pr =—Q dQ"

4m. ~'P'

X{exp) —j(p —V)y" —i(X' —P,)@'—iX'(@"—iP")]

X(8";8e(B~0; n'P')(O', D'P'~ Tr ~0;~P)), (2 9)

where ~=8—e, X'=n' —p', A=a —p, and in w»ch we
have factored out the azimuthal dependence of the
amplitudes under the integral and changed the integra-
tion variable from 0' to 0".VVe make the usual assump-
tion that the elastic scattering amplitude is primarily
helicity nonQip and can be written

(8'; 'P'i2', tO; P)=X8..8„:", (2.10)

where t'= —2p'(1 —cos8'); E is complex and taken
independent of t'. From the optical theorem, 1V =ip~
X(1—ip)/4ir, where 0. is the total initial-state cross
section, and p is the ratio of the real to imaginary parts
of the elastic scattering amplitude. In what follows, it
wiH be seen that representing the elastic scattering
amplitude as a sum of terms of the form (2.10) with
arbitrary phases presents no further complications.

If the term of order tt'/p' in (2.8) is neglected, the
integral over p" in (2.9) can be performed, resulting in

4 P'(1-*'p) Xt' -X))
8M), „p~= ——

Sm- 2Ap'

d cos8"{(8";4~ B
~
0; np)I„(Ap' sin8 sin8")

XexpL —Ap'(1 —cos8 cos8")j), (2.11)

where I„is the modified Bessel function of the 6rst kind.
and I=

~

X—i ~. The other double-scattering correctio n
. hat;, p" can be calculated in the same way. For simplic-
ity of presentation, however, we take the 6nal-state
and initial-state elastic scatterings equal, in which case

h.a (1—ip) e'
Mg, p=B), s —— — 1+

Ss. 4A p'
cos8"=cos8' cos8+sin8 sin8' cosP',

cos8'=c se" cos8+sin8 s n8"

sing sln8 = —sing sln8
~

p"=p"+~ sin8 sin8' sing'+0 (0'/p4),

(2.8) X{Bi,.p(t") expL-', A(t+f'+-', p
—'(f')]

X&.t A (—&
——,'P-'t') "'(—&"—-',p-'&"')'~'j) . (2.12)

where X =n —P and D~i~ is the signer rotation
X(v —X) ' v(v —l~)

—'
function. Upon. performing this expansion and using y g~, I y+ g~, s
the addition theorem for the rotation functions, one 2Ap' 2Ap'
can easily show that

Equation (2.3) can now be rewritten in terms of four-
(8;8e~B~8'P';o'P') momentum transfer squared and reads, with an obvious

=(8"p";6e~B ~0; n'P')e '" '& ~ ', (2.&) simplifying change of notation,

where V=n' —P' and

where t= —2p'(1 —cos8) and t'= —2p'(1 —cos8') in
the approximation of high-energy kinematics„

Thus the third term of (2.3), defined to be kVq, pr,

This formula can be computed by numerical integration
for an arbitrary driving term Bq, p. However, as we
have indicated previously, for tf~ small in magnitude
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compared to 4p', Eq. (2.12) can be expanded in a
simple, highly convergent power series in t, provided
that the driving term is taken to be one of two currently
popular models —single-particle exchange or Regge-pole
exchange.

Imp

High-Energy Small-Angle Approximation

In the small-~t ~, high-energy region where ~t
~

((4p'
and ~4p'~ ~ ~, the double-scattering term of Eq.
(2.12) takes the form

Re f

Ao.
BM), e= ——(1—ip)

Sm

dtl/2l (tl/) tg o+g&~)

&&I„(A(tt") '"), (2.13)

a result derived previously by use of the "impact-
parameter representation'"7; however, Eq. (2.12) makes
clear the approximations inherent to the "impact-
parameter representation, " and could be used to
calculate corrections to this approximation.

We assume, and confirm later, that the driving term
Bq, p is of the form"

&~ -e= (—t)""P(t)&~ -e(t)e'" (2 14)

where I'q, e is a polynomial in t and P(t) is a function
which has a Laplace transform representation,

P(t) = Z(x)e*'dx,

FIG. 2. Integration contour for evaluating E:.„for
single-particle exchange.

where D= —~A t and

1
E (x)= ——

2Ãi
dk e '*i3( k)~-—( Ix),—(2 17)

in which E„ is the exponential integral function, the

properties of which are discussed in the Appendix.

Equation (2.16) is the basic result of this paper. "For
the special cases of t-channel single-particle and Regge-

pole exchange, it will be shown in Sec. III that (2.17)
can be evaluated explicitly without difFiculty.

in the physical region of four-momentum transfer. The
integral over t" in Eq. (2.13) can then be performed,
giving

ho(1 ip)—
et&~( t) t2A P& e(rt/rtx)

duF(z)u" 'e &""" (2.15)

where s=-', (1/u —C), x=-,'C, and C=A+B. Expressing
F(s) in terms of the inverse Laplace transform, expand-

ing the exponential under the integral of (2.15), and
integrating term by term brings (2.15) into the form

A.a (1 ip)—
RVq, e= —— -et"'( —t) "t'A" 1

E =
27'

joo—q

d~ E„(—,'~A)
iao—e p +I

III. APPLICATIONS

Single-Particle Exchange

In the high-energy, small-
~
t

~

region, the single-

particle exchange amplitude (t-channel exchange) is of

the form"

& -e=L(—t)""/(p' —t)3' -e(e t)

where p is the exchanged particle mass, u =
~
&—~ ~, and

I'&, p is a polynomial in t. Consistent with the derivation

of Eq. (2.16), we have neglected terms of order t/4p'

in writing (3.1). In order to evaluate (2.16) with this

driving term, one sets P(t) = (u' t) ' and C—=A. From

the asymptotic properties of E„(s) given in the Appen-

dix, it is easy to show that the integral (2.17) can be

continued as shown in Fig. 2 on the left-hand in6nite

semicircle in the complex $ plane. The only contribution

to the integral arises from the propagator pole, giving

Dm- E + ~y(x)
X Q Eg, e(8/Bx)—

m=o m~ C"+"
(2.16) =e'"'"&.(,'j 'A) . -(3.2)

"See, for example, Ref. 6.
I' We only exhibit the t dependence of this amplitude explicitly.

"At relatively low energies, where t; (=—t at cos8=1) is not

negligible, t and t" should be replaced by t —t~;n and t" tmjn&

respectively, in Eqs. (2.13)—(2.16).
20 L. Durand III and Y, T. Chiu, Phys. Rev. 139, 3646 (1965).
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)
I'o,.p Ao(. 1 —ip)

Mo p
= (—i)"I'

p2 —t SX

Dm

X P — I'o,.u(~, 8/»)P. + ~i(x), (3.3)
m=p m)2"+~

where x=oiA and F„(x)=e"'*E (p'x)/x" ' From Eq.
(3.3), one can write down in a form particularly
suitable for numerical calculations the general absorp-
tion-modified single-particle exchange amplitude by
inspection. We illustrate the use of (3.3) and its good
convergence properties by a specific example.

B++ =Nst/(p' t), — (3.4)

Na( t) "'(Mp+M——ii)
8p+

V2(p' —t)
(3.5)

B + =N~-( -~)/(p' —l), — (3 &)

where p is the pion mass, 3f, is the p mass, s is the c.m.
energy squared, and Ã~ is a common factor appropriate
to the normalization. (2.1), which depends on c.m.
energy and coupling constants. The absorption-modified
amplitudes for this reaction can be read off from Eq.
(3.3) by inspection.

Consider, for example, the amplitude Mp+ with net
helicity flip +=1. From (3.5) and (3.3), one finds
immediately that

Ns( i) i M +M 't—A.o(1—ip)
M 0+— ~~At+

V2 p,
2 —t 87r

00 D
Xg (M,+M; 8/ax)F „(x) . (3.7)

m=p m I 2m+1

The other amplitudes can be found in the same way.
Since the representation of the absorption-modified
amplitude given in (3.7) is highly covergent in the
nonphysical as well as physical region of t, it provides a
convenient basis for taking absorptive effects into
account in a modified Chew-I, ow extrapolation. '

As a simple, semiquantitative example, we consider
the reaction ir+p —& (7m)+N when the ef'fec. tive mass
M of the dipion system is in the p region where the
I=1, I'-wave ~x phase shift dominates. If other phase
shifts can be neglected in this region, the dipion angular
distribution, integrated over azimuthal angle, is given
in terms of spin-density matrices in the Gottfried-

~+p ~ g+¹,Chew-Low Extrapolation

In the high-energy limit, assuming x exchange, only
three independent helicity amplitudes B&,p survive as
driving terms for the reaction n+p —+ p+N:

Jackson (GJ) frame byoi

W(8 ) opii+o(poo pil) cos 8

—=Go+Go cos 8 (3.8)

In order to extract information about the xm phase
shifts, experimentalists often extrapolate to the pion
pole what, in this dipion mass region, is equivalent
to22—24

1 do
A&(r) = ——u((p' —t)'——(7rp —+ pN) .

tdQ
(3.9)

At the pion pole, keeping only the dominant I'-wave x~
interaction, one should have (a) Ao(p') =0, and (b)
Ao(p') proportional to the I' wave urn-. cross section, " '4

which should reach the unitarity limit when M =PI,.
Any believable extrapolation procedure should give
(a) and (b) before the sensitive question of measuring
other phase shifts is considered.

With the absorption-modified amplitudes (3.7) we
can calculate A&(t) in the physical region as well as
the nonphysical region of t and test whether current
parametrizations22 '4 of these quantities are compatible
with absorptive effects. To do this, we recall that the
density-matrix elements in the helicity (II) frame are
given in terms of the amplitudes (3.7) by

pmm' =N Z MmesMm'ep
eP

(3.10)

and in the GJ frame by'

p- =Z d-. 'Q)p- d- ''(0), (3.11)

where E is chosen such that Trp = 1.In the high-energy,
small-

~

i
~

approximation,

2( i) i/o

sing =
M, (1—M 't)

1+M;9
cosf =

1—3fp 2t

(3.12)

In Fig. 3 we show Ao(t) calculated using the absorp-
tion-modified amplitudes (3.7) with A taking a range
of values. A. =O corresponds to no absorption, and
5=1.61 corresponds, in the language of the absorption
model, to "total absorption of the lowest partial wave. '"
The striking feature of this figure is the appearance of a

"K. Gottfried and J. D. Jackson, Nuovo Cimento 33, 309
(1964)."S.Marateck et a/. , Phys. Rev. Letters 21, 1613 (1968).

23 J. P. Baton, G. Laurens, and J. Reignier, Phys. Letters
258, 419 (1967).

24 V. Hagopian et gl. , in Proceedings of the Conference on 7i-71.

and E7I Interactions, Argonne National Laboratory, 1969, p. 149
(unpublished}."The lowest partial wave is completely absorbed if A. =4'-A/0.
In this paper we take 2=8 GeV 2, o-=25 mb, and p=0 since
the calculations are highly insensitive to p.
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FrG. 3. Calculation of A2(t) showing dependence on A.
The data are from Ref, 24.

4 6 8 10
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FIG. 4. Calculation of Ao(t) showing dependence on A.
The data are from Ref. 24.

pole in Ao(t) at t =0 which arises from absorption. The
presence of this pole invalidates the use of any poly-
nomial representation (in t) of Ao(t) as a basis for
extrapolating from the physical region to the pion pole.
For comparison we also exhibit in Fig. 3 recent experi-
inental measurements of Ao(t) corresponding to the
reaction or p —& ir or+n with 740&HI„&780 MeV
together with a quadratic extrapolation of the data to
l =p'. ' Although, in this semiquantitative calculation,
we have not attempted detailed fitting of our model
to the data, one observes that A=1.8 appears to
represent the data fairly well."In order to estimate the
error incurred from a quadratic extrapolation of Ao(t),
we have fitted a qua. dratic to the calculated A &(t), with
A = 1.8, through the points —(=2, 5, and 10 p,'. Extrap-
olation of this polynomial to the pion pole gives rise to
an error of 15% in Ao(p'), as shown by the dashed curve
in Fig. 3. This error would be rejected in a xm cross
section 15% too small in this dipion mass region and
which would thus fall below the unitarity limit.
This prediction should be compared to the experimental
extrapolation of Fig. 3 which leads to a P-wave mm

cross section 20% below the unitarity limit. ""
Figure 4 shows Ao(t) calculated with the same range

of A' s, together with corresponding experimental data
and a linear extrapolation of the data to the pion pole. '4

Here the pitfalls of extrapolating over a pole with a
polynomial are even more dramatic. Although Ao(t)
should not extrapolate precisely to zero in the presence
of an I=O, or I=2 5-wave x~ interaction, "" it is
clear from Fig. 4 that the absorption model predicts
that Ao(t) is made up largely of P-wave "leakage"
coming from absorptive depolarization effects and that
a simple polynomial extrapolation of Ao(t) from the

28 The relative normalization of the curves of Figs. 3—6 was
fixed by normalizing the calculated A2(/), with h. =1.8, of Fig. 3 to
the measured results of Ref. 24. This value of A. also fits density-
matrix elements well (independent of normalization) and agrees
favorably with the values of A found in Ref. 6 and Ref. 14.

physical region to t=p, ' will vastly overestimate the
contribution of the 5-wave xx interaction at the pion
pole. This fact has been observed by experimentalists. '
In addition to A o(t) and A &(t), density-matrix elements
in either the GJ or H reference frame generally develop,
because of absorption, poles in the unphysical region
between t=p, ' and t=0 and cannot be represented by
polynomials in t for purposes of extrapolation. '~ The
existence of this pole structure in Ao(t), Ao(t), and
density-matrix elements is essentially a model-independ-
ent e6ect which does not depend on the details of the
absorption model and which will arise in any model
which destroys the delicate relationship (evasion) at
t=0 among the helicity amplitudes in the single-
particle-exchange mechanism. "The predictions, given
in Figs. 3 and 4, of the quantitative egect in extrapola-
tions of the poles in Ao(t) and Ao(t) at t=0 are, of
course, dependent on the validity of the absorption
model.

Using the amplitudes (3.7) it is equally simple to
6nd those physical quantities which can be represented
by a 6nite polynomial in the region p &t& —].0p,

when M =M„.Ke list a few:

(a)

where p;; is any diagonal density-matrix element
evaluated in either the GJ or H reference frame. In
Figs. 5 and 6 are shown $pii(po —t)'da'/dQ and o (poo —pii)

"For discussion of attempts at polynomial extrapolations of
density-matrix elements, see J. P. Baton and G. Laurens, Phys.
Letters 26B, 471 (1968);Phys. Rev. 1'76, 1574 (1968);and Ref. 24."See, for example, G. Kane and M. Ross, Phys. Rev. 177, 2353
(1969); C. D. Froggatt and D. Morgan, ibid. 18/, 2044 (1969);
and P. K. Williams, Phys. Rev. D 1, 1312 (1970).
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FIG. 5. Calculation of —tA0(t) showing dependence on A.
The data are reconstructed from Ref. 24.

FIG. 6. Calculation of —F2(t) showing dependence on A..
The data are reconstructed from Ref. 24.

)& (p' —t)'do. /dQ, where the density-matrix elements are
evaluated in the GJ frame and are again calculated for
a range of values of A. in order to demonstrate the
dependence of these objects on absorption strength.
The data points and extrapolated points are recon-
structed from the results of Ref. 24.

From these figures, it is clear that the main
structure exhibited in the calculated curves lies in the
t region ~t~ (2p', where reliable data are predicted to
be of critical importance for a model-independent
extrapolation. Since most experimental data lie outside
of this region, however, a model-dependent extrapola-
tion may be required with the present data. For this
purpose, the absorption-modified amplitudes (3.3)
are well suited: They can be written down in easily
calculable form by inspection; there is only one param-
eter A (in addition to phase shifts); and the representa-
tion is highly convergent in t, which means that the
amplitudes can be readily continued to the unphysical
region of t and evaluated rapidly on a computer. To
stress this last point, we take terms only up to P in the
expansion (3.7). This approximation results in density-
matrix elements accurate to within 8% (0.8%) and
do./dD accurate to within 1% (0.1%) compared to the
"exact" $t '"=t"]calculation at 1=10''—(Sp,').

Regge-Pole Exchange

It has been proposed that the s-channel helicity
amplitudes corresponding to the exchange (in the t

channel) of a bosonic Regge trajectory n(t), with
signature r, parity p, G parity g, and isospin I, is of the
form'9

(—r)"&&p„.p(i+re-'-) s
Bo,.p

—— - —,(3.13)
(gs) sinn. n so

where n=
~

X—v ~, so is the scale factor, and the residue

"G. Cohen-Tannoudji, Ph. Salin, and A. Morel, Nuovo
Cimento 55A, 412 (1968).

yq, p is a regular function of t. In evaluating the
double-scattering correction (2.16) to Regge-pole
exchange, it is convenient to consider trajectories of
even and odd signature separately.

Even Signature

If 7 =+ and u(/) =no+n't, Eq. (3.13) can be written

&o-p=( ~)""(e'/&—s)Po-p(~)e'* ' (3 14)
where

and

G = —ioiorno+&o ln (s/so),

8=2n' ln(s/so) —inurn',

yo,.p(t)
beaP

sin~~xn

(3.15)

(3.16)

(3.17)

For linear trajectories, P&, p is a meromorphic function
of t and has the representation

Qo-p"(&)
po,.p=Q +H(t). (3.1S)

The sum in (3.18) runs over the particles on the Regge
trajectory, p„ is the mass of the «th recurrence, Q&, p"

is a polynomial in t, and H(t) is an entire function.
We assume that the entire function H(t) is a poly-

nornial or, in the s amli-~t~ region where the double-
scattering formula (2.16) is valid, can be approximated
by a polynomial in t. With this weak restriction,

Po-p "(&)
po,.p(t) =p-

IJP —t
(3.19)

where again Po, p"(t) is a polynomial. " It is a simple
matter now to extract froin (2.16) the double-scat-

"This is a generalization of the Regge amplitudes used in Ref. 6.
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in which g=zi(A+8), n= IX—i I, D= —ziA'tl and

e""'*E (ti.'x)
R„+=+Pi,.p"(8/8r)

gn —1
(3.21)

The validity of (3.21) is established, as for the case of
single-particle exchange, by closing the contour of
(2.17) along the left-hand infinite semicircle of the $
plane and noting from the asymptotic forms of the
exponential integral function (see the Appendix) that
only the poles associated with the particles lying on
the Regge trajectory contribute to the integral.

Odd Signature

If v = —,the double-scattering corrected Regge-pole
amplitude can be written as (3.20) except that

e"""E„(p„'x)
R„=iP Eg,

—p"(8/Bx) ——
gn —1

(3.22)

Using Eq. (3.20) and the analogous expression for
negative signature, one can write down by imspectiori the
double-scattering-corrected Regge-pole exchange ampli-
tude in a form convenient for numerical calculations.

tering-corrected Regge-pole exchange amplitude:

Ao.(1—ip)
( t)e/zp(kAt+gign

87r s
D E.„+ +g+

X P ——,(3.20)
() ~ 1.,2n+m

detailed t dependence of these quantities in the region
—p'& —t&11p'. These semiquantitative calculations
indicate that reliable data in the region

I
tI &0.04 GeVz

will be of critical importance for a model-independent
extrapolation to succeed. The lack of data in this region
may require at the present time, however, the use of
the absorption model not just as a guide, but as an
extrapolation mode/ in the determination of x~ phase
shifts. For such a purpose the representation of the
absorption model given in this paper, easily continuable
to the unphysical region, is well suited. This formulation
also provides a convenient and fast method for taking
into account double-scattering corrections in ascertain-
ing spin-parity quantum numbers of peripherally
produced resonances.
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APPENDIX

For completeness we summarize the properties" of
the exponential integral functions relevant to this paper.

Definition and Series Representation

IV. DISCUSSION
R.(z) =

tn
dt (m=0, 1, 2-, . . . ; Res)0)

We have derived a representation for the double-
scattering corrections to single-particle and Regge-pole
exchange in quasi-two-body inelastic processes which
can be written down in easily calculable form by
inspection. No partial-wave decomposition of any
amplitude is required. Besides simplifying the calcula-
tions necessary in the usual comparisoI of double-
scattering models with data, this formulation, yielding
fast numerical results, facilitates substantially the
inclusion of double-scattering effects in the detailed
analysis of data.

As an example of such an application, we have
considered the effects of absorption in Chew-Low
extrapolations to determine xx phase shifts, employing
the absorption model (a) as a guide to finding, in the
experimentally inaccessible region —p,'& —t&p', the
analytic structure of the quantities often extrapolated
by experimentalists and (b) as a model to predict the

where

(—z)" '
I
—inz+ip(n) ]

(e—1)!

( z)m

(I argz
I
&~),

m=0, mme —i (m —I+1)m l

4 (1)= —y, ip(n) = —y+ g — (n) 1),

and y =0.5772156649. . . .

Derivatives and Asymptotic Expansion

dE„(z)/dz= —E i(s) (m=1, 2, 3, . . .),
~.(z)-(p */z) (1—I/s+ .) (I argz

I
& z~).

"Handbook of M'athematical FNnctions, edited by M. Abramowitz
and I. A. Stegun (Dover, New York, 1965), Chap. 5, p. 227.


