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The dissociation and stripping of high-energy deuterons are studied in a Glauber-model approach. In
particular, our treatment of the dissociation problem includes both nuclear and Coulomb forecs. For heavy
nuclei, the Coulomb dissociation cross section turns out to be much more important than the nuclear dis-
sociation cross section and comparable in magnitude to the nuclear-stripping cross section. Comparison with
experimental cross sections for 3.54-GeV /¢ deuterons shows satisfactory agreement.

INTRODUCTION

HEN high-energy deuterons are scattered by a
nucleus, a variety of processes is possible. Of
these, the stripping reactions constitute a particularly
interesting class. In a stripping reaction, one of the
nucleons of the deuteron traverses the nucleus without
being scattered and reappears as a free particle after
the collision. When this particle is the proton, we speak
about a proton-stripping reaction and when it is the
neutron we speak about a neutron-stripping reaction.
Experimentally, it is difficult to distinguish between
a proper stripping reaction and a dissociation reaction.
In a proper stripping reaction, one of the nucleons of
the deuteron is scattered inelastically, i.e., causes a
production of particles or a change of state of the target
nucleus. This kind of process was first considered by
Serber,! who used a black-sphere model for the nucleus.
In a dissociation reaction, both the proton and the
neutron reappear as free particles, and the state of the
target nucleus does not change. This process was first
considered by Glauber? and then by Feinberg? and by
Akhieser and Sitenko.* These authors also treated the
nucleus as a completely absorbing sphere.

In addition to the dissociation caused by the nuclear
forces, there is a dissociation caused by the Coulomb
field of the nucleus. This type of dissociation has been
discussed by Dancoff® in the first Born approximation
and for a pointlike nucleus. Akhieser and Sitenko* tried
to extend these considerations to the black-sphere
nucleus with a radius much larger than the deuteron
radius. Both the dissociation and the stripping problem
have also been discussed by Franco.®

Thus, since the first qualitative explanations of the
stripping and dissociation processes, there have been a
number of qualitative and semiquantitative discussions,
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but realistic estimates are still lacking. In particular,
both the nucleus and the deuteron have been treated
in an oversimplified manner, the Coulomb form fac-
tors have not been properly taken into account, and
one has not been able to estimate the Coulomb nuclear
interference term.

In this paper we report on a more realistic quantita-
tive calculation of the dissociation and stripping cross
sections. The nucleus is described by realistic nuclear
density distributions. The basic formula for the
stripping cross section is obtained from probability
considerations.®” As discussed in some detail, it is
likely to be very accurate. The treatment of the dis-
sociation problem is that of Glauber,®® where the
deuteron-nucleus amplitude is related to the cor-
responding proton-nucleus and neutron-nucleus ampli-
tudes. The link is provided by the assumption of
additive scattering phases, i.e., the deuteron scattering
phase is the sum of the proton and neutron phases. A
unified treatment of the Coulomb and nuclear dissocia-
tion reactions is obtained by extending this assump-
tion to include also the Coulomb phase.

Up to now, only one relevant high-energy experi-
ment has been performed,’® and in this experiment
the stripping cross section for 3.54-GeV/c deuterons
was measured. However, the experiment did not
distinguish between dissociation and pure stripping re-
actions. Our theoretical values for the sum of these re-
action cross sections agree with the experimental
values, within the rather large experimental errors, and
thus set to rest some surmises of a severe disagreement
between theory and experiment. The improved situa-
tion is essentially due to our more accurate treatment
of the Coulomb forces.

I. NUCLEON-NUCLEUS AMPLITUDES

In the model which we shall employ, the deuteron-
nucleus amplitude is constructed from the proton-
nucleus and neutron-nucleus amplitudes. One is then
neglecting the possibility that both proton and neutron
can simultaneously interact with the same target
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2 DISSOCIATION AND STRIPPING OF HIGH-ENERGY DEUTERONS

nucleon. These particular interactions, which are the
counterparts of the eclipse terms in proton-deuteron
scattering, are naturally taken into account in the
multiple scattering theory of Glauber, but as shown in
Ref. 7, their contribution is usually quite small and
will not be taken into account here.

We shall use a Gaussian form for the nucleon-nucleus
amplitude. This approximation greatly simplifies the
calculation of the nuclear dissociation cross section and
the interference term between Coulomb and nuclear
dissociation cross sections. However, in the stripping
and pure Coulomb reactions, which make up the main
part of the measured cross sections, this approximation
is not made and the nucleus will there be described by
realistic nucleon density distributions such as the
Woods-Saxon distribution.

Neglecting spin-dependent terms, the impact parame-
ter representation of the elastic nucleon-nucleus ampli-
tude reads

ik

FlQ=— / % ¢ *T'(b), (1.1)
2

I(b)=1—eix® (1.2)

where X(b) is twice the nucleon-nucleus asymptotic
phase and T'(b) is the well-known profile function. In
the Gaussian approximation we write

F(q)=F(0)e~os/2,
I'(b) =ye b2,

The dimensionless quantity v and the slope parameter
a can be determined directly from the measured
nucleon-nucleus amplitudes. Because the necessary ex-
perimental information is available only at a few mo-
menta, we shall use an alternative approach here and
derive them from the better known nucleon-nucleon
amplitudes.

In the diffraction scattering theory of Glauber,® the
phase X(b) of (1.2) is given by

X(b) =T (b), (1.5)

where 7'(b) is the nuclear target thickness function ob-
tained from the nuclear single-particle density function
o(r) through

(1.3)
(1.4)

T(b)=A / " i p(b-Hie) (1.6)

k being the momentum of the incident nucleon. In
order to define 6 we introduce the nucleon-nucleon
parameters

(1.7a)
(1.7b)

where a is the ratio between the real and imaginary parts
of the forward elastic scattering amplitude. For pro-
ton-nucleus scattering we then have

0,= (Z/A)Bpp+(N/A)0pn ’

Opp= %O'pp(l —iapp> s

Opn=2%0pn(1—icps),

(1.8a)
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and for neutron-nucleus scattering
0n=(N/4)0pp+(Z/A)0pn.

In an ordinary nucleus, the number of protons is not
very different from the number of neutrons, and it is
consequently a good approximation to use the mean
value

(1.8b)

This will be done in the following.

From the elastic scattering amplitude (1.1) we can
now easily derive the integrated elastic cross section
and the total cross section. Introducing the effective
nucleon number

(1.9)

1
No(o;a) = - / d[1—eot=imT®7] (1.10)

a

we obtain
da=0 ReNy(3a; ) —aNo(s; 0), (1.11)
orot=0 ReNo(Fo;a). (1.12)

Adjusting the Gaussian amplitude (1.3) to give these
two results, we obtain

a=0%|No(%0; a)|2/1670a,
v=(40a/0)[No(Go; —a) I.

For the particular application we have in mind,
deuteron dissociation and stripping at 3.54 GeV/c, we
are fortunate enough to have available accurate deter-
minations of the nucleon-nucleon amplitudes at 1.78
GeV/c. At this momentum!

(1.13)
(1.14)

0pp=4749 mb, ap,=—0.08, (1.15a)
0pn=40.51 mb, az,=—041. (1.15b)

This gives
6= —22.00(140.2327) mb. (1.16)

The parameters ¢ and v for this value of § are given in
Table I.

We have retained the imaginary part of v, ie., the
real part of the nucleon-nucleus amplitude, in all our
calculations. The influence of this term turns out to be
insignificant. In future calculations, it can therefore be
neglected from the outset.

TasLE I. Parameters for the Gaussian nucleon-nucleus ampli-
tude (1.3) and (1.4) for nucleon momentum 1.78 GeV/c, using
the mean value (1.16).

Nucleus a (fm?) Rey Imy
Pb 15.12 1.67 0.11
Cu 7.69 1.44 0.15
Al 4.87 1.19 0.16

u D, V. Bugg e al., Phys. Rev. 146, 980 (1966); A. A. Carter
and D. V. Bugg, Phys. Letters 20, 203 (1960).
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II. DIFFRACTIVE DISSOCIATION

In a dissociation reaction the deuteron breaks up into
a proton and a neutron, and the final deuteron state
becomes a proton-neutron scattering state. In Ref. 7 we
discussed this process in the framework of Glauber’s
high-energy diffraction theory. There, we also developed
an approximation method which allowed us to cal-
culate the dissociation cross section for a nucleus of
arbitrary shape. Here we are working in a slightly dif-
ferent model and with Gaussian profile functions. For
this particular case no approximations are necessary,
and we shall now outline the calculations.

The matrix element for a transition from the initial
deuteron state |i)=]¢i(r)) to a final deuteron state

| f)=1e¢s(r))is

with .
F(q,s)=—;— / 2 e[ 1—gixa® ], (2.2)

Here s is the projection of r,—r, onto the impact
parameter plane and b is the impact parameter for the
deuteron c.m. system. The additivity property of the
phases says that X, is the sum of the proton-nucleus and
neutron-nucleus phases. However, when the deuteron
momentum is %, then the proton and the neutron each
have a momentum %k. The additivity property thus
reads

Xa(k;b,8) =X, (3k;bp)+Xn(35;bn) (2.3)

with the nucleon impact parameters
b,=b+43s, (2.4)
b,=b—3s. (2.5)

Defining the deuteron-nucleus profile function as
Ta(b,s) =1—¢ixa®.s) |

we get from (2.3) the well-known composition law

La(b,8)=Tp(0,)+Tn(bn) —Tp(bp) Tu(ba).  (2.7)

The indices p and # remind us to evaluate the nucleon-
nucleus profile functions at momentum %%.

The dissociation cross section is obtained by summing
over all final neutron-proton scattering states. Since we
have only one bound neutron-proton state, this is
equivalent to summing over all final neutron-proton
states and subtracting the contribution from the bound
state. Thus

(2.6)

=2

1)#]%

= l;m!<fIF(q,S)]i>l2—|<iIF(q,S)li>!2a

e )} (fIF(g,s)]4)?

(2.8)

For small energy transfers to the deuteron c.m. system,
we can, as a good approximation, invoke the closure

FALDT 2

relation
Zd: ¢a*(r') pa(r) =8(r—r') (2.9)
to simplify this expression. We get
diss
and from here the integrated cross section
1 . .
o= = [ 4L P9 710
=[G F@s)[[*]. (2.11)

Introducing the profile function (2.6) into (2.2) gives

S / dzb[ / @ o(®)|?| T(b,s)|?
]

- [ ewirs
This expression exhibits the dissociation cross section as
a difference between two rather large numbers. As we
shall see in Sec. III, the Coulomb effects enter only into
the second term and can therefore give appreciable
corrections.

For the actual evaluation of (2.12) we shall use the
Gaussian profile function (1.4) and also a Gaussian
deuteron wave function. Because the dissociation cross
section depends sensitively on the rms radius of the
deuteron, itis essential to use a wave function which
gives the correct rms radius rather than the correct
binding energy. We shall therefore take

<p(r) = (1/7er2)3/4e—r2/2Rd2 ,
Rd=327 fm.

This value of R; is obtained by adjusting the rms radius
to the value given by the Gartenhaus wave function
(see Appendix A).

With these approximations, we get

EGlo—GQO. (2'12>

(2.13a)
(2.13b)

1 1
G:°=2ma|vy| “’l:l-l— -~ —4 Rey —
1-+Ra/4a 14-R2/3a
Hhl—], @
il 14-Ra?/2a
1 1
G'=4ra|y| 2[————————— —2Z Rey ——m—
1-+-Ra?/8a 1+Ra?/4a

+3lvl (2.15)

X w——]
1+Ra2/12a (14Ra2/4a)?

With the parameters of Sec. I, we obtain the following
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values for the dissociation cross section for 3.54-GeV/c
deuterons:

Gaiss(A)=21.1 mb, 041ss(Cu)=23.9 mb,
6aiss(Pb) =23.5 mb.

The model used to obtain these numbers is expected
to work very well for heavy nuclei. For light nuclei,
small discrepancies may be expected but as the nuclear
dissociation cross section is much smaller than the
stripping cross section they will not concern us here.

III. COULOMB CONTRIBUTIONS TO
DISSOCIATION CROSS
SECTION

We now want to discuss the effects of the Coulomb
field. The Coulomb dissociation cross section, being
essentially proportional to Z2, will have a mass depend-
ence quite different from the nuclear dissociation cross
section. In fact the Coulomb dissociation cross section
turns out to be negligible for light nuclei but quite con-
siderable for heavy nuclei. For Pb it is found to be
much larger than the nuclear dissociation cross section
and comparable in magnitude to the nuclear-stripping
cross section.

The inclusion of the Coulomb interaction is, in prin-
ciple, quite straightforward. The additivity assumption
for the asymptotic phases means that we replace (2.3)
by

Xa(k; b,8) =Xc(3k; 0p)+Xp(3k; 05)+Xn(Gk; ba),  (3.1)

where X¢ is the phase produced by the Coulomb field
of the nucleus. We choose to rewrite the scattering
operator (2.2) in the form

ik . .
Flas)=— / @%b eia¥[1—gixen ]

™

ik
+ l_ A% €i-deixc B[] —gixas®p+ixnd)];  (3.2)
2w

i.e., we consider the Coulomb field as producing an
independent scattering amplitude and in addition a
distortion of the nuclear amplitude proper.

When discussing the Coulomb nuclear interference
problem for proton-nuclear scattering, the Coulomb
phase in the second term of (3.2) is usually replaced by
X¢(0) and taken outside the integral. The motivation
for this approximation is that the partial waves im-
portant for nuclear scattering have almost the same
Coulomb phase. As the Coulomb phase varies slowly
with impact parameter, it is replaced by X¢(0). For
the scattering problem, this is a very good approxima-
tion for light nuclei, and for heavy nuclei the induced
error is only a few percent. Nevertheless, for the dis-
sociation problem this difference is important, and such
a simplification is not possible.
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We now introduce the proton-nucleus Coulomb

amplitude

ik

™

folkia) = / &2 eie [ 1—girem]  (3.3)

and the nuclear amplitude function

ik
Fn(g,s)= = /d2b €40 beixc (k/2;bp)
27
X (1 —eixpkl2bprtixaki2bm)  (3.4)
We can then rewrite (3.2) as
F(q,8)=2fc(3k; Q)e*0*/*+Fx(q,8). (3.5)

The dissociation cross section is still given by (2.11)

— 1 d2 , F 2|, , F '\ 2
o'diss_'_k;/ Q[@H (q,S)| I’L>-—l<1’l (qys)l'»l :l

=o¢toenvton, (3.6)

with an obvious notation for the partial cross sections.
Introducing the deuteron form factor

S(a)= / & o(r) 260, (3.7)
we arrive at the following expressions:
Wl P NE 3.8)
o= = [ =560l S0 L, G.
4
vow=— Re [ fo(Bba) LG P @)1
-SG9 Fa*(,s)|9)], (3.9)
1
0N=—k;/d29[<i| |Fx(g,8)]%|4)
—| | Fa(g,s)])]2]. (3.10)

This is the general form of the dissociation cross section
when both Coulomb and nuclear forces are taken into
account. For simple nuclear models, such as the
Gaussian and uniform models, a direct numerical
evaluation is possible but intricate. When more ac-
curate and systematic data become available, such a cal-
culation will become necessary. At present, the experi-
mental data are scanty and the experimental errors
are large. We therefore feel justified in making some
approximations in order to facilitate the numerical
calculations.

The nuclear dissociation term (3.10), which now de-
pends on the Coulomb phase, will be evaluated without
rufther approximations.

The Coulomb dissociation term (3.8) will be evaluated
in the Born approximation, i.e., the general expression
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(3.3) will be replaced by the expression given by the
first Born approximation.

The interference term (3.9) is the most difficult one
to evaluate. There we shall use the Born approximation
for the absolute value of the Coulomb amplitude f¢,
and the phase will be taken as the phase for the cor-
responding pointlike Coulomb amplitude, which is well
known from elementary quantum mechanics. In this
way f¢ will have the correct phase for small momentum
transfers which dominate the contribution to the dis-
sociation cross section. We thus put

Zo 1 Zo g
JeGk; 9)=— ———k—ﬁ(g) exp(Zino——Zi— lnz) , (3.11)

Vp ¢ Vp

where v, is the velocity of the proton, F(g) is the
Coulomb nuclear form factor, and

Ir(14iZa/v,) Za
—_— =exp[2i arg P<1+i———)}. (3.12)
Vp

T(1—iZa/v,)

The Coulomb form factor §(g) is discussed in Appendix
B. From (3.11), we immediately conclude that the
integral (3.8) will diverge at ¢=0. This is due to our
neglect of the deuteron binding which introduces a
minimum momentum transfer N\o. It can be determined
by studying the dissociation in the first Born approxi-
mation which is certainly a very good approximation
for small momentum transfers to the deuteron c.m.
system. This has been done by several authors,*¢
and we just quote their result

No=¢/1p, (3.13)

where €=2.226 MeV is the binding energy of the
deuteron. The pure Coulomb dissociation cross section
now becomes

2210 =

722 [ 1
so=Sr— / U—F([1-SG]. (314
Ao q

Vp

For small momentum transfers ¢ we have
S(g=1—5(r")¢*,

and because the main contribution to ¢¢ will come from
small ¢ values it is important to use a wave function
which gives the correct rms radius for the deuteron.
This is achieved by our choice (2.13) for the Gaussian
wave functions. Of course, the integral (3.14) is easily
evaluated numerically for any deuteron wave function
and any Coulomb form factor. The numerical results
for various wave functions and form factors are discussed
in Sec. V.

We now turn to the nuclear dissociation term oy.
Making the same division as in (2.12), we get

(3.15)

(3.16)

(TN=G1-‘G2)

FALDT 2

and using (3.4),

1
Gi= / (i) | Fa(g,8)]2])

- / &1 o(0)|? / 5| Tub )2, (3.17)

1
czzye;/d ¢l G| Fn(a)|)]

=/d2b

where T'y is the profile function (2.7) for the nuclear
part alone. The important conclusion to be drawn is
that Gy of (3.17) is not affected by the Coulomb inter-
action. It is exactly the same as G1° of (2.12). However,
G» does change. Because of the delicate cancellation in
(3.16), small changes in G, can also produce appreciable
changes in oy. Because T'4(b,s) is mainly real, the effect
of the Coulomb phase will be to decrease G, and thus
increase the nuclear dissociation cross section. For Pb,
where the effect is most pronounced, the increase in ox
turns out to be twice as large as oy itself. A more de-
tailed numerical discussion is given in Sec. V.

Finally, a few remarks about the Coulomb nuclear
interference term o¢y. We note that we need not bother
about the lower integration limit in ¢. In fact since
S(0)=1, the integrand vanishes for ¢=0 and we can
integrate the whole way down to ¢=0, the contribution
from ¢ values smaller than \o being extremely small.
Furthermore, we found the contribution from the
imaginary part of v, i.e., the real part of the nucleon-
nucleus amplitude, to be negligible. The Coulomb
nuclear interference term itself is negative and about
259, of the pure Coulomb dissociation cross section o¢.

2

/ Pr| o) 2ot (hs)| | (3.18)

Iv. COULOMB PHASE

The high-energy diffraction theory can be used to
describe the Coulomb scattering in a way very similar
to that for the nuclear scattering. The long-range nature
of the Coulomb field gives rise to new difficulties, but
they can be handled by the usual screening procedure.
The details have been worked out by Glauber both for
the pointlike source? and for the general charge distribu-
tion.!? We shall here recall these results and apply them
to a few simple nuclear models.

The Coulomb phase is given by the general expression

Lo [
Xo(p; b)= — — / dz (D217, (41)
Vp Jen

Zag(r) being the Coulomb potential from the nucleus.

12R. J. Glauber, in High-Energy Physics and Nuclear Structure,
edited by S. Devons (Plenum, New York, 1970).
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The integral is divergent but this difficulty is circum-
vented by working with a screened Coulomb field, i.e.,

introducing
es(n) =) f(n), 4.2)
fn=1, r<a
=0, r>a. 4.3)

The screening is found to introduce an additional
phase independent of b, which becomes infinite when a
becomes infinite. As shown by Glauber, this additional
phase just enters the Coulomb amplitude as a mul-
tiplicative phase factor and this will still be the case
when the nuclear phase is added to it. The remaining
finite part of X¢, which is independent of @, then gives
the desired phase. For a pointlike charge distribution,
one obtains

Xp.o.(kp; D) =2(Za/v,) In(k,b) , 4.4)

and this agrees with the result obtained from the angular
momentum expansion of the Coulomb amplitude.

For the general charge distribution, one starts from
the potential

(4.5)
and arrives at the result

Za b
X,(k»; b) =41rr[1n(k,,b) / T ()b’
0

Vp
+/°° T®) In(k,d") b'db'], (4.6)
b

where the target thickness T'(b) is defined as in (1.6).
The phase resulting from the screening turns out to be
the same as for the pointlike charge distribution. We
also note that there are other representations equivalent
to (4.6), but we have found the form (4.6) to be the
most convenient one.

An alternative way to derive the result (4.6) is to
note that the phase X,(b) satisfies a two-dimensional
Laplace equation. From (4.1), we obtain

V32X, (b) = (Za/ Av,) T(b) ,

which has a well-known solution.

We shall now use the representation (4.6) to calculate
the phase for two simple nuclear models, the uniform and
the Gaussian nuclear density distribution models. For
these models, the phase can be expressed in elementary
functions and this is very convenient in the numerical
treatment. For details of the models we refer to
Appendix B.

In the uniform nuclear model we have a target
thickness function

T(b) =A(6/47R,3) (R.2—b2) (R, —b),

4.7

(4.8)
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and from (4.6) we obtain the phase
Xu(kp; b) =2(Za/9,) {06 — Ru) In(kph) +0(R,—b)
X[n(k,Ru)+In(1+(1—5%/R.*)12)
—(1—b¥/RA)2—3(1—=*/R.2)¥*]}.  (49)

This expression is finite for =0, contrary to the phase
obtained from a point charge (4.4).

In the Gaussian nuclear model we have a target
thickness function

T(b)=(4/rR")e ™R,
and this yields the Coulomb phase
X g(kp; b) =2(Za/v,)[In(k,b) +3E1(0%/Re?)], (4.11)
where the exponential integral E;(x) is defined by

(4.10)

w o=t
E1(x) = —t—dt

(4.12)

Also, X ¢ is finite for 5=0 since for small arguments the
exponential integral has the expansion

El(x) = —1nx—C+ax+ ceny

C being Euler’s constant.

For more general charge distributions, ie., the
Woods-Saxon distribution, the particular form (4.6)
is less convenient since then already the target thick-
ness T'(b) involves an integration. But starting from
(4.6), or any equivalent expression, one easily derives

xp(k,,;b)=2-§3l1n(kpb)+47r/°° p(r)[—(l"“b‘f>1/2

» b r?

-Hn(% +<;2 —1)1/2)}%} . (414)

V. NUMERICAL RESULTS FOR DISSOCIATION
CROSS SECTION

(4.13)

We shall first discuss our results for the pure Coulomb
dissociation cross section. We then observe that for the
Gaussian deuteron wave function (2.13) and the
Gaussian form factor (B9) a closed expression for the
Coulomb dissociation cross section can be obtained:

7rZZa2{ 8

U'C’=Rd2— (1_. —7\02Rd2/8)e—7\02R¢;?/2
2 7)1,2 Rd2)\02
RG2 )\02RG2 4'R02
L)
RS 2 R

XEl[xoﬂ(%{ +I%’f)]} . (1)

The exponential integral E;(x) is defined as in (4.12).
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TasrLE II. The Coulomb dissociation cross section ¢ (mb)
for Woods-Saxon form factor and various deuteron wave

functions.

FALDT 2

TaBLE III. The Coulomb dissociation cross section o¢ (mb)
for Gaussian deuteron wave function and various nuclear form
factors.

Wave function  Gaussian Hulthén Gartenhaus Form factor None Gaussian  Uniform Woods-Saxon
Al 12.9 12.7 12.8 Al 17.2 13.2 13.1 12.9
Cu 60.6 59.9 60.1 Cu 85.3 61.9 61.4 60.6
Pb 437.6 433.9 4354 Pb 682.3 4474 442.4 437.6
The result for no form factor, i.e., (g) =1, is 1 5’2
A=142 exp(s2 — >
w2 8 No2R 42 1+¢ 1+¢
2 9,2 LR\ 8 — 22— exp(—— ), (5.3b)
1+¢ 1+¢
As can be seen from Table IIT (below), it is quite im-  B=1—2y* exp(—s2)+|v|2 exp[—(s2+52)],  (5.3¢)
portant to include the Coulomb form factor. Formula
¢=R.%/4a. (5.3d)

(5.2), which neglects the form factor, gives quite a
misleading result.

In order to see in detail the effects of different wave
functions and different form factors we give two tables.
In Table IT we give the dissociation cross section for the
Woods-Saxon form factor and various deuteron wave
functions. The conclusion drawn from these numbers is
that once we have adjusted the Gaussian deuteron wave
function to give the correct rms radius it also gives a
satisfactory result for the Coulomb dissociation cross
section. In Table IIT we give the results for the Gaussian
deuteron wave function and various nuclear form
factors. Now we conclude that with the present experi-
mental accuracy the choice of the nuclear form factor
does not matter very much.

We next discuss the nuclear cross section ox. In the
presence of the Coulomb field we must use formulas
(3.16)—(3.18). The integrals are now so complicated that
we have to evaluate them for the Gaussian deuteron
wave function. Furthermore, the nuclear dissociation
cross section is very sensitive to the rms radius of the
deuteron and it is necessary to use our parametrization
(2.13). This was found to give excellent results for the
Coulomb dissociation cross section and we think this is
also the case for the nuclear dissociation cross section.
We thus have oy =G1—G;, with G, given by

1 0 0
G2=81ra]7[2—/ sds/ s'ds’
$Jo 0

Xexp[iXc(3b; $(2a)'18) —iXc(3k; 5'(20)'%) ]

’

Xexp[—;—l(s2+s'2>3[fo(%-)

2ss' (140 1
) 14+2¢

Xexp[—(s2+4s'%)]4+1 0(—-—
¢ 142

1+¢
Xexp,:—
1+2¢

(sl2+s’2):lB} , (5.3a)

Here I4(Z) is the modified Bessel function of order
zero. In Table IV we have compared the results ob-
tained from this formula with the results for no Coulomb
field. It is immediately seen that for heavy nuclei the
Coulomb field produces a considerable enhancement
of the nuclear dissociation cross section. For medium
heavy nuclei the effect is much smaller and for light
nuclei it is very small. This is in agreement with our
previous findings that the Coulomb effects are most im-
portant for heavy nuclei.

We finally discuss the Coulomb-nuclear interference
term ocx of (3.9). Also here we shall use the Gaussian
deuteron wave function (2.13) to simplify the numerical
integrations. After some algebraic simplifications we
can write (3.9) as

oen=38m(Za/v,)Ime 2"y X
+(1+Ra%/20)7 Y],

0
XZ/ bdb eixc(klz;b)e—b2/2a
0

(5.4a)

oodq
x [ =g —eenery
o g

2Za ¢
Xexp(i—— ln];)if(q) , (5.4b)

Up

0 b? 1
Y=/ bdb etxc ki2:0) exp<— —————————>
0 2a 14+R2/2a

* dg 1+R,2%/4a
x(a—yes [ o -n(w—" )
0o g 1+R*/ 2a
R 1+R*/4a
Xer( = )]
8 14R:2/2a
2Za g
Xexp(i— ln—>ff(q) , (5.4¢)
v kR
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TaBLE IV. The nuclear dissociation cross section oy (mb) for
various Coulomb phase functions.
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TaBLE V. The Coulomb-nuclear interference term a¢ny (mb) for
various Coulomb phase functions.

\—

Coul. phase Coul. phase
function None Uniform Gaussian Woods-Saxon function Uniform Gaussian Woods-Saxon
Al 211 21.9 22.0 21.8 Al —2.8 -3.1 —2.6
Cu 23.9 29.6 30.6 29.3 Cu —16.7 —18.2 —15.8
Pb 23.5 71.6 86.7 74.9 Pb —109.5 —122.8 —104.6

where 7o is defined as in (3.12). In Table V we have
collected our results for the Coulomb phase functions
under consideration. The general features are the same
as before. We have a large interference term for heavy
nuclei and small interference terms for medium heavy
and light nuclei. Again the fluctuations from one phase
function to another are quite small.

Let us now sum up the different contributions to the
dissociation cross section. In order to have some con-
sistency, we give the Coulomb dissociation cross sec-
tion for the Gaussian deuteron wave function and for
the partial contributions we take the number obtained
with the Woods-Saxon nuclear density distribution.
We get

7diss(Pb)=407.9 mb, 04iss(Cu)=74.1 mb,
o'diss(Al)=32.1 mb.

The results for the Gaussian and uniform density dis-
tributions are not very different.

VI. NUCLEAR-STRIPPING REACTIONS

In a proton-stripping reaction, the proton of the
deuteron does not undergo any collision, whereas the
neutron undergoes an inelastic collision. Also, the role
of proton and neutron can be reversed and then we have
a neutron-stripping reaction. The cross sections for
these stripping reactions are most easily obtained from
probability considerations as done in Refs. 6 and 7.
For completeness we shall here repeat the argument and
finally give two tables of generalized nucleon numbers
so that the stripping cross section could be estimated
also for other situations. We also remark that the
stripping cross section can be defined without reference
to probability arguments; this has been done by Franco
and Glauber.!?

The possibility that the proton should pass through
the nucleus without being scattered is e 7272,
b,=b-3s being the proton impact parameter. In the
same way the probability that the neutron should suffer
a collision is 1—e=o»T®n b, =b—1s being the neutron
impact parameter. Here o, and o, refer to the average
proton-nucleon and neutron-nucleon cross sections. The
probability for stripping is the product of these prob-
abilities. Properly weighting this probability over the
deuteron wave function gives the stripping cross section

O pstrip = / % f 3| o(x) | 2e=7pT D (1 —=onT®w) | (6.1)

B R. J. Glauber (private communication).

This argument also gives the double stripping cross
section, where both proton and neutron collide inelas-
tically. We get

"'pn,strip=/d2b/d37| o(r) | 2(1 —eonT (bn))

X (1—eosT®n), (6.2)

Adding up the stripping cross sections, we get the total
reaction cross section

o'p,strip+an,stl‘ip+apn,strip
= / &b / dir| o(r) | A(1—gosT Gp=onT®m) . (6.3)

In expressions (6.1)-(6.3) we use the total nucleon-
nucleon cross section rather than the elastic one.
Therefore, one might be inclined to believe that (6.1)
contains part of the dissociation cross section. That this
is not the case can be understood in the following
way.

The sum of the elastic and dissociation cross sections
is given by the first term of the Eq. (2.11). For purely
imaginary nucleon-nucleon amplitudes, this term can
be rewritten to give

O'diss+0'e1=/d2b/dsrl (p(r)lz

X (1 —¢ ool dp—tonT ®m)2  (6.4)
The total cross section can be calculated via the optical
theorem; Eq. (2.1), specialized to elastic scattering,
yields

Cror=2 / d% / d¥r| (1) | 2(1—eiraT ®p—dnT B | (6.5)

We also have the obvious relation

Ttot = 0'e1+0'diss+U'p.strip+0'n,strip+0'pn,strip . (66)

We now remark that Eqs. (6.4) and (6.5) are com-
pletely general relations and do not rely on probability
considerations. But subtracting (6.4) from (6.5) we
obtain (6.3). This supports the correctness of our
probability arguments and the correctness of our as-
sumption that the stripping cross section as defined
through (6.1) does not, in fact, contain any part of the
dissociation cross section.
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For the numerical evaluation of (6.1), we shall use
the Gaussian deuteron wave function (2.13). Although
a direct evaluation is straightforward, we would first
like to rewrite the result in a form which is more closely
related to the generalized nucleon numbers introduced
in Ref. 7. Adding and subtracting suitable terms, we
can write

0 p,strip =01V o(0n) — (0pF00)0No(op,00), (6.7)
where the nucleon numbers Ny and 6V, are defined by

No(o) = 1/,12[;[1_ ~oT ()]

o

1

8N o(op,0n) = /dzbfdzsl o(8) |1 —eosT G}

X{l_ —UnT(bn)}

gl wb db. )
= b_db_.
<a,,+an)1ad2ﬁ i *ﬁ

<2btb_ b+2+bJ>
XI exp{ ————
’ Rd2 ) Xp( RdZ

X(l— —«rpT(b+))(1_ -—UnT(b—)).

Opton

(6.8)

Only 6V, depends on the particular choice of deuteron
wave function. For neutron-stripping reactions, we
obtain

On,strip=0N0(0p) — (0p+01)0No(ap,0n).  (6.9)

At high energies the cross sections o, and o, are close
to their mean value ¢. Put o,=0+00 and ¢,=0c—do.
Expanding the integrand of (6.8) in powers of o, we
conclude that the difference between 6No(o,,0,) and
0No(o,0) is so small that it is an unnecessary luxury to
keep the dependence on two variables in 6/Vo. With the
aid of Tables VI and VII we can therefore get a quite
accurate estimate of the stripping cross section for any
desired situation.

For our particular case, deuteron stripping at 3.54
GeV/c, only the proton stripping cross section has been
observed. We have evaluated (6.7), keeping the two-
parameter dependence and using cross sections ¢, and
on calculated from (1.9) and (1.7) and the Woods-
Saxon form (B10) for the nuclear density distribution.

TABLE VI. Effective nucleon number Ny(o).

o (mb) 30 35 40 45 50 55
150 9.71 9.09 8.54 8.06 763 124
#AlL 14.25 13.16 12.23 11.42 10.72 10.10
“Ca 18.82 17.22 15.87 14.72 13.73 12.88
8Cu 26.00 23.54 21.51 19.81 18.37 17.14
108A & 36.92 33.08 29.98 27.44 25.31 23.50
40Ce 43.81 39.08 35.30 32.22 29.65 27.48
28Ph 56.74 50.32 45.24 41.13 37.74 34.89

FALDT 2

TasLE VII. Effective nucleon number 8N o (o) =8N, (,0).

¢ (mb) 30 35 40 45 50 55
160 171 1.72 1.71 1.68 1.65 1.61
%Al 3.13 3.05 2.96 2.85 2.74 2.63
4Ca, 4.74 4.52 4.30 4.08 3.88 3.69
“Cu -~ 745 6.96 6.50 6.09 5.72 5.39
1037 g 11.85 10.84 9.97 9.22 8.58 8.02
u0Ce 14.72 13.35 12.20 11.23 10.41 9.70
28Ph 20.23 18.16 16.47 15.07 13.89 12.90

The results we obtain are

0 postrip(Ph) =500.5 mb, 0 serip(Cu) =345.1 mb,
o pstrip(Al) =257.5 mb.

Let us like to close with a few remarks about these
numbers. First, the probability argument used to derive
(6.1) neglects the imaginary parts of 8, and 8,, as de-
fined through (1.9). The author thinks that there is
strong evidence for believing that they only affect the
first term of (6.1). The possible generalizations of this
term suggest that their contributions to the stripping
cross section are at most a few percent. Secondly, (6.1)
negects the eclipse terms discussed in Ref. 7. These give
a small negative contribution which is about 29,. Both
corrections are thus far smaller than the present ex-
perimental errors.

CONCLUSIONS

In the experiment!® which measured the stripping
cross section for 3.54-GeV/c¢ deuterons, no distinction
was made between pure stripping reactions and dis-
sociation reactions. Before comparing with the experi-
mental yields, we must therefore add these reaction
cross sections together. This gives

Gtheor(Pb) =910 mb,  exps(Pb) = (9504-240) mb,
Tineor(Cu) =420 mb,  Gexpt(Cu) =(5504110) mb,
Tiheor(A) =310 mb,  expe(Al) = (290 70) mb.

As can be seen, the agreement between theory and ex-
periment is satisfactory. Of course, because of the large
experimental errors this is not a very detailed check on
the theory. In particular, we might expect small changes
in the theoretical cross sections when the microscopic
approach’ to the deuteron-nucleus collision is used
instead of the one used here. However, it is clear that
the proper inclusion of the Coulomb forces removes the
previous drastic disagreement between theory and ex-
periment. In view of this improved situation, it would
be. interesting to have more accurate measurements
and, if possible, also separate determinations of the
pure stripping and dissociation cross sections.
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APPENDIX A: DEUTERON FORM FACTORS

We give the explicit expressions for the form factor

S@= [d x| s (A1)
for the wave functions considered in the text.
For the Gaussian deuteron wave function:
o(x) = (TR~ 2R (A2)
x?) = 3R, (43
S@)=e-reti, (A4)
For the Hulthén deuteron wave function:
o) = (/) (er—e ), (3)
=P [_LB ]“2, (A6)
a—p L2r(a+p)
with =0.232 fm~! and 8=1.202 fm™1;
(r2)=15.99 fm?, (A7)
S(g)= —1— arctan—-——q—X———, (A8a)
gX 14-¢*Y+4¢*Z
X =(a—p)*/208(c+8), (A8D)
Y =[4aB(a+8)* I [2(a+8)*+(a—p)*], (A8c)
Z=[4cB(+p)*T. (A8d)
For the Gartenhaus deuteron wave function:
N 4
o(x)= - ?;1 (emeir—ePir), (A9)
a1=0.232, =349, «;=4.322, =440,
81=1.822, B:=190, B3;=2.732, B4=5.99,
(r2)=16.04 fm?, (A10)
C 4 qXij
S(g)= —q— /]21 arctanl—_l_m , (Alla)
1 1 1
Xij=X;i= , (Allb)

+ — _
aita;  BitB; i tB;  oitBs

Zj=Zji=[(aito;)(aitB;)(+B8:) B:4+B) I, (Allc)
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Vij=Yj=Ziz[ (eita;)*+(Bi+8,) 2+ (a;48:)*
+(et65)%], (Alld)
1
—= X;. All
c = i ( e)

APPENDIX B: NUCLEAR MODELS AND
FORM FACTORS

The Coulomb nuclear form factor is the Fourier
transform of the nucleon density distribution

47!' 0
F(r)=— / rdr p(r) sin(gr), (B1)
q Jo

F(0)=1. (B2)

(1) In the umiform model the nuclear density dis-
tribution is given by
pu(r)=(3/47R.*)0(Ru~1), (B3)

where the radius R, is chosen so that the correct rms
radius is obtained. Therefore,

Ry=(5/3)12R 5. (B4)
From electron scattering data, one finds
R.=1.12041342,0094~1/3—1.5134"! (fm). (BS)
The form factor is given by
Fu(g)=[3/(gRw)*][sin(¢Ru) —gRu cos(¢R.)]. (B6)

(2) In the Gaussian nuclear density distribution,

pa(r)=(r*?R %)l IR, (B7)
which gives the correct rms radius when
Re=(V3)Rms. (B8)
Also, the form factor has a Gaussian shape:
Fo(g) =e ¢RG4, (B9)

(3) The Woods-Saxon density distribution is given by

p(r)=po/{1+exp[(r—c)/d]}. (B10)
We adopt the parameters
c=1.14413 fm, d=0.545 fm. (B11)

In this model, the form factor (B1) cannot be simplified
any further.



