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Dissociation and Stripping of High-Energy Deuterons*
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The dissociation and stripping of high-energy deuterons are studied in a Glauber-model approach. In
particular, our treatment of the dissociation problem includes both nuclear and Coulomb forecs. For heavy
nuclei, the Coulomb dissociation cross section turns out to be much more important than the nuclear dis-
sociation cross section and comparable in magnitude to the nuclear-stripping cross section. Comparison with
experimental cross sections for 3.54-GeV/c deuterons shows satisfactory agreement.

INTRODUCTION

HEN high-energy deuterons are scattered by a

~

~

~

~

~

nucleus, a variety of processes is possible. Of
these, the stripping reactions constitute a particularly
interesting class. In a stripping reaction, one of the
nucleons of the deuteron traverses the nucleus without
being scattered and reappears as a free particle after
the collision. When this particle is the proton, we speak
about a proton-stripping reaction and when it is the
neutron we speak about a neutron-stripping reaction.

Experimentally, it is dificult to distinguish between
a proper stripping reaction and a dissociation reaction.
In a proper stripping reaction, one of the nucleons of
the deuteron is scattered inelastically, i.e., causes a
production of particles or a change of state of the target
nucleus. This kind of process was erst considered by
Serber, ' who used a black-sphere model for the nucleus.
In a dissociation reaction, both the proton and the
neutron reappear as free particles, and the state of the
target nucleus does not change. This process was erst
considered by Glauber' and then by Feinberg' and by
Akhieser and Sitenko. 4 These authors also treated the
nucleus as a completely absorbing sphere.

In addition to the dissociation caused by the nuclear
forces, there is a dissociation caused by the Coulomb
6eld of the nucleus. This type of dissociation has been
discussed by Dancoff' in the first Born approximation
and for a pointlike nucleus. Akhieser and Sitenko4 tried
to extend these considerations to the black-sphere
nucleus with a radius much larger than the deuteron
radius. Both the dissociation and the stripping problem
have also been discussed by Franco. '

Thus, since the erst qualitative explanations of the
stripping and dissociation processes, there have been a
number of qualitative and semiquantitative discussions,
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but realistic estimates are still lacking. In particular,
both the nucleus and the deuteron have been treated
in an oversimplified manner, the Coulomb form fac-
tors have not been properly taken into account, and
one has not been able to estimate the Coulomb nuclear
interference term.

In this paper we report on a more realistic quantita-
tive calculation of the dissociation and stripping cross
sections. The nucleus is described by realistic nuclear
density distributions. The basic formula for the
stripping cross section is obtained from probability
considerations. '7 As discussed in some detail, it is
likely to be very accurate. The treatment of the dis-
sociation problem is that of Glauber, '' where the
deuteron-nucleus amplitude is related to the cor-
responding proton-nucleus and neutron-nucleus ampli-
tudes. The link is provided by the assumption of
additive scattering phases, i.e., the deuteron scattering
phase is the sum of the proton and neutron phases. A
unified treatment of the Coulomb and nuclear dissocia-
tion reactions is obtained by extending this assump-
tion to include also the Coulomb phase.

Up to now, only one relevant high-energy experi-
ment has been performed, " and in this experiment
the stripping cross section for 3.54-GeV/c deuterons
was measured. However, the experiment did not
distinguish between dissociation and pure stripping re-
actions. Our theoretical values for the sum of these re-
action cross sections agree with the experimental
values, within the rather large experimental errors, and
thus set to rest some surmises of a severe disagreement
between theory and experiment. The improved situa-
tion is essentially due to our more accurate treatment
of the Coulomb forces.

I. NUCLEON-NUCLEUS AMPLITUDES

In the model which we shall employ, the deuteron-
nucleus amplitude is constructed from the proton-
nucleus and neutron-nucleus amplitudes. One is then
neglecting the possibility that both proton and neutron
can simultaneously interact with the same target

7 G. Faldt and H. Pilkuhn, Ann. Phys. (N. Y.) 58, 454 (1970).
8 R. J. Glauber, Phys. Rev. 100, 242 (1955).
R. J. Glauber, in Lectures in Theoretical Physics, edited by

W. E. Brittin et al. (Interscience, New York, 1959), Vol. I."R.Lander et al. , Phys. Rev. 13'7, B1228 (1965).

846



DISSOCIATION AN 0 STRI P P I N G 0 F H I G H —E N E R G Y D E U T E R 0 N S 847

nucleon. These particular interactions, which are the
counterparts of the eclipse terms in proton-deuteron
scattering, are naturally taken into account in the
multiple scattering theory of Glauber, but as shown in
Ref. 7, their contribution is usually quite small and
will not be taken into account here.

We shall use a Gaussian form for the nucleon-nucleus
amplitude. This approximation greatly simplifie. s the
calculation of the nuclear dissociation cross section and
the interference term between Coulomb and nuclear
dissociation cross sections. However, in the stripping
and pure Coulomb reactions, which make up the main
part of the measured cross sections, this approximation
is not made and the nucleus will there be described by
realistic nucleon density distributions such as the
Woods-Saxon distribution.

Neglecting spin-dependent terms, the impact parame-
ter representation of the elastic nucleon-nucleus ampli-
tude reads

In an ordinary nucleus, the number of protons is not
very different from the number of neutrons, and it is
consequently a good approximation to use the mean
value

8=-,'(8,+8.). (1.9)

This will be done in the following.
From the elastic scattering amplitude (1.1) we can

now easily derive the integrated elastic cross section
and the total cross section. Introducing the effective
nucleon number

we obtain

and for neutron-nucleus scattering

8„=(X/A) 8„„+(Z/A) 8„„. (1.8b)

jk
P(q) = — d'f o'p bI'(b),

2'
o..i=o ReXp(-,'o", n) —oEp(o", 0),

o,.i ——o ReXp(ipo) n) .

(1.11)

(1.12)

I'(b) = 1—e*'x'b', (1.2)

where X(b) is twice the nucleon-nucleus asymptotic
phase and I"(b) is the well-known profile function. In
the Gaussian approximation we write

P(q) =F(0)e—p'i'

T(b) —~o
—b /pa

(1.3)

(1.4)

x(b) =i8T(b), (1 5)

where T(b) is the nuclear target thickness function ob-
tained from the nuclear single-particle density function

p(r) through

T(b) = A ds p(b+ks), (1.6)

The dimensionless quantity p and the slope parameter
a can be determined directly from the measured
nucleon-nucleus amplitudes. Because the necessary ex-
perimental information is available only at a few mo-
menta, we shall use an alternative approach here and
derive them from the better known nucleon-nucleon
amplitudes.

In the diffraction scattering theory of Glauber, ' the
phase X(b) of (1.2) is given by

Adjusting the Gaussian amplitude (1.3) to give these
two results, we obtain

a=a'i Xp(—', o; n) i'/16iro, i, (1.13)

For the particular application we have in mind,
deuteron dissociation and stripping at 3.54 GeV/c, we
are fortunate enough to have available accurate deter-
minations of the nucleon-nucleon amplitudes at 1.78
GeV/c. At this momentum"

This gives

0-„„=47.49 mb, n„„=—0.08,

0.„=40.51 mb, n„=—0.41.

8= —22.00(1+0.232i) mb .

(1.15a)

(1.15b)

(1.16)

The parameters a and y for this value of 0 are given in
Table I.

We have retained the imaginary part of p, i.e., the
real part of the nucleon-nucleus amplitude, in all our
calculations. The inQuence of this term turns out to be
insignificant. In future calculations, it can therefore be
neglected from the outset.

k being the momentum of the incident nucleon. In
order to define 0 we introduce the nucleon-nucleon
parameters

TABLE I. Parameters for the Gaussian nucleon-nucleus ampli-
tude (1.3) and (1.4) for nucleon momentum 1.78 GeV/c, using
the mean value (1.16).

8„„=p o„„(1 in, „. ), —

8„~ ,o „„(1—uv„), ——
(1.7a)

(1.7b)

where e is the ratio between the real and imaginary parts
of the forward elastic scattering amplitude. For pro-
ton-nucleus scattering we then have

Nucleus

Pb
Cu
Al

15.12
7.69
4.87

1.67
1.44
1.19

Imp

0,11
0.15
0.16

' D. V. Bugg et al. , Phys. Rev. 146, 980 (1966); A. A. Carter
and D. V. Bugg, Phys. Letters 20, 203 (1966).8 =(Z/A)8„„+(iV/A)8 (1.8a)
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Fr'(q) =(fl I"(a,s) I2&, (2.1)

II. DIFFRACTIVE DISSOCIATION

In a dissociation reaction the deuteron breaks up into
a proton and a neutron, and the final deuteron state
becomes a proton-neutron scattering state. In Ref. 7 we
discussed this process in the framework of Glauber's
high-energy diffraction theory. There, we also developed
an approximation method which allowed us to cal-
culate the dissociation cross section for a nucleus of
arbitrary shape. Here we are working in a slightly dif-
ferent model and with Gaussian profile functions. For
this particular case no approximations are necessary,
and we shall now outline the calculations.

The matrix element for a transition from the initial
deuteron state li&=

I y;(r)& to a final deuteron state
If&= I vf(r)& is

relation

g q„*(r')p„(r)=S(r-r') (2.9)

to simplify this expression. We get

d0

d~ diss

= &2 I I
F(il,s)

I
'I2& —

1&2

IF�

(il,s) I2) I
', (2 10)

and from here the integrated cross section

d'qL&2I IF(il,s) I'12)
k'

—
I &2IF(a,s) I2& I'l (2»)

Introducing the profile function (2.6) into (2.2) gives

with
~k

F(il,s) = — d2i/ e'2'L1 —e'«&' 'i j.
2~

(2.2)
&"

I 2 (r) I
'I I'(b, s) I

'

d2rl q (r)l'I'(b, s)

xd(k; b, s) =x„(-,'k; b„)+x„(-',k; b ),
with the nucleon impact parameters

b„=b+-,'s,

Defining the deuteron-nucleus profile function as

(2.3)

(2.4)

(2.5)

Here 8 is the projection of r~ —r„onto the impact
parameter plane and b is the impact parameter for the
deuteron c.m. system. The additivity property of the
phases says that X~ is the sum of the proton-nucleus and
neutron-nucleus phases. However, when the deuteron
momentum is k, then the proton and the neutron each
have a momentum —,'k. The additivity property thus
reads

(2.12)

This expression exhibits the dissociation cross section as
a difference between two rather large numbers. As we

shall see in Sec. III, the Coulomb eBects enter only into
the second term and can therefore give appreciable
corrections.

For the actual evaluation of (2.12) we shall use the
Gaussian profile function (1.4) and also a Gaussian
deuteron wave function. Because the dissociation cross
section depends sensitively on the rms radius of the
deuteron, itis essential to use a wave function which

gives the correct rms radius rather than the correct
binding energy. Ke shall therefore tak.e

I"e(b,s) = 1—e*«/" i, (2.6)

we get from (2.3) the well-known composition law

~(r) (1/~R 2) 2/4e —r2/2Rd2 (2.13a)

(2.13b)

I'e(»s) = I'n(by)+I'-(b. )—I'~(b~) I'.(b-) (2 &)

The indices p and 22 remind us to evaluate the nucleon-
nucleus profile functions at moInentum —,'k.

The dissociation cross section is obtained by summing
over all final neutron-proton scattering states. Since we
have only one bound neutron-proton state, this is
equivalent to summing over all 6nal neutron-proton
states and subtracting the contribution from the bound
state. Thus

d0'
= 2 l&flF(a, s)12)'

d~ diss

= & I &flF(il, s)12) I' —
I &2IF(il,s) i2&l' (2 g)

This value of Rg ls obtalIled by adjusting the rms ladlus
to the value given by the Gartenhaus wave function
(see Appendix A).

Kith these approximations, we get

G '=22ralyl2 1+— — — —-', R y-
1+Re2/4a 1+Ra'/3a

+-:-lvl'-, (214)
1+Re2/2a

G, =4 al~l — --,'Re~-
1+Re2/Sa 1+Re2/4a

allI f) +3.lvl (2.15)
1+Rd'/12a (1+Re2/4a) 2i

For small energy transfers to the deuteron c.m. system,
we can, as a good approximation, invoke the closure Kith the parameters of Sec. I, we obtain the following
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(3.3) will be replaced by the expression given by the
first Born approximation.

The interference term (3.9) is the most dificult one
to evaluate. There we shall use the Born approximation
for the absolute value of the Coulomb amplitude fe,
and the phase will be taken as the phase for the cor-
responding pointlike Coulomb amplitude, which is well
known from elementary quantum mechanics. In this
way fe will have the correct phase for small momentum
transfers which dominate the contribution to the dis-
sociation cross section. We thus put

and using (3.4),

1
d'g&il IF (a,s) I

'li)
k2

d'r
I F(r) I

' d h
I r„(b s) I

'

1
G = — d'ql &'I F (~,s)l')I '

k2

(3.17)

ZcL Z(x
fc(', k; q) —=— k—5(q) exp 2iqo —2i ln—, (3.11)

Sy g Vy

where s~ is the velocity of the proton, F(it) is the
Coulomb nuclear form factor, and

I'(1+i'/a ) ZcEe""'= —=exp 2i arg F 1+i —. (3.12)
I'(1—zZn/a, ) 8~

The Coulomb form factor P(g) is discussed in Appendix
B. From (3.11), we immediately conclude that the
integral (3.8) will diverge at q=0. This is due to our
neglect of the deuteron binding which introduces a
minimum momentum transfer Xo. It can be determined
by studying the dissociation in the first Born approxi-
mation which is certainly a very good approximation
for small momentum transfers to the deuteron c.m.
system. This has been done by several authors,
and we just quote their result

) o=e/a„, (3.13)

where &=2.226 MeV is the binding energy of the
deuteron. The pure Coulomb dissociation cross section
now becomes

g 2~2 co

e c=8~ dq —&'(q) L1—S'(-,' q) 7. (3.14)
&y = )p g

2 3

For small momentum transfers g we have

S(C)=1—-', (r )q, (3.15)

and because the main contribution to 0-q will come from
small q values it is important to use a wave function
which gives the correct rms radius for the deuteron.
This is achieved by our choice (2.13) for the Gaussian
wave functions. Of course, the integral (3.14) is easily
evaluated numerically for any deuteron wave function
and any Coulomb form factor. The numerical results
for various wave functions and form factors are discussed
in Sec. V.

Ke now turn to the nuclear dissociation term a-~.
Making the same division as in (2.12), we get

d&rl y(r) I

e'"~&i'i" &I'd(b,s), (3 18)

where 1'z is the profile function (2.7) for the nuclear
part alone. The important conclusion to be drawn is
that Gi of (3.17) is not affected by the Coulomb inter-
action. It is exactly the same as Gio of (2.12). However,
G2 does change. Because of the delicate cancellation in
(3.16), small changes in G~ can also produce appreciable
changes in o~. Because I'z(b, s) is mainly real, the eBect
of the Coulomb phase will be to decrease G2 and thus
increase the nuclear dissociation cross section. For Pb,
where the eAect is most pronounced, the increase in 0-~

turns out to be twice as large as cr~ itself. A more de-
tailed numerical discussion is given in Sec. V.

Finally, a few remarks about the Coulomb nuclear
interference term rq~. We note that we need not bother
about the lower integration limit in g. In fact since
S(0)=1, the integrand vanishes for q=0 and we can
integrate the whole way down to q =0, the contribution
from q values smaller than Xo being extremely small.
Furthermore, we found the contribution from the
imaginary part of p, i.e., the real part of the nucleon-
nucleus amplitude, to be negligible. The Coulomb
nuclear interference term itself is negative and about
25% of the pure Coulomb dissociation cross section e z.

Xo(k„;b) =— ds q)((b~+s2)'&~) (4.1)
&p

Znq (r) being the Coulomb potential from the nucleus.

IV. COULOMB PHASE

The high-energy diffraction theory can be used to
describe the Coulomb scattering in a way very similar
to that for the nuclear scattering. The long-range nature
of the Coulomb field gives rise to new difhculties, but
they can be handled by the usual screening procedure.
The details have been worked out by Glauber both for
the pointlike source' and for the general charge distribu-
tion. "We shall here recall these results and apply them
to a few simple nuclear models.

The Coulomb phase is given by the general expression

0-~=Gg —G2, (3.16)
' R. J. Glauber, in High-Energy I'hysics and Euctear Structure,

edited by S. Devons (Plenum, New York, 1970).
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The integral is divergent but this difhculty is circum-
vented by working with a screened Coulomb field, i.e.,
introducing

V~(r) =
o (r)f(r), (4.2)

f(r) =1, r&a
=0, r&u. (4.3)

The screening is found to introduce an additional
phase independent of b, which becomes infinite when u

becomes ininite. As shown by Glauber, this additional
phase just enters the Coulomb amplitude as a mul-

tiplicative phase factor and this will still be the case
whcI1 thc nuclcaI' phase ls added to lt. Thc remaining
finite part of X~, which is independent of a, then gives
the desired phase. For a pointlike charge distribution,
one obtains

and from (4.6) we obtain the phase

x„(k~;b) =2(Zn/w„) {8(b R—„)in(k~b)+8(R„—b)

)&Dn(k+ )+ln(1+(1—b'/R ')'")
—{1—b'/R-')'" —k{1—b'/R-')'"j& {49)

This expression is finite for b=0, contrary to the phase
obtained from a point charge (4.4).

In the Gaussian nuclear model we have a target
thickness function

T(b) =(A/ R ')e-b'/" ',
and this yields the Coulomb phase

Xg(k„; b) =2(Zn/s, )Dn{k,b)+-', Zg(b'/Re') j, (4.11)

where the exponential integral E~(x) is defined by

Xo .(k„;b) =2(Zn/o, ) ln(k, b), (4.4) Zg(x) = (4.12)

/o(r')
oo(r) = d'r

f
r —r'[

(4 5)

and arrives at the result

ZA
X,(k„;b) =4~ ln(k~b) T(b')b'db'Ae„o

and this agrees with the result obtained from the angular
momentum expansion of the Coulomb amplitude.

For the general charge distribution, one starts from
the potential

Also, Xg is 6nite for b =0 since for small arguments the
exponential integral has the expansion

Eg(x) = —in@—6+ax+ (4.13)

C being Euler's constant.
For more general charge distributions, i.e., the

Woods-Saxon distribution, the particular form (4.6)
is less convenient since then already the target thick-
ness T(b) involves an integration. But starting from

(4.6), or any equivalent expression, one easily derives

Z(Y. g2 &/2

T(b') 1 {k b') b'db' {46

where the target thickness T(b) is defined as in (1..6).
The phase resulting from the screening turns out to be
the same as for the pointlike charge distribution. %C
also note that there are other representations equivalent
to (4.6), but we have found the form (4.6) to be the
most convenient one.

An alternative way to derive the result (4.6) is to
note that the phase x,(b) satisfies a two-dimensional

Laplace equation. From (4.1), we obtain

VooX, (b) = (Zn/Ao/„) T(b), (4.7)

which has a well-known solution.
We shall now use the representation (4.6) to calculate

the phase for two simple nuclear models, the uniform and
the Gaussian nuclear density distribution models. For
these models, the phase can be expressed in elementary
functions and this is very convenient in the numerical
treatment. For details of the models we refer to
Appendix IIl.

In the uniform nuclear model we have a target
thickness function

1/o)-
+in' —+ ——1

i
r'dr . (4.14)

(b b'

V. NUMERICAL RESULTS FOR DISSOCIATION
CROSS SECTION

%'e shall erst discuss our results for the pure Coulomb
dlssoclatlon c1oss scctlon. %C then obscrvc that f01 thc
Gaussian deuteron wave function (2.13) and the
Gaussian form factor (89) a closed expression for the
Coulomb dissociation cross section can be obtained:

x Z~nm 8
R o .(1 e-Woo/ohio/o)& —xooago/2

2 e ' Eg9(P

gg' E02-
XR lo' —-+ —

~ (51)
2 8

T(b) =A(6/4otR„o)(R '—b')'"8(R„—b), (4.g) The exponential integral Ez(x) is defined as in (4.12).
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TAsI,E II. The Coulomb dissociation cross section og (mb) TALKIE III. The Coulomb dissociation cross section og (mb)
for Woods-Saxon form factor and various deuteron wave for Gaussian deuteron wave function and various nuclear form
functions. factors.

Wave function Gaussian Hulthbn Gartenhaus Form factor None Gaussian Uniform Woods-Saxon

Al
Cu
Pb

12.9
60.6

437.6

12.7
59.9

433.9

12.8
60.1

435.4

Al 17.2 13.2 13.1 12.9
Cu 85.3 61.9 61.4 60.6
Pb 682.3 447.4 442.4 437.6

The result for no form factor, i.e., F(q) = 1, is

m Z2a2 8 Ape

g2R-
R 2 (1 e io&Rs&ls)+—R

2 v„2 Ed9p2 8
(5 2)

1
3 =1+2 — exp $'—

1+A
sI2

—2y* —exp — —, (5.3b)
1+1 1+t

As can be seen from Table III (below), it is quite im-
portant to include the Coulomb form factor. Formula
(5.2), which neglects the form factor, gives quite a
misleading result.

In order to see in detail the effects of different wave
functions and different form factors we give tw'o tables.
In Table II we give the dissociation cross section for the
Woods-Saxon form factor and various deuteron wave
functions. The conclusion drawn from these numbers is
that once we have adjusted the Gaussian deuteron wave
function to give the correct rms radius it also gives a
satisfactory result for the Coulomb dissociation cross
section. In Table III we give the results for the Gaussian
deuteron wave function and various nuclear form
factors. Now we conclude that with the present experi-
mental accuracy the choice of the nuclear form factor
does not matter very much.

We next discuss the nuclear cross section o~. In the
presence of the Coulomb field we Inust use formulas
(3.16)—(3.18).The integrals are now so complicated that
we have to evaluate them for the Gaussian deuteron
wave function. Furthermore, the nuclear dissociation
cross section is very sensitive to the rms radius of the
deuteron and it is necessary to use our parametrization
(2.13). This was found to give excellent results for the
Coulomb dissociation cross section and we think this is
also the case for the nuclear dissociation cross section.
Ke thus have 0~=G& —G2, with G2 given by
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Here Is(Z) is the modified Bessel function of order
zero. In Table IV we have compared the results ob-
tained from this formula with the results for no Coulomb
fieM. It is immediately seen that for heavy nuclei the
Coulomb field produces a considerable enhancement
of the nuclear dissociation cross section. For medium
heavy nuclei the effect is much smaller and for light
nuclei it is very small. This is in agreement with our
previous findings that the Coulomb effects are most im-
portant for heavy nuclei.

We finally discuss the Coulomb-nuclear interference
term o e~ of (3.9). Also here we shall use the Gaussian
deuteron wave function (2.13) to simplify the numerical
integrations. After some algebraic simplifications we
can write (3.9) as

o e~ ——8'�(Zn/e~) Ime "«[yX

+(1+Rd'/2a) —'y I'], (5.4a)
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For the numerical evaluation of (6.1), we shall use
the Gaussian deuteron wave function (2.13). Although
a direct evaluation is straightforward, we would first
like to rewrite the result in a form which is more closely
related to the generalized nucleon numbers introduced
in Ref. 7. Adding and subtracting suitable terms, we
can write

o~, ppr p= opNo(op) (op+—op)&No(o„o„), (6.7)

where the nucleon numbers Xo and RVO are denned by

1
Np(o) = — d'baal —e 'r( )]

TAsxz VII. Effective nucleon number BE0(~)=&X0(~,0').

0- (mb) 30 35 40 45 50 55

160
2'Al
40Ca
'4Cu
108Ag
140Ce
208Pb

1.71 1.72
3.13 3.05
4.74 4.52
7.45 6.96

11.85 10.84
14.72 13.35
20.23 18.16

1.71 1.68 1.65
2.96 2.85 2.74
4.30 4.08 3.88
6.50 6.09 5.72
9.97 9.22 8.58

12.20 11.23 10.41
16.47 15.07 13.89

1.61
2.63
3.69
5.39
8.02
9.70

12.90

The results we obtain are

o„,,p„p(Pb) =500.5 mb, o„,,p„p(Cu) =345.1 mb,

oo, ,p„p(A1) =257.5 mb.
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Let us like to close with a few remarks about these
numbers. First, the probability argument used to derive
(6.1) neglects the imaginary parts of 8„and 0„, as de-
fined through (1.9). The author thinks that there is
strong evidence for believing that they only affect the
6rst term of (6.1). The possible generalizations of this
term suggest that their contributions to the stripping
cross section are at most a few percent. Secondly, (6.1)
negects the eclipse terms discussed in Ref. 7. These give
a small negative contribution which is about 2%. Both
corrections are thus far smaller than the present ex-

(6.8) perimental errors.

Only RVO depends on the particular choice of deuteron
wave function. For neutron-stripping reactions, we
obtain

Tmr.z VI. Effective nucleon number E0(0-).

cr (mb) 30 35 40 45 50

160
"Al
40Ca
'4Cu
108Ag
140Ce
208Pb

9.71 9.09 8.54 8.06 7.63
14.25 13.16 12.23 11.42 10.72
18.82 17.22 15.87 14.72 13.73
26.00 23.54 21.51 19.81 18.37
36.92 33.08 29.98 27.44 25.31
43.81 39.08 35.30 32.22 29.65
56.74 50.32 45.24 41~ 13 37.74

7.24
10.10
12.88
17.14
23.50
27.48
34.89

o,.p„=o„No(o„)—(o. +o„)f)No(o„,o„). (6.9)

At high energies the cross sections 0.„and 0.„are close
to their mean value o. Put oo=o+8o and o =o —bo.
Expanding the integrand of (6.8) in powers of bo, we
conclude that the difference between i)Np(o„,o„) and
KVp(a, o) is so small that it is an unnecessary luxury to
keep the dependence on two variables in NVO. With the
aid of Tables VI and VII we can therefore get a quite
accurate estimate of the stripping cross section for any
desired situation.

For our particular case, deuteron stripping at 3.54
GeV/c, only the proton stripping cross section has been
observed. We have evaluated (6.7), keeping the two-
parameter dependence and using cross sections g„and
o.„calculated from (1.9) snd (1.7) and the Woods-
Saxon form (B10) for the nuclear density distribution.

CONCLUSIONS

In the experiment" which measured the stripping
cross section for 3.54-GeVjc deuterons, no distinction
was made between pure stripping reactions and dis-
sociation reactions. Before comparing with the experi-
mental yields, we must therefore add these reaction
cross sections together. This gives

ophe„, (Pb) =910 mb, o., pp(Pb) =(950&240) mb,

o&peo, (Cu) =420 mb, o;»&(Cu) = (550&110)mb,

og„„(A1)=310 mb, o;xpp(A1) = (290&70) mb.

As can be seen, the agreement between theory and ex-
periment is satisfactory. Of course, because of the large
experimental errors this is not a very detailed check on
the theory. In particular, we might expect small changes
in the theoretical cross sections when the microscopic
approach' to the deuteron-nucleus collision is used
instead of the one used here. However, it is clear that
the proper inclusion of the Coulomb forces removes the
previous drastic disagreement between theory and ex-
periment. In view of this improved situation, it would
be, interesting to have more accurate measurements
and, if possible, also separate determinations of the
pure stripping and dissociation cross sections.
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APPENDIX A: DEUTERON FORM FACTORS

%e give the explicit expressions for the form factor

I",= I'~.=~'~5[(«+~~)'+(P~+A)'+(~~+P~)'

+(«+P~)'j, (Aiid)

S(q) = d'x e'& *~ q e(x)
~

' —=P X;;.
C

(Aiie)

for the wave functions considered in the text.
For the Ganssge deuteron wave function:

q (x) = (m.R ') '/4e—*'/2—~"'

(r') = -',Ee',

e ~~au'/4

For the Hul3Ikee deuteron wave function:

(A4) 4
F(») = — »d» p(») sin(q»), (B1)

APPENDIX 8: NUCLEAR MODELS AND
FORM FACTORS

( 2) The Coulomb nuclear form factor is the Fourier
transform of the nucleon density distribution

~(r)=(&/»)(e "—e '"), s(0) =1. (B2)

~+p ~px=-
e —p 2m (n+p)

withn=0. 232 fm 'andP=1. 202 fm ';

(r') =15.99 fm',

S(/t) = arctan—
qX 1+q'F'+g4Z

X=( -p)'/2. p( +p),
I =[4 P(-+P)'1- L2( +P)'+( -P)'1,
Z= [4'p(-+p)'?'

For the Gorteekugs deuteron wave function:

v(x)= —2 (e ""—e ""),

(1) In the I//ifo»mmod, el the nuclear density dis-
(A6) tribution is given by

p (») = (3/4m'„')|/(R —»), (B3)

where the radius E.„ is chosen so that the correct rms
(A7) radius is obtained. Therefore,

R„=(5/3) '/2E, ,
(Aga)

From electron scattering data, one Gnds

(Agb) R =1 1202'/'+2 0092 '/' —1 5132 ' (fm) (B5)

The form factor is given by

(Agd) r„(q)=[3/(qR„)'j[sin(/IR„) —/tR„cos(gR„)j. (B6)

(2) In the G/JNssi g»/ nuclear density distribution,

p (») —(~8/2g gs) 1e r~/8 g~-- (B7)

(A9) vt'h1ch gives the correct rms radius when

Rg ——(+23)R, , (B8)
n~ ——0.232, o.2 ——3.49, n3 ——4.322, n4 ——4.40,
pg=1.822, p2=1.90, pa=2. 732, p4=5.99, Also, the form factor has a Gaussian shape:

cP g (~)
—e-qIB g~ /4 (B9)(r') = 16.04 fm', (A10)

(3) The Woods-Sgxo»/ density distribution is given by

p(») =po/(1+em[(» —e)/d j} (Bio)
gX,;

S(q) = —Q arctan — —, (A11a)
q ', /=& 1+g'F "+q'Z"

X"=X"=—sj gs +—
«+e/j p~+pj &i+pj e/j+p~

~' =~"= [(«+~~)(«+p~)(~~+p') (p'+ps)?',

%e adopt the parameters

(Aiib) e=1.142'/' fm, d=0.545 fm. (Bii)
In this model, the form factor (Bi) cannot be simplified

(Ai ic) any further.


