2 LINEARLY RISING

We can alter G, so that it is positive semidefinite.
Consider the form

n+j+e
). (6.3)

Gn(new) =G" (old )<4w
n+j+d

This choice should change neither the asymptotic
linearity nor the slope. We choose e=—1 so that the
numerator factor vanishes for n=1 and j5=0, i.e.,
at the point where G, % is negative. The constant d
was arbitrarily chosen to be zero.
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These results are shown in Fig. 2. The ghost dis-
appeared because the leading trajectory was found to
approach j=0 asymptotically. The asymptotic slope
of the trajectories differ from Fig. 1 since a different
scaling passes the leading trajectory through the p mass.
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The general features of typical pole-cut relationships with crossing Regge-pole trajectories are con-
sidered. The possible shapes of the resulting physical pole trajectories are described.

I. INTRODUCTION

N a recent paper,! we discussed the question of
possible left-hand branch lines of Regge-pole tra-
jectories. These branch lines are of interest in connection
with diffraction scattering,'® and possibly also for other
high-energy properties. Since, @ priori, one may perhaps
think that there are other possibilities, we have pointed
out that Regge trajectories can have such branch lines
only as a consequence of the crossover of two (or more)
pole trajectories. The relevant constraint is the condi-
tion that these branch points of the trajectory a(s) are
not inherited by the continued partial-wave amplitude
F(s,\).

From the phenomenological point of view, we may
not want to have two trajectories which correspond to
different branches of the same analytic function. It was
therefore the main point of Ref. 1 to show that one can
use fixed or moving branch points in the complex A
plane of F(s,\) in order to remove one of the two
crossing Regge trajectories into a secondary sheet with
respect to these N branch lines.®=8 It is the purpose of

* Supported in part by the U. S. Atomic Energy Commission.

1 R. Oehme, Phys. Letters 30B, 414 (1969).

2P. G. O. Freund and R. Oehme, Phys. Rev. Letters 10, 450
(1963).

3 R. Oehme, in Strong Inleractions and High-Energy Physics,
edited by R. G. Moorhouse (Oliver and Boyd, London, 1964),
pp. 129-227.

4J. S. Ball and F. Zachariasen, Phys. Rev. Letters 23, 346
(1969).

® R. Oehme, Phys. Letters 32B, 573 (1970).

6 In two recent papers by Zachariasen and co-workers (Refs. 7
and 8),-special models for pole-cut relationships have been dis-
cussed which contain two crossing Regge trajectories, and which

this paper to explore the general features of the resulting
pole-cut relationships.

Crossing Regge poles and corresponding pole-cut
relationships are possible structures in the complex A
plane which may well play an important role in phe-
nomenological calculations, and which may give more
concise parametrizations than poles and cuts separately.
There is no proof at present that such structures are
necessary within the framework of dispersion theory,
but there are indications from potential theory,??®
relativistic perturbation theory," and certain iteration
schemes!? that they may be relevant.

Suppose we have two Regge trajectories ai(s) and
as(s) which are pole surfaces of the continued partial-
wave amplitude F(s,\). Then this amplitude has the
meromorphic terms

B1(s) Ba(s)
- . 1
F(s,\) — + N + ey

are therefore of the same general type as those considered in Ref. 1.
Unfortunately, these authors refer to our paper in a way which is
highly misleading.

7P. Kaus and F. Zachariasen, Phys. Rev. D 1, 2962 (1970);
F. Zachariasen, in Proceedings of the 1970 Coral Gables Con-
ference (unpublished).

8J. S. Ball, G. Marchesini, and F. Zachariasen, University of
Utah report (unpublished); Phys. Letters 32B, 583 (1970).

9 R. Oehme, Nuovo Cimento 25, 183 (1962); Ref. 3, p. 163.

10V, Singh, Phys. Rev. 127, 632 (1962); G. S. Guralnik and
C. R. Hagen, sbid. 130, 1259 (1963).

11T D. Bjorken and T. T. Wu, Phys. Rev. 130, 2566 (1963);
R. F. Sawyer, ibid. 131, 1384 (1963).

12 See, for example, Ref. 7; also G. F. Chew and D. R. Snider,
Phys. Letters 31B, 75 (1970).
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F16. 1. Relative positions of poles and cut in the complex
angular-momentum plane (A plane) for the case of a real «(s) cut
and a complex A cut. Closed circles, poles in the physical sheet;
open circles, poles in the unphysical sheet.

If the trajectories ai(s) and as(s) cross at s=s,, i.e., if
a1(so) =az(so), it is possible (but not necessary) that
a1(s) and as(s) are two branches of a two-valued
analytic function a(s).”* In the neighborhood of s=s,,
we have then an expansion of the form

a1-2(5)=a()ﬂ:al(s—30)”2+. . (2)

From Eq. (1) we see that F(s,\) has no branch point at
s=so, provided B1(so) =B2(s0)-

In order to remove one branch of the trajectory a(s)
from the physical sheet of the X plane, we introduce a
branch cut in F(s,\). This branch cut must, of course, in
some way be correlated with the pole trajectories. There
are many possibilities, which also depend upon the
extent to which we want to remove one of the branches
of a(s). In the following, we consider briefly three types
of pole-cut relationships. The first two cases are similar
to the situation encountered in potential theory with
r~%-type potentials,®® but they may just as well be
considered in a more general framework with fixed or
moving branch points in the X plane.

II. THREE TYPES OF POLE-CUT RELATIONSHIPS
A. Real a(s) Cut, Complex & Cut

We suppose that there are two Regge trajectories
a1(s) and az(s) which cross at s=so, where so is real.
Then these trajectories can be branches of a two-valued
function a(s) with a branch point at s=s¢ and a cut
which we draw toward the left along the real s axis; it
may be finite or infinite. Furthermore, we require that
there is a branch cut of F(s,\) in the A plane such that
the pole trajectory as(s) never enters into the physical
sheet and that a:1(s) never leaves this sheet. Since a(s)
and F(s,\) are real analytic functions, the two branches
ai(s) and a(s) must be complex conjugates of each
other for real s<s¢ along the cut. Then it follows from
our requirements that both poles must be on the
boundary between the physical and the unphysical

18 This is a consequence of the Weierstrass preparation theorem.
See also Hung Cheng, Phys. Rev. 130, 1283 (1963).

REINHARD OEHME

2

sheet of the A plane. But this is the same as saying that
they must be on the lip of the A branch cut of F(s,\), and
consequently this branch cut must be complex. We see
that our assumptions imply complex-conjugate branch
points a.1,2(s) in the A plane for real s<so. These branch
points are connected by a cut which coincides with the
path of the pole a(s) as s varies along the left-hand cut
in the s plane of a(s). For real s> so, the poles ai(s) and
as(s) are both on the real X axis, with only a1(s) being
in the physical sheet of the X plane. The branch points
ac1,2(5) may become real for these values of s.

In earlier papers,':® we have described explicit models
with pole-cut relations of the type considered above.
Here we refrain from writing out more extensive
formulas. We only illustrate, in Figs. 1 and 2, the
characteristic features of these models using a very
simple example with branch points at a,=e=4ib and a
pole trajectory, which, in the physical sheet of the \
plane, is given by

ar(s) =a+[(s—s0)2—b2]"2 for s>s0+b
=a—[(s—s0)2=0*]"% for s<so—b, (3)

‘with 5>0, and

Rea(s)=a for so—0<s<so+0.

For F(s,\) near the point s=sy, we can consider an
expression of the form

S'—So+[(}\—-a¢1)(>\—'a¢2)]”2
S,\) = . 4
N O D —an(s)] @

The types of models described in this section are of
particular interest for the description of diffraction
scattering, because they make it possible to have Rea(s)
=const for s<0 without introducing a fixed pole.?:
They may have something to do with the possible
existence of repulsive forces at small distances in the
vacuum channel. The examples discussed in Ref. 5 are
of interest in connection with possible violations of the
Pomeranchuk theorem. For In£>1, they have rapid
oscillations in dé/ds.

\ e Re a,(s)
AN /
\\\ /
\ /

\ /
\ \ ra

) s \
+ + X

so—/b So So* \\\ S

e \
V% N\

I16. 2. Typical form of the real part of the physical pole
trajectory for pole-cut relationships of the type :discussed in
Sec. IT A.
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B. Complex a(s) Cut, Real A Cut

Let us now consider a situation where the branch
points in the A plane remain on the real axis. We may
have a cut from A=qa, to — « or a finite cut between a1
and a.<a,. Again we introduce two crossing pole
trajectories ai(s) and a2(s) with ai(s) in the physical
sheet and as(s) in the unphysical sheet of F(s,\) with
respect to the A cut mentioned above. The trajectories
oy and a3 are branches of a two-valued analytic function
a(s), and the question is: What kind of cut do we need
in the s plane in order to satisfy our requirements? We
see that a(s) must move along the real branch cut of
F(s,\) in the X plane as s varies along the relevant cut
of a(s) in the s plane. But then the s-plane cut must be
complex, with two complex-conjugate branch points.
This follows because a(s) is a real, analytic function
which has to be real for s on the cut, and it cannot be
real for points on a cut along the real axis.

The features of the type of pole-cut relationships
described above are illustrated in Figs. 3 and 4 with the
help of a simple explicit model. We take the real cut in
the N\ plane as a straight line connecting the branch
points

ag2=a+b, b5>0. (5)

The pole trajectory is given by
a(s) =a+[(s—s0)*+b*]", (6)

and the pole in the physical sheet has the functional
form

ai(s) =a+[(s—so)2+b2J2 for s>s0+0
=a—[(s—so)2+b*]"2 for s<so—0. (7)

We see that the physical trajectory has a discontinuity
at s=s9 which is illustrated in Fig. 4. We have

a1(50+0) —(11(50—-0)=2b. (8)

The function a(s) has branch points at s=so=4=4b. The
inverse function is given by

s =so+[(A\—a)*—0*]'2, &)

and, as a function of the angular-momentum variable A,
the physical pole s=m?()) is of the form

m2(\) =so+[(A—a)?—b*]V2 for A>a+b

=so—[(\—a)?—=1*]"? for \N<a—b. (10)
%2 %y
F16. 3. Relative positions of ]
poles and cut in the X plane for @ s
the case of a complex a(s) cut $ >8, 40
and a real X cut. Closed circle,
pole in the physical sheet;
open circle, pole in the un-
physical sheet. B N, S
S< S50
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Rea, (s)

La+b
+a
+a-b

F1c. 4. Typical form of the real part of the physical pole
trajectory for pole-cut relationships of the type discussed in
Sec. II B.

In the interval a—b<A<a-+b, the mass (squared) is
complex, with Rem?(\) =so.

If pole-cut relations of the type considered in this
section should actually occur in realistic theories,! they
could have very interesting phenomenological conse-
quences. In potential scattering,®® the present case
corresponds to a situation where there is an attractive
potential with an 2 singularity at the origin. For values
of the continued angular momentum which lie on the
cut in the complex N\ plane, the attractive potential
overcomes the centrifugal repulsion and gives rise to a
“collapse into the center.”

C. Real «(s) Cut, Real A Cut

As a third possibility, we consider again a real branch
cut of F(s,\) in the A plane, but now we also want to
insist upon a two-valued Regge-pole trajectory a(s)
with a left-hand cut along the real s axis for s<so. As in
the first case, the branches a1(s) and a2(s) must then be
complex-conjugate functions for the real points along
this cut in the s plane. Since the A cut is also assumed to
be real, we find that it is now nof possible for the
branches of a(s) to be on the boundary of the physical
sheet ; rather, they must be either in the physical or in
the unphysical sheet of the X plane. For real s> s, the
functions a1,2(s) are real and they can be in different
sheets, as may be required from the physical point of
view. However, with the assumptions made in this
section, we will find it difficult to obtain trajectories
with Rea(s) = const for s<so. Special models of this type
have been discussed in Ref. 7.

Suppose that only the branch ai(s) is in the physical
sheet for real s> s, and a2(s) is in the unphysical sheet.
We have assumed a real branch point at A=q,(s) with a
cut drawn to the left along the real \ axis toward — .
This branch cut must be correlated with the poles
a1,2(s) ; its discontinuity contains these poles. Clearly, as
real functions for s> s, a1(s) and as(s) can only be in

4 See, in this connection, the recent paper by Hung Cheng
and T. T. Wu, Phys. Rev. Letters 24, 759 (1970). These authors
introduce the term “promotion” for a feature of the trajectory
similar to the one discussed in this section.
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F16. 5. Relative positions of poles and cut in the A plane for the
case of a real a(s) cut and a real X cut. Closed circle, pole in the
physical sheet; open circle, pole in the unphysical sheet.

different sheets if
ai(s)>a.(s) and a2(s)>a.(s). (11)

(See Fig. 5.) We may want to allow a»(s) to be on the
boundary of the physical sheet for s>so, but then it
must lie on the cut A\<a.(s). In view of our assumptions,
this is not compatible with the reality properties of
F(s,\).

The inequalities (11) imply that we cannot have
Rea(s) =const for s<s¢. In order to see this, we consider
a(s) and a,(s) in the neighborhood of s=s, choosing
so=0 for simplicity of writing. Near the point s=0, the
branch-point trajectory a,(s) is analytic and the pole
trajectory has a square-root branch point. We write the
expansions

ac(s) =aqotas+- -,
a(s) =aotas+ (Botbs)st2+- - -

and from the inequalities (11) we then obtain the
condition
(13)

With these relations the inequalities are satisfied for
s12< (a—a,)/b; for larger values of s, higher-order
terms must come into play.

It is reasonable to assume that the branch-point
trajectory a,(s) has non-negative slope, i.e., ¢,>>0. Then
we find from our conditions that we must at least have
a>0, which implies already Rea(s) const for s<0. Of
course, there may be higher powers of s in place of the
linear terms in Eq. (12), but this would not improve the
situation.

We conclude that models with real infinite cuts in the
s plane of a(s) and in the A plane of F(s,\) require
trajectories which are nonlinear in s¥2. For example, in
the neighborhood of the branch point at s=0, we may
have the expression

a1,2(8) =aotasbs324-- - -

(12)

Bo=0 and ea.<a.

(14)
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with ¢>0 and 5> 0. For s> 0, both branches of the pole
surface must remain to the right of the branch point in
the X plane.

The situation becomes different if we have a finite
real cut in the N plane which contracts to a point and
extends itself again as s passes through the point s=0
where the pole trajectories cross. We do not want
to pursue here these and other more complicated
possibilities.

III. DISCUSSION

The three types of pole-cut relationships we have
discussed are rather simple cases. In general, there are
many other possibilities—in particular, if we have
moving branch points in the A\ plane. Generally, we
find that there is no particular connection between the
position of the coincidence point of the two pole
trajectories in the N\ plane [i.e., the point A=ea;(so)
=ay(s0) ] and the branch point «,(so). It is usually
sufficient that the point a(so) lies somewhere on the cut
in the X plane, as is the case with our relationships A and
B. Only in the example C, where we require real s cuts
and real A cuts, is there a coincidence of a(so) and a.(so).
Because of the reality conditions, this happens to be the
only point where pole and branch-point trajectories can
touch. However, even in these models, the existence of a
left-hand branch point in the pole trajectory (s) is only
due to the crossover of two pole trajectories. It has, a
priori, nothing to do with the branch cut in the X plane,
although, in special models, poles and cuts may be
intimately connected and interdependent, mainly be-
cause the cut is introduced in order to remove one
branch of the pole trajectory from the physical sheet of
the A plane.

As we pointed out before,! a direct compensation of a
branch cut in a single pole trajectory and a branch-
point trajectory is generally not possible. It should be
noted, in this connection, that the corresponding
situation for Regge pole residua is quite different. There
can easily be a compensation of s branch cuts between a
pole residuum and a branch-cut discontinuity. For
example, we may consider the continued partial-wave
amplitude

AFD w92 AFals) —ai9) ]

F(s,\)~

A—af(s) A—a(s)
1 poe® N —a.(s)? 1
BN O L
i J o N—a(s) N-—=x

where the cut due to [a(s)—a.(s)]¥? is canceled be-
tween the pole and the cut term. There are many further
examples of this phenomenon in the literature.!%:%:1

As far as the character of the branch points in the
1 R, Carlitz and M. Kislinger, Phys. Rev. Letters 24, 186
(1970). Note, however, that in the case of channels like 7N — =N,
the continued partial-wave amplitudes do have a branch point
at s=W2=0.
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\ plane is concerned, we can assume quite generally that
they are of the square-root type. Barring branch points
with s-dependent character, i.e., terms of the form
A—a.(s)]f®, we know that those moving branch
points which are associated with nonsense, wrong-sig-
nature points (Amati-Fubini-Stanghellini-Mandelstam
cuts)'® must be of this type.l” There are also indications
that fixed cuts should be of square-root character.?
Certainly, for moving as well as fixed branch points, we
cannot have straight logarithmic terms of the form
In[A—a.(s)] in the expansion of F around \=a,,
because then the amplitude would not be bounded for
N — a.(s), and in most cases this is inconsistent with the
continued unitarity condition.?!#

If we had an explicit theory, the actual pole-cut
relationship could, of course, be uniquely determined. In

16D, Amati, S. Fubini, and A. Stanghellini, Nuovo Cimento
26, 896 (1962); S. Mandelstam, ibid. 30, 1127 (1963).

17 R. Oehme, Phys. Rev. Letters 18, 1272 (1967).

18 R. Oehme, Phys. Rev. Letters 9, 358 (1962).
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the relativistic dispersion scheme, we can only ask which
models are possible in view of the known constraints.
Perhaps a generalized, quasiphysical description of these
relationships in terms of the balance between centrifugal
forces and interparticle forces can be helpful. The
author hopes to come back to this question elsewhere.

There are also bootstrap schemes and other iteration
procedures which can be used for the construction of
models with pole-cut relationships.”

We have considered, in this paper, the general fea-
tures of typical pole-cut relationships in the complex A
plane, and we have described possible shapes of the
resulting physical Regge trajectories. The actual high-
energy properties resulting from these models depend,
to some extent, upon the specific Ansdtze made for
F(s,\), and we refer to Refs. 5 and 7 for special ex-
amples. Although phenomenological work could be very
helpful in restricting the number of possible models, it
is apparent that some further theoretical guidance
would be desirable.
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Validity of the Relativistic Eikonal Approximation*

GEORGE TIKTOPOULOS AND S. B. TREIMAN
Joseph Henry Laboratories, Princeton University, Princeton, New Jersey 08540
(Received 13 April 1970)

The relativistic eikonal formula for high-energy scattering, discussed recently by a number of authors,
rests on a certain technical approximation concerning the high-energy behavior of sums of generalized
ladder graphs. This approximation is shown to be justified, in the sense that it preserves the leading energy
behavior in the sum over all generalized ladder graphs of a given order.

HE eikonal approximation in nonrelativistic quan-

tum mechanics has long been known to provide a
useful description of the scattering of fast particles by
smooth potentials.! An analogous approximation for the
discussion of high-energy scattering in relativistic quan-
tum field theory has more recently been developed by a
number of authors.? In the context, say, of a Yukawa-

* Supported by the U. S. Air Force Office of Research, Air
Research and Development Command, under Contract No. AF
49(638)-1545.

1 See, e.g., M. L. Goldberger and K. M. Watson, Collision Theory
(Wiley, New York, 1964), pp. 330-339; for a more recent develop-
ment, see R. Sugar and R. Blankenbecler, Phys. Rev. 183, 1387
(1969).

2 The relativistic eikonal formula was obtained by H. D. I.
Abarbanel and C. Itzykson, Phys. Rev. Letters 23, 53 (1969), by
functional derivative techniques; essentially the same result was
independently derived by M. Lévy and J. Sucher, Phys. Rev.
186, 1656 (1969), by Feynman-graph methods. Feynman graphs
up to sixth order have been discussed by R. Torgerson, ibid. 143,
1194 (1966). Related techniques for exhibiting the high-energy
behavior of certain graphs were used by S. J. Chang and S. Ma,
Phys. Rev. Letters 22, 1334 (1969); see also H. Cheng and T. T.
Wu, Phys. Rev. 180, 1852 (1969); 180, 1868 (1969); 180, 1873
(1969) ; 180, 1899 (1969). For a connection with the droplet model
of T. T. Chou and C. N. Yang [dbid. 175, 1832 (1968)], see
B. W. Lee, Phys. Rev. D 1, 2361 (1970).

like coupling of scalar “nucleons” to scalar ‘“mesons,”
the relativistic eikonal approximation for nucleon-
nucleon scattering consists in the first instance in the
selection of a unique subset of Feynman diagrams;
namely, generalized ladder graphs with mesons ex-
changed in every possible way, all vertex corrections,
self-energy insertions, and closed nucleon loops being
excluded. To order g? in the coupling constant, this
subset is composed of #! distinct graphs. For the
selected graphs the additional key approximation in-
volves the systematic dropping of terms quadratic in the
meson four-momenta where these appear in the propa-
gators of the nucleons. This allows the use of a re-
markable identity that makes it possible to sum up in
compact form all %! contributions to the amplitude in
order g**; and one finds for the eikonal approximation
to the amplitude in this order?

i85 p () [iX(,5) ]

av(s) =igt [ s W

n!

8 This is Eq. (3.20) of the paper by M. Lévy and J. Sucher (Ref.
2).



