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Linearly Rising Trajectories in an Infinite-Component Field Theory*
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We analyze a particular set of infinite-component wave equations from a non-group-theoretical point of
view for the purpose of constructing a field theory. Using difference-equation techniques, we are able to
study equations with much more general mass spectra than group theory would allow. We solve one equa-
tion exactly (corresponding to an equation previously solved group theoretically) and go on to analyze a
model of the p trajectory which is asymptotically linear. As expected, a ghost appears in the theory, but
we are able to modify the equation in a simple way and cause the ghost to disappear.

I. INTRODUCTION
'ODKLS of strong interactions involving infinitely

- - many particles have been considered in various
forms in the past few years. The existence of large
numbers of particles in nature suggests that it may be
profitable to consider models that have an infinite
number of particles in the zeroth-order approximation
instead of just a few. Various approaches have included
dual theories and their generalizations, ' field theories, '
wave equations, ' and attempts at realizing current
algebra on an infinite set of one-particle states. A field
theory in which the mass spectrum is determined by a,

wave equation has been constructed in a previous
paper, '" and the present paper is concerned with further
development of this approach. Our departure from
previous work is to investigate techniques to solve wave
equations that do not have simple group-theoretic
solutions.

It is a valid question to ask why a wave equation is
necessary at all since it is not essential in the construc-
tion of the field theory. ' Our reason to use it is that the
particles which enter the field theory appear to be
bound states, whose dynamics are in some sense
governed by the wave equation. The questions which
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arise naturally from our approach are: (a) What is the
correspondence between the properties of the wave
equation and the properties of its spectrum; (b) what
dynamical system, if any, is the equation, and hence
the field, describing? This paper is principally con-
cerned with the first of these questions. An attempt to
answer the second will be delayed to a later paper.
Clearly, the nature of the spectrum will be a strong
guide in any attempt to ansv er the dynamical question.

Our starting point is to consider a, boson field p(x)
which transforms under the infinitely reducible repre-
sentation of the homogeneous Lorentz group:

R= Q 8(-,'k, —,'k).
k=0

(ip„l.~ M) v (p) =0—
and then going to the rest frame

(1.3)

Ppol. " ~)P(po) =o (1.4)

The masses are then the values of po for which (1.4)
has a nontrivial solution.

Given the eigenvalues po and the c-number eigen-
vectors of this equation, we can construct the second-
quantized field by the prescription given in Ref. 5.
We shall not discuss this aspect further here except to
emphasize that the procedure is completely covariant,
and once the field is constructed all the machinery of
relativistic quantum held theory is at our disposal.
In particular, one can write Lorentz-invariant couplings,
calculate propagators and vertices, and derive expres-
sions for. the 5 matrix.

Here (-,'l~, —2k) denotes the usual (4+1)'-dimensional
irreducible representation. It is possible to construct
Lorentz tensor operators on this representation. Intro-
ducing a Lorentz 4-vector I.„and a scalar M, we form
a first-order wave equation for the field:

(cl„I.&—M) p(x) =0, (1 2)

where I.„and M are infinite-dimensional matrices in
the space of R.

The mass spectrum allowed by (1.2) is most readily
analyzed by first Fourier-transforming the equation
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II. WAVE EQUATION

Let us focus our attention on the equation

(B„L;—M)q (x)=0, (1 2)

and write the most general form consistent with the
transformation properties of the field y(x). We choose

q (x) to transform under an infinitely reducible repre-
sentation of the Lorentz group. To be specific, we let
the column index on p be given by the triplet (kjo),
with j&k and —j&a-& j, and under Lorentz trans-
formation. we demand

U(A, a) pe,.(x) U '(A, a)

=P D...'. & '"&(A.—') pe, .(Ax+a). (2.1)

Up to this point, L„and 1II are to some degree arbi-
trary, since only their transformation properties have
been specified. We must further specify the reduced
matrix elements of these operators in order to com-
pletely define the wave equation. Traditionally these
are chosen so that L„and M are generators of some
group, leading to an equation that is easily solved. In
this paper we undertake a more general investigation
of infinite-component wave equations, in which we
forsake group theory for a direct calculation of the
infinite-dimensional determinant whose roots give the
allowed mass spectrum. Our techniques are not limited
to choices of reduced matrix elements which allow
group-theoretical solutions, and hence we can study
equations with much more general mass spectra.

The "natural" group-theoretical choice of reduced
matrix elements leads to a rising mass spectrum with
a hydrogenlike accumulation point, ' ~ which we believe
is undesirable in a model of strong interactions. We
exhibit a model for which no simple group-theoretical
solution is known that has asymptotically linearly
rising trajectories.

In Sec. II we write down the most general first-order
wave equation in the context of our representation
(1.1). We connect the matrix equation to a difference
equa, tion in Sec. III, and discuss its general properties.
The difference equation is the basis for the investiga-
tions of this paper. In Sec. IV we derive an expression
for the behavior of the leading trajectory function ee(s)
for large s. In Sec. V we solve the difference equation
for the case that was previously solved group theoreti-
cally. Finally, in Sec. VI we treat a case which has
asymptotically linear trajectories.

ties, their form is restricted by their commutation rela-
tions with the generators J and K of the I.orentz
group. 3f must commute with the generators, while
L„satisfies the relations

f J,,L,]=ie,,eLe, [J;,Le]=0,
[E,,L,]= ib„,—Le ) [E,,Le]= iL;—,

(2.2)

where J and K satisfy the usiml commutation rules

[J;,E,]= i e;:,eEg, ,
(2 3)

By Schur's lemma, 3f must be of the form

Me,.e p, = m(k)bee b, ,'b.. (2.4)

It follows from the Wigner-Eckart theorem that the
form of Lo must be'

(Lo)ei. ,i J "——(ae,be, e'+i ae,bi, e—+i)b, , b.. . (2.5)

where

ae, [(k——j) (k—+j+1)]'"r(k). (2.6)

(We have made the additional requirement that Le be
antisymmetric; a slightly more general form is possible
if we relax this requirement, but this will not affect the
generality of our wave equation. ) Here r(k) and eii(k)
are arbitrary functions of k; they are the reduced
matrix elements of L„and M referred to in the Intro-
duction. For convenience, we shall take Lo to be anti-
Hermitian and M to be Hermitian, i.e., r(k) and m(k)
must be real.

The technique for deriving (2.5) and (2.6) from the
commutation rules has been outlined in Appendix A of
Ref. 5. The model which was solved group theoretically
there corresponds to the choice r(k) =-,', and m(k)
=n(k+1)+P, where n and P are constants.

Let us derive a condition under which the eigen-
values po will all be real. Assuming that none of the
eii(k) vanish, we can rewrite (1.4) as

ak;
Bkj rr, k j'tr —Z ~k, k'+1

[eri(k) m(k —1)]

Mi"[M '"(iL&)M '" I/pe]M'"@=0. —(2.7)

Thus p, will be real if 8=—M '"(iLe)M '" is a
Hermitian matrix. Calculating the elements of 8 using
(2.4) and (2.5), we find

J 0'

Heie D~ i,.~*" '"~(A) is the matrix representative of the
homogeneous Lorentz transformation A in the (~k, 2k)
finite-dimensional representa tion.

Since L„and M have definite transformation proper-

' Y. Namt&u, Progr. Theoret. Phys. (Kyoto) Suppls. 37-38, 368

ak;
be', i+i b~zb«~e, (2.8)'

[m(k') m(k' —1)]"'

and, therefore, from (2.6), our condition is that
r(k)/[eie(k)m(k —1)]'"must be real.

, We sha, ll see in Sec. VI how the violation of this
condition results in the appearance of ghosts.
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where now
(10)kjn, k' j'n' (+0 )kk'fjjj'finn' i

(I 0&j')kk =ak, fjkk+i ak, ~k —kpl.

(3.1)

(3.2)

III. WAVE EQUATION AS
DIFFERENCE EQUATION

In this section we c1erive a second-order difference
equation, which, together with boundary conditions,
is equivalent to the matrix equation (1.4). We solve
the equation asymptotically and classify the solutions
according to the normalization properties of the
eigenvectors.

First let: us note that (1.4) is &liagonal in j and o..
Ke define a new matrix J~ by

(and Do=8&), which yields

L„~,——2E„+1—4xzz(zz+X) (r„'/m„m 1)E,„
=2F„+1 xzz(r—z+ X)G„F.„. (3.8)

Recall froni Sec. II that G„niust be positive if only
solutions for positive x are to occur, and notice that G„
depends on zz only in the coirlbination (zz+ j).

We are interested in those values of x which cause
D„(x)~0 for large zz. It might seem that to solve
explicitly for each D (x) is therefore obtaining a lot of
unnecessary information. However, we can show that
there is in fact a, simple relationship between D„(x)
and the actual components of the eigenvectors q„. To
see this, we write (3.3) as

Equation (1.4) becomes

(~&j') kk 0 k "'(po) =o,

mnPn Zpoang n—1+Zpoa +1n&p +1n0q
where we have denoted a„+, , simply by a„.Let

(3.9)

where
(mt &'&) kk, = ipo(10&—'&) kk. +m (fz) fjkk (3.4)

Then

Z
" n

(II a,)-'X„(and Xp ——top) . (3.10)
Pp L=l

Now if DR were a finite matrix the values of pp
would be determined by simply setting det OR=0. In
the infinite-dimensional case, we can define a sequence
of functions D„(pp) as the determinants of truncated
matrices. Thus

2
~ ~

~

z m z
x„ipo.a—„x„ 1+ —ipp —x„+,=0, (3.11)

O an PO an+lan

or, multiplying by —ip pa„, we have

Dl=det m(j) =m(j), mn~n pp an Xn—1 Xn+1 (3.12)

D2=det
~~

~~

~~
~

m( j) zpoaj+1, ~

, etc.
iPpa,+—l, m( j+, 1)

(3.5) which is exactly Eq. (3.6).
Since p„has the same boundary conditions as D„

(except that we leave the choice of 000 arbitrary), we
deduce that

By simply expanding along the (I+1)st column of
D„+~, we arrive at the following recursion formula:

D-+1(Po) =m(~+i)D-(Po) Po'a.+j, 'D-—1(Po) (3 6)-

ol
Xn= Dnpp

Z
rC n

(II «) 'D. so,
p / 1

(3.13)

(3.14)

n--3

D„=(IIm)
1,=-0 2"

(3.7)

Since this is a second-order difference equation, we
must specify two boundary conditions. Rather than
use the explicit forms given in (3.5), it is convenient
to specify D—i(po)&'0 and Do(po)=1. To simplify
notation, we write everything in terms of the index
zz=k —j, zz=0, 1, 2, . . . . We put akjz=zz(zz+X)r„',
where X—=2j+1, and let m(k)=—m„. Furthermore, we
write poz= x and note that (2.6) is a function of x only,
so that our solutions will occur in pairs &pp. In the
context of infinite-component field theory, this means
that we shall have both particles and antiparticles, as
in the Dirac case. With these changes, (3.6) is

D„+1(x)=m„D„(x)—xzz(zz+l, )r.'D„ 1(x) . (3.6')

Next we show that although two arbitrary functions
m„and r„z appear in (3.6'), the problem is determined

by a single function only. We set

p, (zl„)v =flI~, (3.15)

n=1, 2, . . . . We have assumed in this derivation that
a„&0 for n)0, i.e., that r„/0 for e)0.

It will be useful at this point to study the asymptotic
solutions to (3.8) in order to classify the types of
spectra we may expect as functions of the asymptotic
behavior of G„. We shall show that when G„~on' ',
the solutions fall into three classes: (1) For r)0, we
find that the only acceptable solutions, in the sense that
p„oo„*op„diverges no worse than a &1 function, are a
continuum of "scattering" solutions for 0&x& ~. (2)
For x=0, we find that there is an ionization point
x= 1/&r, below which there can exist normalizable solu-
tions (i.e., "bound states") and above which there is a
continuum as in case (1). (3) For r&0, we find that
only bound-state solutions exist.

Before substantiating these statements case by case,
let us comment on the normalization properties of the
solutions to (3.3). Since
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where iI p and 3/I are assumed Hermitian, we deduce after all, from the boundary conditions that the E„
that must be real), we can make use of the fact that. (3.22)

(3.16) has real coefficients to construct the solutions

Thus the natural metric with respect to which we shall
examine the normalization of our solutions is

E„&'&=E„+E„" and E, "&=i(E„—E„*).

(p(i) (o(2)) —p+(i) (go) y (2)
(2) r=0. Here only possibility (ii) exists, and Eq.

(3 17) (3.22) becomes

In considering the norm ((o, p) (which is not, however,
necessarily positive definite), it will be more convenient
to consider the equivalent expression q Mq. We wish
to know, therefore, the behavior of the quantity

with solution
E)c+2 2En-)-1 xo E'1 )

En= CII )

(7= 1&(1—xo)'".

(3.25)

(3.26)

(3.27)
Sic /

gn+1 ~n+lgn+1/ Pn ~nPn=~

a,s a, function of the ratio

(3.18)

R=E„~i/E„.

Using (3.14) and (3.7), we have

(3.19)

(3.20)

and, therefore, for large 1s,

= IRI'xn'G= IR I '/xone' (3.21)

By the ratio test, then, the series P„p„"m„(o„will
converge for ~R~'(xon', will diverge for R(~'& exo',

and the case ~R~'=xon' is ambiguous. Keeping only
leading powers in n, (3.8) reads

Therefore, we have R=i7 in this case. For x&1/o, the
square root is pure imaginary, so that

~

R
~

'= xo, and
thus we have the ambiguous situation again, i.e., a
continuum of masses for x&1/o.

For x (1/o,
~
R

~

'= 2 —xo&2 (1—xo)'" Therefore, p
will be normalizable if & (1—xo)'" is less than xo.—1.
Since xo- —1 =. 0, we see that the minus sign yields a
normalizable solution, while the plus sign yields a
non-normalizable one. This is again analogous to a
Schrodinger equation in the regime where bound states
exist. : I'or each energy, there is one solution which is
asymptotically growing, and another which is a,symp-
totically dying. We make the interpretation, then,
that bound states may exist when r=0 and x(1/o.
Incidentally, this analysis of the 7-=0 case was con-
firmed in Ref. 5, where bound states were indeed
found below an ionization point 0., with a continuum
fol x)n.

(3) r(0. Here the possibility exists to set E„+,
= 2E +~ asymptotically, that is,

En+2 2En+] xo f/' En ~ (3.22) c(2n) (3.28)

E +.g = —xcrn'E„,

so that, to leading order in I,
(3.23)

E„=c( xo) ~"[I'(ri+n—)7~(' (3 24)

where c and o, are arbitrary constants. Thus we find
that

~

R
~

'= xone', which is the ambiguous case. In
analogy to the Schrodinger equation, for example, we in-

terpret this as the existence of a continuum of solutions
where the eigenvectors have 6-function normalization.

Notice that according to (3.24) and the assumed
positivity of x and o., the E are alternately real and
imaginary. To obtain purely real solutions (we know,

There are two possible ways to satisfy this.

(i) Two of the terms in (3.22) have the same asymp-
totic behavior and the third dies relative to them; or
(ii) all three terms have the same asymptotic behavior.

We now examine (3.22) in the three cases r&0, r=0,
and 7.(0.

(1) r&0. The reader can check that only possibility
(i) exists in this case, and that in fact we must have

However, this means 8=2, and 2&xo.e' for x&0 and
e sufficiently large. Thus the solution obtained in this
way is not normalizable. The other possibility is to set

that is,
2Fn+i —xo.e'E. =0, (3.29)

E„=c(-', xo) "[I'(ri+o)7' (3.30)

for large r(. Then ~R ~'= (-', xo)'n', which can be made
smaller than xo.e' for any given x if e is chosen large
enough. Hence we expect bound states to occur for
indefinitely large x. This behavior will be explicitly
demonstrated in Sec. VI.

Before proceeding to discuss particular cases of Eq.
(3.8) in greater detail, we remark that once we have
reduced our problem to the solution of a difference
equation, the angular momentum j appears only as a
parameter. The equation can be discussed and in some
cases solved exactly for nonintegral values of j; we
shall find, in fact, that we can extrapolate smoothly
between integers to generate x as a function of the con-
tinuous variable j. This we take to be the Regge
ron tinuatinn.
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IV. ASYMPTOTIC BEHAVIOR OF
LEADING TRAJECTORY

In Sec. III we established conditions on the function
G„L—=G(n+ j)j, i.e., on the reduced matrix elements,
for there to be a discrete spectrum. In this section we

go one step further and derive an expression for the
asymptotic behavior of the leading trajectory for the
cases in which the discrete spectrum exists for 0&x& ~
(i.e., the r(0 case of Sec. III). This will guide us in
choosing G„ to get linear (or nearly linear) trajectories.
Given that

for larger, we show that x j 'for large j on the lead-

ing trajectory or in Regge language o2(s) s ))'. Linear
trajectories require v- = —1. The hydrogenlike spectrum
arises in the limiting case w ~ 0 .

Consider the difference equation for E„, Eq. (3.8),

that the higher derivatives are small relative to D' for
large j.Hence for large j we can drop the higher deriva-
tives to get the leading j behavior.

t
—d2/dm2+1+xH(n)]E(n) =0,
H(m) = n(—n+2j)/(n+j)' ' (4.7)

This is Eq. (4.2') with two modifications: A2~ D',
n(n+X)G„—& its asymptotic form. We cannot solve
this equation exactly but can solve it for large j because
it reduces to the harmonic-oscillator equation in this
limit.

The function FF(n) is zero for m=O, and n= oo). We
need it in the region e&0 and here it is a smooth
function with a single dip at n= no, where

B. Approximate Solution of Differential Equation

We wish to find the ground state of the differential
equation

E„+2 2E„+,+—oon(n+7, )G„E„=O, (4.2)

with the boundary conditions Eo ~, E&——1. We in-

troduce the forward difference operator

(4.3)

Then Eq. (4.2) becomes

LA2 —1+en(n+X)G„]E.=O. (4.2')

For j large, the function G„ is needed only for large
values of its argunient since m always starts at zero.
Hence we substitute its asymptotic form

No= j —1

Expanding H(n) about no we get

H(m) =H(mo)+ ,'(n -no)'—H"(mo)+

7 (2—7) /2

H" (no) =j " '( 2r) ———
T—2

(4.8)

(4 9)

G-=(n+ j)' '. (4.4)

The constant in front is chosen to be unity since any
constant can be absorbed in x. We restrict ourselves to
functions G that have an expansion implied by Eq. (4.1).

A. Conversion to Differential Equation

(4.5)(2+1)= en

when acting on an infinitely differentiable function.
Hence

23 —2
D3+Q2 D2+

3t

24 —2
D4+ (4.6)

We will first ignore D' and the higher derivatives and
find the ground state (i.e., the leading trajectory). We
then justify this approximation in Sec. IV C by showing

If we forget for the moment that 6' is a difference
operator and consider it to be a derivative operator
O' L—= (d/dn)'j, this equation looks like a Schrodinger
equation, where e plays the role of a relative coordi-
nate, and we can therefore analyze it using familiar
techniques.

We must first establish a criterion under which we

can replace 6 by D. These operators are related by the
expansion

E(n) = exp/ —-',2 (n no)'$, —
A=A'.

Hence our final result is

(4»)

)+0(—
) . (4.12)

C. Justification for Using 42= D'

Starting with the relation

g2 (cD 1)2 (4.13)

we have approximated the right-hand side with 6'= D'.
This was necessary in order to obtain a second-order
differential equation. Now that we have a solution we
show that the higher. derivatives are vanishingly small
for large j.

Higher terms in the expansion fall successively faster
with j.We may therefore keep only the first two terms
in the limit of large j.

Our equation has the form

L
—d'/dm' —A+8(n —n, )'jE(n) =0. (4.10)

The ground-state eigenfunction and the eigenvalue
condition are
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Let us examine the expression

(6' —D') expL —-,'A(n np—)'J expL —2A(n —np+1) j —2expL ——,'A(2n 2—np+1)$+1 —1. (4.14)D' exp! ——',A(n —np)'j —A+A '(n n—p)
'

As jgets large, A 1/j but n takes on all values. How-
ever, let us examine Q in the neighborhood of the dip
in H(n), i.e., where the solution is significant. The im-
portant region is then —,'A (n —zzp)' 1. Hence A (n —np)

A'" 1/j'". We therefore may expand the expo-
nential and find Q 1/ j'~' and thus justify the dropping
of higher derivatives for large j.

D. Summary

E„+i'—O,E„'+—,'gE„g' ——0.
E„' is easily determined to be

(5 4)

which gives, in (5.1),

n(n —1)E.+,'= (an+b) (n —1)Z„'
——,'xn(n+!~) 8„,'. (5.3)

Following the approach of Sec. III, we look for the
asymptotic solution of (5.3), i.e., for the solution of

We have presented a siniple nonrigorous calculation
for the trajectory function obtaining wltll

L '=q" (n large), (5.5)

x= const&& j '[1+0(1/j)j. (4.15)

V. EXACT SOLUTION OF DIFFERENCE
EQUATION

In this section we solve (3.6') exactly in the case that
has already been treated group theoretically in Ref. 5.
We do this for two reasons: first, to bolster our con-
fidence in the validity of our approach; and second, to
bring out certain additional properties of typical solu-
tions to our equation.

As pointed out in Sec. II, the case of interest is
given by r(k)=-,', nz(k)=n(k+1)+P in (3.6'). Rede-
fining nz =an+b, with a=n a,nd b=zz(j+1)+p, we
have

D„(x)=(an+b)D„(x) 'xn(n+7—t)D -(x). (5.1)

Rather than define E„as we did in Sec. III, we shall
define a slightly different function E '

by

D = I'(n)I.'.', (5.2)

We have dropped terms at many stages which con-
tribute to order 1/j but, believe to have a correct ex-
pression for the power behavior and the coefficient of
the power. For the case of linear trajectories, i.e.,
7= —1, we get

(416)

(The scaling of x is arbitrary and so this is not a
constraint on the slope of physical trajectories. We
quote this number for comparison with a calculation
in Sec. Vl. )

Without examining the correction ternis we do not
know where the asymptotic behavior sets in. In Sec. VI
we solve an equation numerically that should yield
asymptotic linear trajectories by the arguments of this
section. We find complete agreement with this calcula-
tion and also the surprising fact that our formula can
work very well even for small j.

which yields
+n =q"fr+i ) (5.7)

n(n 1)q'f—„+, (an+b) (n—1)qf +i-
+ ', xn(n+h) f„-=0. (5.8)

Following the techniques of Sec. IV, we introduce the
first and second difference operators by

f +i= z'-zf-+f

f.+p
=~'f-+ 2~f-+f' (5.9)

Using x= 4q(a —q) and the definitions (5.9), we find

n(n —1)qA'f„+L(2q —a)n —bj(n —1)hf„
+(L(a—

q) (!+I)—bjn+b)f-=o (5 1o)

In order to have f„regular for n)0, and to preserve
the asymptotic behavior (5.5), we want a solution to
(5.10) which is a polynomial in n:

L

6)N ~

l=u

Actually, it will be more convenient to make an equiva-
lent expansion not in powers of e, but in a series of
modified Pochhammer polynomials:

f- = 2 «(n)~ (5.11)

whel e

{n)i= (n+l —2)!/(n —2)!. (5.12)

The {n)~ have a number of useful properties which we
now list:

(n —1)a(n) =l(n), ,

n(n —1)z1'(n) ( l(l —1)(n) (——, (5.13)

q = -', aL1~ (1—x/a') 'z'j. (5.6)

As in Sec. III, only the minus sign in (5.6) will lead to
normalizable solutions, so we make that choice. We
extract the asymptotic behavior (5.5) by letting
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I'ro. 1. The p trajectory and first two
daughters calculated by putting u = —-'„
b= —

&, c=1 in Eq. (6.1).

0
—

I 4 5
2

S/2 mp

and

e{n }(= {n}(+g—(l—1){I}(.

f(r) =P c,r', (5.14)

where the cl in (5.14) are the same as those in (5.11).
Using (5.13), one can check that if we make the
replacements

These properties (5.13) allow us to solve for the eigen-
values x and the expansion coeKcients c~ by introducing
a differential equation in a variable r, whose solution is

vided we set

[P,+1)q—b]/(a —2q) =M, (5.20)

where M =0, 1, 2, . . . . Defining E=3f+j+1,we have

q= 2(~+0/&) (5.21)

Comparing (5.21) and (5.6), and remembering that
we chose the minus sign in (5.6) to obtain a normal-
izable solution, we see that we can have bound states
only if

P/n (0.

and

(e—1)6 ~ rd/dr,

n(v —1)LV ~ r'd'/dr'
This is a result which we derived from the properties of

(5 15) of the group 0(2,1) in Ref. 5. From (5.21) we have

e —+ r rd/dr+1, — x=4q(a q) =e' P'/Ã'—,
— (5.22)

which gives
y = L(a—2q)/(a —q)]», (5.18)

yg"+[(l +1)—y]g'

+(a—2q) '[(l+1)q—b]g=o (519)

This is the equation for I.aguerre polynoimals, pro-

then the differential operators on the right perform the
same operations on r' that the difference operators on
the left do on {N}~.Hence the diBerential equation we
wish to study is

qr'd'f/dr'+ [(2q a) (r rd/dr+1) —b]rd—f/dr-
+[(a—

q) (X+1) b](r rd/dr+1—)f+bf—=0 (5.16).
First we make the substitution f(r) = r"+'g(r) to obtain

(a q)rg"+ [(2q a)r+ (—a—q) (X+1)]g-'

y[q(~+1) —b]g= 0. (5.17)

Finally, we change variable to

N+i+&
f„&'v& = P c){e}(,

l=2 (j+i)
(5.23)

corresponding to eigenvalues (5.22). The coefficients c~

are those in the expansion

8—2g N+j+1
»K+II . (x) r — Q c rl

Q —
g ~=2(i+i)

(5.24)

We have thus accomplished our objectives of repro-
ducing the discrete spectrum of Ref. 5, using techniques
reminiscent of two-body potential theory in nonrela-
tivistic quantum mechanics. The solution is related to
a Laguerre polynomial, as the hydrogenlike spectrum
(5.22) might suggest. This is not exactly the Schrodinger
problem, of course, both because of the shift 0.', and

with E= j+1, j+2, . . . .
This is the result found in Ref. 5. The solutions to

our difference equation (5.8) are
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Fic. 2. The p trajectory and 6rst two
daughters incorporating the modification
(6.3) with d=0, e= —i.

S/2mp

the fact that x is the energy squared, not the energy.
Furthermore, as we stressed earlier, the solution f„ is
related to the components of an eigenvector in a fully
relativistic problem,

eters. Attempts were made to solve this equation
exactly. It is possible to solve for isolated values of j
but we have not been able to find an analytic solution
for. general j.If we choose b= a—1 and j=c—1, one can
easily verify that the gound-state solution is

VI. NUMERICAL SOLUTION OF DIFFERENCE
EQUATION WITH NEARLY LINEAR

TRAJECTORIES

E~„'0&= (-,'x) "LF(n+a+c—2)] ',
x= 4(c+a—1) .

(6.2)

Difference equations are tailor-made for a computer,
and it is tempting to abandon an analytic treatment of a
difference equation that we cannot solve exactly. It is
trivial to find the spectrum by truncating the equation
and searching for zeros in x. However, since we are
using the wave equation in order to construct a field
we would strongly prefer to have exact expressions for
the eigenvalues and eigenvectors.

The numerical calculation in this section serves two
purposes. First, it is a check. on the calculation of Sec.
IV and furthermore shows that the spectrum can be
well represented by its asymptotic form (4.16) over a
wide range in j. Second, it can be used to establish the
exact positions of low-lying states. We believe that in
the construction of Feynman graphs and form factors,
the approximate analytic expression for the spectrum
and the asymptotic behavior of eigenvectors (Sec. III)
will be much more useful information.

We consider the simplest equation we can write down
that should give asymptotically linear trajectories:

LA' —1+xv(n+X)G„]E =0,
1 (6 1)

G.„=
P(n+j +a) (e+j +b) (e+j +c)j

where u, b, and r. are arbitrary j-indepepgent param-

Further excited-state eigenfunctions are of the form

E ('& times polynomials in n.
We solved Eq. (6.1) numerically for arbitrary j for

various choices of the parameters and verified that the
trajectories were asymptotically linear and gave the
slope predicted by Eq. (4.16). In presenting our results,
we have in mind constructing a model of the p tra-
jectory and must choose appropriate values of u, b,

and c. The choice of these constants can be made some-

what systematic. There exists a solution for x=0 if

e(n+X)G„blows up for a particular value of n LThis.
corresponds to a matrix element m(k) vanishing in the
wave equation (3.3).]We can make it blow up at sz= 1

and j= ~~ (the intercept of the p) by choosing a= ——', .
We then choose b= ——,

' so that there exists an exact
solution of our equation for some value of j.Finally, we
choose c= 1 and this allows us to solve j=0 exactly.

The results are shown in Fig. 1. The leading tra-
jectory has an intercept j=—,'. We choose to scale x so
that the leading trajectory passes through j=1 at
s=0.5 corresponding to the mass of the p. We wish to
stress again that the near linearity of the trajectories
for small j was an unexpected result.

We note that there is a ghost state in the spectrum;
i.e., s(0 for j=0. This was not unexpected since G„
is not positive definite and hence ghost states are
allowed (see Sec. II).
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We can alter G„so that it is positive semidefinite.
Consider the fornax

'I'l+ 7+ e
(ne w ) (' (o I&I )

s+j+d

These results are shown in Fig. 2. The ghost dis-
appeared because the leading trajectory was found to
approach j=0 asymptotically. The asymptotic slope

(~'"l) of the trajectories differ from Fig. 1 since a different
scaling passes the leading trajectory through the p mass.

This choice should change neither the asymptotic
linearity nor the slope. We choose e= —1 so that the
numerator factor vanishes for x=1 and j=O, i.e.,
at the point where G.„"")is negative. The constant d
was arbitrarily chosen to be zero.
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Crossing Regge Trajectories and Pole-Cut Relationships*
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The general features of typical pole-cut relationships with crossing Regge-pole trajectories are con-
sidered. The possible shapes of the resulting physical pole trajectories are described.

I. INTRODUCTION
' 'X a recent paper, ' we discussed the question of
~ ~ possible left-hand branch lines of Regge-pole tra-
jectories. These branch lines are of interest in connection
with diffraction scattering, ' ' and possibly also for other
high-energy properties. Since, u priori, one ma, y perhaps
think that there are other possibilities, we have pointed
out that Regge trajectories can have such branch lines
only as a consequence of the crossover of two (or more)
pole trajectories. The relevant constraint is the condi-
tion that these branch points of the trajectory n(s) are
not inherited by the continued partial-wave amplitude
F (s,X).

From the phenomenological point of view, we may
not want to have two trajectories which correspond to
different branches of the same analytic function. It was
therefore the main point of Ref. 1 to show that one can
use fixed or moving branch points in the complex X

plane of F(s,X) in order to remove one of the two
crossing Regge trajectories into a secondary sheet with
respect to these P branch lines. ' ' It is the purpose of
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6 In two recent papers by Zachariasen and co-workers (Refs. 7
and 8), special models for pole-cut relationships have been dis-
cussed which contain two crossing Regge trajectories, and which

this paper to explore the general features of the resulting
pole-cut relationships.

Crossing Regge poles and corresponding pole-cut
relationships are possible structures in the complex P

plane which may well play an important role in phe-
nomenological calculations, and which may give more
concise parametrizations than poles and cuts separately.
There is no proof at present that such structures are
necessary within the framework of dispersion theory,
but there are indications from potential theory, '"
relativistic perturbation theory, " and certain iteration
schemes" that they may be relevant.

Suppose we have two Regge trajectories ar(s) and
n&(s) which are pole surfaces of the continued partial-
wave amplitude F(s,X). Then this amplitude has the
meromorphic terms

pr(s) p2(s)
F(s,X) = — + — +

X—nr(s) ) —n, (s)

are therefore of the same general type as those considered in Ref. 1.
Unfortunately, these authors refer to our paper in a way which is
highly misleading.
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