Dispersion Relations and Asymptotic Behavior of the Veneziano Partial-Wave Amplitude in the Complex s Plane*

ROBERT T. PARK AND BIPIN R. DESAI Department of Physics, University of California, Riverside, California 92502 (Received 4 May 1970)

The asymptotic behavior of the Veneziano partial-wave $I=1$ amplitude $V_i(s)$ for $\pi\pi$ scattering is studied in the complex s plane for physical l values. The ρ - f^0 exchange-degenerate trajectory is of the form $\alpha(s) = as+b$. For $b < 1$ and $3b+4am_x^2 > 1$, it is shown that, asymptotically, $V_1(s) \sim \alpha(s^{b-1})$. Under the same conditions, the resonance partial widths for fixed l have the property $\Gamma s_R \sim o(s_R^{b-s/2})$. The discontinuity of $V_1(s)$ across the left-hand cut oscillates, and if $b<1$, then, asymptotically, disc $V_1(s) \sim o(s^{-2b - 4am_\pi^2})$. In the case $-2am_r^2 < b < 1$, disc $V_l(s) \rightarrow 0$ as $s \rightarrow -\infty$ and $V_l(s) \rightarrow 0$ as $|s| \rightarrow \infty$ and $V_l(s)$ can be written in the form of unsubtracted partial-wave dispersion relations, i.e. , as an integral along the left-hand cut plus the sum of an infinite number of poles along the right-hand real axis. Thus for the particular case of the ρ -trajectory $(b \approx \frac{1}{2}, a \approx 1 \text{ BeV}^{-2})$, an unsubtracted dispersion relation can be written.

A SIMPLE representation for the scattering amplitude which meets the requirements of Regge asymptotic behavior and crossing symmetry and which exhibits zero-width resonance poles has been introduced by Veneziano.¹

In this paper, we study the asymptotic properties of the $I=1$ continued Veneziano-Lovelace² $\pi\pi$ partialwave amplitude in the complex s plane. Although the analysis is limited to $\pi\pi$ scattering, the methods used should be applied easily to other Veneziano-type amplitudes.

In Sec. II the formalism is developed. We assume that the exchange degenerate ρ - f^0 trajectory is linear and given by $\alpha(s) = as+b$. The analysis is carried out for $b < 1$, since $b > 1$ violates the Froissart-Gribov bound and $b=1$ corresponds to the Pomeranchuk trajectory. We first consider the discontinuity across the left-han cut. We show that disc $V_l(s) \sim o(s^{-2b-4am\pi^2})$ as $s \to -\infty$ cut. We show that disc $V_1(s) \sim o(s^{-2b-4am\pi^2})$ as $s \to -\infty$.³ In the special case of the ρ meson where $b \sim \frac{1}{2}$ and $a \sim 1$ BeV⁻², disc $V_l(s)$ goes to zero faster than $1/s$ along the left-hand cut. If $2b+4am_{\pi}^2>0$, disc $V_1(s) \rightarrow 0$ as $s \rightarrow -\infty$.

In Sec.III we examine the asymptotic behavior of the partial-wave amplitude in the complex s plane. Our results are conveniently expressed in terms of a parameter x, which is defined to be the minimum of $1-b$ and $2b+4am_{\pi}²$. For $b<1$ and δ any positive number, it is shown that (i) $V_1(s) \rightarrow 0$ as $|s| \rightarrow \infty$ provided that Ims $\neq 0$ and $2b+4am^2 > 0$; (ii) $V_1(s) \sim o(s^{b-1})$ if 3b $\lim_{n\to\infty}$ and $2\theta + 4am_{\pi} > 0$; (ii) $V_{\ell}(s) \sim \theta(s^{\gamma})$ if $s\theta$
 $+4am_{\pi}^2 \ge 1$ or if $|\text{Im}s/\text{ln}s| \to \infty$ as $|s| \to \infty$; (iii) $s^{x-\delta}V_i(s) \to 0$ as $|s| \to \infty$ if Ims $\neq 0$. When $b=\frac{1}{2}$ and $a=1~{\rm BeV^{-2}}$, this reduces to $V_{l}(s) \sim o(1/\sqrt{s})$ as $|s| \to \infty$.

¹G. Veneziano, Nuovo Cimento 57A, 190 (1968).
²C. Lovelace, Phys. Letters 28B, 264 (1968).
³The asymptotic relation $f(x) \sim o(x^{\alpha})$ means that, for a positive number δ , $f(x)x^{-a-\delta} \to 0$ as $x \to \infty$. For example, $f(x)$

I. INTRODUCTION Part of the proof of this theorem is given in Appendix C. It is interesting to note that the condition $3b+4am_z²$ >1 is just the result found by Shapiro and Yellin⁴ in order to guarantee positivity of the resonance widths of the first daughter trajectory.

> In Sec. IV the asymptotic behavior of $\pi\pi$ partial widths is studied. For fixed l we find that $\Gamma s_R \sim$ $o(s_R^{-x-1/2})$, where the parameter x has been specified above. When $3b+4am_{\pi}² \ge 1$, a more concise formula is $\Gamma s_R \sim o(s_R^{b-3/2}).$

> We show that partial-wave dispersion relations can be obtained for the $I=1$ Veneziano amplitude when $b<1$. It will be necessary to make subtractions if $2b+4am_z²$ $<$ 0. This result disagrees with Drago and Matsuda, 5 who suggested without proof that partial-wave dispersion relations could not be used, and also with Sivers and Yellin.⁵ For $I=0$ or $I=2$, the presence of a $V(t,u)$ term in the amplitude causes disc $V_l(s)$ to diverge exponentially as $s \rightarrow -\infty$ and partial-wave dispersion relations are not valid.

We propose a method for obtaining a unitary $\pi\pi$ scattering amplitude from the Veneziano model.

II. DISCONTINUITY ACROSS LEFT-HAND CUT

We define the amplitude $V(s,t)$

$$
V(s,t) = -\gamma \frac{\Gamma(1-\alpha(s))\Gamma(1-\alpha(t))}{\Gamma(1-\alpha(s)-\alpha(t))}
$$
 (1)

and write for the isospin-1 $\pi \pi$ scattering amplitud

(iii)

and
 $A^1(s,t,u) = V(s,t) - V(s,u)$.

$$
A^{1}(s,t,u) = V(s,t) - V(s,u).
$$
 (2)

Here $\alpha(s)$ is the ρ - f^0 exchange-degenerate trajectory and

$$
\alpha(s) = as + b \,, \quad a > 0. \tag{3}
$$

^{*} Work supported in part by U. S. Atomic Energy Commission is assumed to have a linear form: under Contract No. AEC AT(11-1) 34 P107A.

any ⁴ J. Shapiro and J. Yellin, LRL Report No. 18500 (unpublished).

if ⁵ F. Drago and S. Matsuda, Phys. Rev. 181, 2095 (1969);

D. Sivers and J. Yellin, Ann. Phys. (N. Y.) **55**, 107 (1969).

The partial-wave projection of $A^1(s,t,u)$ for physical l values can be written⁶

$$
V_l(s) = \gamma \frac{\alpha(s)}{aq^2} \sum_{n=0}^{\infty} \frac{\Gamma(n+\alpha(s)+1)}{n!\Gamma(\alpha(s)+1)} Q_l\left(1+\frac{n+1-b}{2aq^2}\right),
$$

$$
l > \text{Re}\alpha(s). \quad (4)
$$

For $b < 1$, this expression is an analytic function of s with a left-hand cut (LHC) starting at $s = s_L = 4m_z²$ $+(b-1)/a$ and a series of branch points on the cut at $s_L - (n-1)/a$ for $n = 1, 2, ...$

The discontinuity across the cut is given by

$$
\text{disc } V_l(s) = \frac{1}{2} \pi \gamma \frac{\alpha(s)}{aq^2} \sum_{n=0}^p \frac{\Gamma(n+\alpha(s)+1)}{n! \Gamma(\alpha(s)+1)} \times P_l \left(1 + \frac{n+1-b}{2aq^2}\right), \quad s \le s_L \quad (5)
$$

where ρ is the largest integer less than or equal to $b-1-4aq^2$. Because p is a step function of s, disc $V_l(s)$ may be discontinuous at the branch points of Eq. (4) . For all other values of s on the left-hand cut, disc $V_l(s)$ and its derivatives are defined and continuous. A typical graph of disc $V_l(s)$ is shown in Fig. 1 .

Our primary objective is to place an asymptotic bound on the behavior of disc $V_i(s)$ as $s \to -\infty$. This is conveniently done by rewriting (5) in terms of an infinite series. In Appendix A we show that

$$
\sum_{n=0}^{\infty} \frac{\Gamma(n+\alpha(s)+1)}{n!\Gamma(\alpha(s)+1)} n^k = 0 \quad \text{if} \quad \alpha(s) < -1-k \tag{6}
$$

for all non-negative integers k . Since the Legendre function $P_l(1+(n+1-b)/2aq^2)$ can be expanded in powers of $1+(1-b)/2aq^2$ and $n/2aq^2$, (5) becomes

$$
\text{disc } V_l(s) = -\frac{1}{2}\pi\gamma \frac{\alpha(s)}{aq^2} \sum_{n=p+1}^{\infty} \frac{\Gamma(n+\alpha(s)+1)}{n!\Gamma(\alpha(s)+1)} \times P_l\left(1+\frac{n+1-b}{2aq^2}\right), \quad s \le s_L \quad (7)
$$

which converges (absolutely) for $\alpha(s) < -1-l$. Using the relation $\Gamma(z)\Gamma(1-z) = \pi/\sin \pi z$, this equation may be rewritten in the form

disc
$$
V_l(s) = \frac{1}{2}\gamma \frac{\alpha(s)}{aq^2} \sin \pi \alpha(s) \Gamma(-\alpha(s))
$$

 $\times \sum_{n=p+1}^{\infty} \frac{\Gamma(n+\alpha(s)+1)}{\Gamma(n+1)} P_l\left(1+\frac{n+1-b}{2aq^2}\right), \quad s \leq s_L.$ (8)

⁶ D. I. Fivel and P. K. Mitter, Phys. Rev. 183, 1240 (1969).

FIG. 1. Discontinuity across the left-hand cut of $V_1^1(s)$. In this graph $b=\frac{1}{2}$, $a=1$ BeV⁻², $m_{\pi}=0$, and $\gamma=0.5$.

From this expression, we see that, in general, disc $V_l(s)$ is an oscillating function of s with an infinite number of zeros on the real s axis. For $2b+4am_{\pi}² > 0$ and $\alpha(s) \leq -2 - l$, there are zeros at $\alpha(s) = -2 - l$, $-3-l$, $-4-l$, ..., and these are unique. In addition, there will be a finite number of zeros for $\alpha(s_L) > \alpha(s)$ $>-2-l$. When $2b+4am_{\pi}²<0$, the position of zeros of disc $V_l(s)$ is not obviously determined from Eq. (8), since the zeros of $\sin \pi \alpha$ are cancelled by $\Gamma(n+\alpha(s)+1)$.

Expanding $P_l(1+(n+1-b)/2aq^2)$ in powers of $n/2aq^2$, we observe that the asymptotic behavior of (8) as $s \rightarrow -\infty$ is controlled by terms of the form

$$
\sin \pi \alpha(s) \Gamma(-\alpha(s)) \sum_{n=p+1}^{\infty} \frac{\Gamma(n+\alpha(s)+1)}{\Gamma(n+1)} {\binom{n}{s}},
$$

with $0 \le k \le l$. (9)

From the definition of p , there exists a number ζ , $0 \le \zeta < 1$, such that $as = b + 4am^2 - 1 - p - \zeta$. Rewriting (9) in terms of p and ζ , we obtain

$$
M(p) \sin \pi (2b + 4am_{\pi}^{2} + 1 - \zeta) \frac{\Gamma(1 - 2b - 4am_{\pi}^{2} + p + \zeta)}{p^{k}}
$$

$$
\times \sum_{n=p+1}^{\infty} \frac{\Gamma(n+2b + 4am_{\pi}^{2} - p - \zeta)}{\Gamma(n+1)} n^{k}, \quad 0 \le k \le l \qquad (10)
$$

where $M(p)$ is bounded as $p \rightarrow +\infty$. An analysis in Appendix B shows that Eq. (10) is bounded by $p^{-(1+2b+4a m_{\pi}^2-\zeta)}$ as $p \to +\infty$. Therefore, to leading order in p, disc $V_l(s)$ is also bounded by $p^{-(1+2b+4a m_\pi^2-\zeta)}$. We may conclude that for any positive real number δ

 $s^{2b+4a m_{\pi}^2-\delta}$ disc $V_l(s)|_{\text{LHC}} \to 0$ as $s \to -\infty$. (11)

In the case $2b+4am_r^2>0$, disc $V_l(s) \rightarrow 0$ as $s \rightarrow -\infty$.

III. ASYMPTOTIC BEHAVIOR OF PARTIAL-WAVE AMPLITUDE

In order to study the asymptotic properties of $V_l(s)$, we construct a formula⁵ from Eq. (4) which is defined in the entire complex s plane:

$$
V_l(s) = -\gamma \frac{(aq^2)^l}{l!} (-1)^l \Gamma(1-\alpha(s)) \int_{-1}^1 dt (1-t^2)^l
$$

$$
\times \frac{\partial^l}{\partial \epsilon^l} \frac{\Gamma(\epsilon+2q^2 a(t+1))}{\Gamma(-\alpha(s) + \epsilon + 2q^2 a(t+1))} \Big|_{\epsilon=1-b} . \quad (12)
$$

For $b < 1$ this formula has poles on the positive real s axis and has a LHC. The properties of the LHC and corresponding branch points have already been discussed on the basis of Eq. (4). $V_l(s)$ is a holomorphic function in any domain not containing the real s axis. In studying the asymptotic properties of $V_l(s)$, we will assume $b < 1$ and Ims $\neq 0$ as $|s| \to \infty$.

In (12) we eliminate aq^2 in terms of α and make the substitution $t=2r-1$ on the integral. Then defining a constant $c = b + 4am_r^2$, we may write the amplitude as a function of α as follows:

$$
V_l(\alpha) = -\frac{2\gamma(-1)^l}{l!} \int_0^1 \frac{\partial^l K_l(\alpha, r, \epsilon)}{\partial \epsilon^l} \bigg|_{\epsilon = 1 - b} dr, \quad (13)
$$

where

$$
K_l(\alpha, r, \epsilon) = r^l (1-r)^l (\alpha - c)^l \frac{\Gamma(1-\alpha)\Gamma(\epsilon - rc + r\alpha)}{\Gamma(\epsilon - rc - (1-r)\alpha)}.
$$
 (14)

Our study of $V_l(\alpha)$ as $|\alpha| \to \infty$ will be based on the asymptotic properties of the integrand of (13). For an arbitrary complex constant a , we use the standard formula

$$
\ln\Gamma(z+a) \to (z+a-\frac{1}{2}) \ln z - z + \frac{1}{2} \ln 2\pi + O(1/z),
$$

$$
|\arg z| < \pi
$$
 (15)

to expand the Γ functions of (14). Regardless of the magnitude of α , there will always be regions near $r=0$ and $r=1$ in the integral of (13) for which $|r\alpha|$ and $|(1-r)\alpha|$ are small or zero. Hence the expansion formula (15) will not be applicable to all three Γ functions of (14) near $r=0$ or $r=1$. It is therefore convenient to divide the region of integration into three parts: a region near $r=0$, a region where $|r\alpha|$ and $|(1-r)\alpha| \rightarrow \infty$ as $|\alpha| \rightarrow \infty$, and a region near $r=1$. We choose a number η with the property $0 < \eta < 1$ and write

$$
\int_{0}^{1} \frac{\partial^{l} K_{l}}{\partial \epsilon^{l}} dr = \int_{0}^{|\alpha|-\eta} \frac{\partial^{l} K_{l}}{\partial \epsilon^{l}} + \int_{|\alpha|^{-\eta}}^{1-|\alpha|-\eta} \frac{\partial^{l} K_{l}}{\partial \epsilon^{l}} dr + \int_{1-|\alpha|^{-\eta}}^{1} \frac{\partial^{l} K_{l}}{\partial \epsilon^{l}} dr.
$$
 (16)

Consider the integral of $\partial^l K_l/\partial \epsilon^l$ from $|\alpha|^{-\eta}$ to $1-|\alpha|^{-\eta}$. For all r in the region of integration, $|\eta \alpha|$ and $|(1-r)\alpha| \rightarrow \infty$ as $|\alpha| \rightarrow \infty$ and

$$
\ln \left| \frac{\partial^l K_l}{\partial \epsilon^l} \right| \to \text{Re}\alpha[r \ln r + (1-r) \ln(1-r)] - r\pi |\text{Im}\alpha| \tag{17}
$$

to leading order in α . When Re α is bounded from below, (17) shows that $\partial^l K_l/\partial \epsilon^l$ decreases exponentially to zero as $|\alpha| \to \infty$. In this case the second integral of (16) must go to zero exponentially as $|\alpha| \to \infty$.

When $\text{Re}\alpha \rightarrow -\infty$ as $|s| \rightarrow \infty$, $\partial^l K_l / \partial \epsilon^l$ diverges exponentially provided $\text{Im}\alpha$ does not go to infinity too fast. Then for infinitely many r in the region of integration of (13), the integrand diverges as $\text{Re}\alpha \rightarrow -\infty$. However, because there is cancellation of positive and negative values of the integrand, the integral itself may not blow up.

Our study of the asymptotic properties of $V_l(s)$ will be divided into two parts depending on whether $\text{Re}\alpha \rightarrow -\infty$. We begin by assuming that $\text{Re}\alpha$ is bounded from below. From (17) it follows that

$$
\int_{|\alpha|^{-\eta}}^{\alpha-|\alpha|^{-\eta}} \frac{\partial^l K_l}{\partial \epsilon^l} dr \to 0 \text{ (exponentially) as } |\alpha| \to \infty
$$

if Re $\alpha \to \infty$. (18)

We consider the integral of $\partial^l K_l/\partial \epsilon^l$ with respect to r from $r=0$ to $r=|\alpha|^{-\eta}$. Any point r in the region of integration must approach zero as $|\alpha| \to \infty$. The quantity $|\alpha r|$ can approach infinity or remain bounded as $|\alpha| \to \infty$ and the asymptotic behavior of $\partial^l K_l/\partial \epsilon^l$ to leading order in α is given by

$$
\ln \left| \frac{\partial^l K_l}{\partial \epsilon^l} \right| \to \text{Re}\alpha[r \ln r + (1-r) \ln(1-r)] - r\pi |\text{Im}\alpha|
$$

+(1-\epsilon) \ln |\alpha| if $|r\alpha| \to \infty$ (19)
 $\to l \ln |r\alpha| + (1-\epsilon-r \text{ Re}\alpha) \ln |\alpha|$
if $|r\alpha|$ is bounded. (20)

Because Re α is bounded from below as $|\alpha| \to \infty$, the most divergent behavior possible for $\left|\frac{\partial^l K_l}{\partial \epsilon^l}\right|$ for all r in the region $0 \leq r \leq |\alpha|^{-\eta}$ is $G(\alpha) |\alpha|^{1-\epsilon}$, where $G(\alpha)$ has the property $\ln |G(\alpha)| / \ln |\alpha| \to 0$ as $|\alpha| \to \infty$. Thus we can write

$$
\left| \int_0^{|\alpha|-\eta} \frac{\partial^l K_l}{\partial \epsilon^l} dr \right| \leq \int_0^{|\alpha|-\eta} \left| \frac{\partial^l K_l}{\partial \epsilon^l} \right| dr \leq |G(\alpha)| |\alpha|^{b-\eta}.
$$
 (21)

For any real number $\delta > 0$, we may choose an η such that $1-\delta \lt \eta \lt 1$, and therefore from (21)

$$
|\alpha|^{1-b-\delta} \int_0^{|\alpha|-\eta} \frac{\partial^l K_l}{\partial \epsilon^l} dr \to 0
$$

as $|\alpha| \to \infty$ if $\text{Re}\alpha \to -\infty$. (22)

For r in the region $1 - |\alpha|^{-\eta} \le r \le 1$, $|(1 - r)\alpha|$ will either approach infinity or remain bounded as $|\alpha| \rightarrow \infty$. When $|(1-r)\alpha| \rightarrow \infty$ as $|\alpha| \rightarrow \infty$, Eq. (17) may be used to show that $\partial^l K_l / \partial \epsilon^l$ approaches zero exponentially if $\text{Re}\alpha \rightarrow -\infty$. When $|(1-r)\alpha|$ is bounded as $|\alpha| \rightarrow \infty$, we obtain

$$
\ln \left| \frac{\partial^l K_l}{\partial \epsilon^l} \right| \to l \ln |(1 - r)\alpha| + \left[\epsilon - c - (1 - r) \text{ Re}\alpha \right] \ln |\alpha| - \pi |\text{ Im}\alpha| \quad (23)
$$

to leading order in α . Then provided Re $\alpha \rightarrow -\infty$, the most divergent behavior of $\partial^l K_l/\partial \epsilon^l$ as $|\alpha| \to \infty$ is $\bar{G}(\alpha)|\alpha| \leftarrow c$, where $\ln |\bar{G}(\alpha)|/ \ln |\alpha| \rightarrow 0$ as $|\alpha| \rightarrow \infty$. If $|\text{Im}\alpha/\text{ln}\alpha| \to \infty$ as $|\alpha| \to \infty$, $\partial^l K_l/\partial \epsilon^l$ goes to zero regardless of the value of $\epsilon-c$. Yet when Ima is bounded as $|\alpha| \to \infty$, $\partial^l K_l / \partial \epsilon^l$ can blow up if $\epsilon - c > 0$.

To obtain an asymptotic bound on the integral of $\partial^l K_l/\partial \epsilon^l$ from $r=1-|\alpha|^{-\eta}$ to $r=1$, we write

$$
\int_{1-|\alpha|^{-\eta}}^{1} \left| \frac{\partial^l K_l}{\partial \epsilon^l} \right| dr \leq |\bar{G}(\alpha)| |\alpha|^{1-\sigma-\eta}, \quad \text{Re}\alpha \to -\infty. \quad (24)
$$

For any $\delta > 0$, η can be chosen such that $1-\delta < \eta < 1$ and we obtain

$$
|\alpha|^{2b+4am\pi^2-\eta} \int_{1-|\alpha|^{-\eta}}^1 \frac{\partial^l K_l}{\partial \epsilon^l} dr \to 0 \tag{25}
$$

as $|\alpha| \to \infty$ if Re $\alpha \to -\infty$. The integral of (25) will approach zero as $|\alpha| \rightarrow \infty$ even when $2b + 4am_{\pi}² < 0$ provided that $|\text{Im}\alpha/\text{ln}\alpha| \to \infty$ as $|\alpha| \to \infty$.

The asymptotic behavior of $V_l(\alpha)$ can now be determined. We define a number x to be the minimum of $1-b$ and $2b+4am^2$. Combining (13), (16), (18), (22), and (25), for $b < 1$ we have shown that for any number $\delta > 0$

$$
s^{x-\delta}V_l(s) \to 0\,,\tag{26}
$$

$$
s^{1-b-\delta}V_l(s) \to 0 \quad \text{if} \quad |\text{Im} s/\text{ln} s| \to \infty \tag{27}
$$

as $|s| \to \infty$ if Res $\to -\infty$ and Ims $\neq 0$. In Appendix C we show that this theorem is exactly true even when $\text{Res} \rightarrow -\infty \text{ as } |s| \rightarrow \infty$.

IV. PARTIAL-WAVE DISPERSION RELATIONS

In this section we assume for convenience that $-2am_\pi^2 < b < 1$. When this condition is satisfied, $V_l(s) \to 0$ as $|s| \to \infty$ and disc $V_l(s) \to 0$ as $s \to -\infty$. We perform an integral of $V_l(s')/(s'-s)$ over the contour shown in Fig. 2. The result is an unsubtracted partial-wave dispersion relation

$$
V_l(s) = \sum_{n=1}^{\infty} \frac{\beta_n^{(l)}}{s - s_n} + \frac{1}{\pi} \int_{-\infty}^{s_L} \frac{\text{disc } V_l(s')ds'}{s - s'}, \qquad (28)
$$

where $s_n = (n-b)/a$ and $\beta_n^{(l)}$ is the residue of $V_l(s)$ at $s = s_n$. When the ρ - f^0 trajectory is purely real and $b < 1$, the residues $\beta_n^{(l)}$ are zero whenever $l > n$. Hence a more concise representation for $V_l(s)$ can be written

$$
V_l(s) = \sum_{n=l}^{\infty} \frac{\beta_n^{(l)}}{s - s_n} + \frac{1}{\pi} \int_{-\infty}^{s_L} \frac{\text{disc } V_l(s') ds'}{s' - s}.
$$
 (29)

FIG. 2. Contour used to obtain Veneziano partial-wave dispersion relations.

Since $V_l(s)$ and the integral in (29) are well defined for all s, if Ims $\neq 0$, we conclude that the sum in (29) converges for all s provided that $\text{Im}s \neq 0$.

It can be shown directly that the sum in (29) converges. To do this we determine the asymptotic behavior of the residues. From the definition of $\beta_n^{(l)}$ and Eqs. (13) and (14) , we obtain

$$
\beta_n^{(l)} = \frac{2\gamma(-1)^{n+l+1}}{l!a\Gamma(n)} (n-c)^l \int_0^1 \frac{\partial^l}{\partial \epsilon^l} r^l (1-r)^l
$$

$$
\times \frac{\Gamma(\epsilon - rc + rn)}{\Gamma(\epsilon - rc - (1-r)n)} dr. \quad (30)
$$

The behavior of this equation as $n \rightarrow \infty$ follows easily by analogy to the analysis of Eqs. (13) and (14) . We define a parameter x to be the minimum of $1-b$ and $2b+4am^2$. Then for any $\delta > 0$

$$
n^{x-\delta}\beta_n^{(l)} \to 0
$$
 as $n \to \infty$ with l fixed. (31)

Since $1/(s-s_n)$ behaves as $1/n$ in the limit as $n \to \infty$, the sum in (29) converges if $x>0$. But $x>0$ is equivalent to $-2am_\pi^2 < b < 1$.

The partial widths of $\pi\pi$ resonances in the zerowidth approximation are related to $\beta_n^{(l)}$ by the formula

$$
\Gamma_n{}^{(l)} = -\beta_n{}^{(l)} / \sqrt{s_n} \quad \text{as} \quad n \to \infty \, . \tag{32}
$$

Combining (31) and (32) , for fixed *l* the result is

$$
n^{1/2+x-\delta}\Gamma_n^{(l)}\to 0 \quad \text{as} \quad n\to\infty.
$$

Therefore, for the standard ρ - f^0 trajectory, which has $a\simeq 1$ BeV⁻² and $b\simeq \frac{1}{2}$, the partial widths predicted by the Veneziano model must go to zero as fast as $1/s$ as $s \rightarrow \infty$.

The outstanding problem of the Veneziano model is its failure to satisfy unitarity. We suggest a method of unitarizing the Veneziano amplitude which uses the

 N/D equations.⁷ The N/D equations are derived in the standard way from a unitary amplitude with a right- and left-hand cut. Then the Veneziano amplitude may be used to obtain an input discontinuity across the LHC. From our results in Sec. II, disc $V_l(s)$ is an oscillating function which decreases to zero as $s \rightarrow -\infty$. Hence a unitary solution to the N/D equations can be obtained and we may look for a bootstrapped ρ meson in the output. In this way, one can determine how closely the Veneziano I.HC approximates the true LHC for $\pi\pi$ scattering.

ACKNOWLEDGMENT

We wish to thank Professor Richard J. Eden for discussions on this subject.

APPENDIX A

In this Appendix we prove the result stated in Sec, II, namely,

ely,
\n
$$
\sum_{n=0}^{\infty} \frac{\Gamma(n+\alpha(s)+1)}{n!\Gamma(\alpha(s)+1)} n^k = 0 \quad \text{if} \quad \alpha(s) < -1-k. \quad (A1)
$$

The proof is by induction. For $k=0$ we observe that

$$
\sum_{n=0}^{\infty} \frac{\Gamma(n+\alpha(s)+1)}{n!\Gamma(\alpha(s)+1)} = (1-x)^{-1-\alpha(s)}\Big|_{x=1} = 0
$$
\nif $\alpha(s) < -1$. (A2)

Now assume that (A1) is true for
$$
k=0, 1, 2, ..., l
$$
.
Since there exist constants $c_i(l)$ such that

$$
n^{l+1} = n(n-1)\cdots(n-l) + \sum_{i=1}^{l} c_i n^i, \tag{A3}
$$

we can write

$$
\sum_{n=0}^{\infty} \frac{\Gamma(n+\alpha(s)+1)}{n!\Gamma(\alpha(s)+1)} n^{l+1} = \sum_{n=l+1}^{\infty} \frac{\Gamma(n+\alpha(s)+1)}{\Gamma(n-l)\Gamma(\alpha(s)+1)}.
$$
 (A4)

The latter sum is equal to

$$
\left.\frac{\Gamma(l+\alpha(s)+2)}{\Gamma(\alpha(s)+1)}(1-x)^{-l-\alpha(s)-2}\right|_{x=1}=0
$$

if $\alpha(s) < -l-2$. (A5)

This completes the proof.

APPENDIX 8

We prove that Eq. (10) is bounded by $p^{-(1+2b+4a m\pi^2-\frac{1}{2})}$ as $p \rightarrow +\infty$. We do this by finding the asymptotic behavior of the sum in Eq. (10). When $1+2b+4am_{\pi}²$ $-\zeta \neq 0, -1, -2, \ldots$, the sum can be rewritten

$$
\frac{\Gamma(1+2b+4am_{\pi}^2-\zeta)}{p!} \Big[(p+1)^{k-1} + \sum_{n=1}^{\infty} \frac{(n+2b+4am_{\pi}^2-\zeta)\cdots(2+2b+4am_{\pi}^2-\zeta)(1+2b+4am_{\pi}^2-\zeta)}{(p+n)\cdots(p+2)(p+1)} (p+n+1)^{k-1} \Big]. \tag{B1}
$$

We choose an integer N with the property

$$
N \ge |1 + 2b + 4am_{\pi}^{2}| \quad \text{and} \quad N \ge |2b + 4am_{\pi}^{2}|.
$$

Then the magnitude of (B1) is bounded by

$$
\frac{(p+1)^{k-1}}{p!} + \frac{1}{(N-1)!} \sum_{n=1}^{\infty} \frac{(n+p+1)^{k-1}}{(n+N)(n+N+1)\cdots(n+p)}
$$
(B2)

to leading order in \dot{p} . In the case where $k=0$, the sum in $(B2)$ can be performed⁸ and $(B2)$ is equal to

$$
[p!(p-N+1)]^{-1}.
$$

For $k \ge 1$, $(n + p + 1)^{k-1}$ may be expanded by the formula

$$
(n+p+1)^{k-1} = \sum_{r=0}^{k-1} {k-1 \choose r} (n+N)^r (p-N+1)^{k-1-r}.
$$
\n(B3)

⁷ G. F. Chew and S. Mandelstam, Phys. Rev. 119, 467 (1960). ⁸ I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products (English translation) (Academic, New York, 1965). This leads to a new upper bound for (82):

$$
\frac{(p+1)^{k-1}}{p!} + \frac{1}{(N-1)!} \sum_{r=0}^{k-1} {k-1 \choose r} (p-N+1)^{k-1-r}
$$

$$
\times \sum_{n=1}^{\infty} \frac{1}{(n+N+r)\cdots(n+p+1)(n+p)}.
$$
 (B4)

The sum over *n* is calculated⁸ with the result that (B4) behaves as $p^{k-1}/p!$ to leading order in p .

When $2b + 4am_{\pi}^2 + 1 - \zeta$ is a nonpositive integer, $-m_{\pi}$ which occurs only if $2b+4am_{\pi}²<0$, the first $m+1$ terms of the sum in Eq. (10) have poles. The poles are multiplied by the zeros of the sine function and the series itself may be terminated after $m+1$ terms. The first term dominates asymptotically and behaves as $p^{k-1}/p!$.

We have shown that the product of the sine function and sum in Eq. (10) is bounded by $p^{k-1}/p!$ as $p \rightarrow +\infty$. It follows easily that Eq. (10) is bounded by $p^{-(1+2b+4a m_{\pi}^2-\zeta)}$

790

APPENDIX C

In this Appendix we prove the result stated in Sec. III in the case where $\text{Re}\alpha \rightarrow -\infty$. Expression (12) for $V_l(\alpha)$ may be replaced by another integral representation which allows us to study the asymptotic behavior of $V_l(\alpha)$ as $\text{Re}\alpha \rightarrow -\infty$. Fixing ϵ and α , we define a function $g(z)$ by

$$
g(z) = (1-z^2)^l \frac{\partial^l}{\partial \epsilon^l} \frac{\Gamma(\epsilon - \frac{1}{2}c + \frac{1}{2}\alpha + \frac{1}{2}z(\alpha - c))}{\Gamma(\epsilon - \frac{1}{2}c - \frac{1}{2}\alpha + \frac{1}{2}z(\alpha - c))}\Big|_{\epsilon = 1-b}, \quad (C1)
$$

and from (12) note that

$$
V_{l}(\alpha) = -\gamma \frac{(\alpha - c)^{l}}{4^{l}l!} (-1)^{l} \Gamma(1 - \alpha) \int_{-1}^{1} g(t)dt.
$$
 (C2)

We compute the integral of $g(z)$ in the complex z plane over the closed contour shown in Fig. 3. $g(z)$ is a meromorphic function and has no poles inside or on the contour of integration, provided that $b < 1$ and Ima<0. In what follows we assume that Ima $\lt 0$, in which case the integral of $g(z)$ vanishes. Later the results are extended to the case where $\text{Im}\alpha$ > 0.

As the height R of C_3 approaches $+\infty$ (see Fig. 3), the integral of $g(z)$ along C_3 approaches zero, provided that Re $\alpha < -l$. The integrals along C_1 and C_2 converge absolutely if $\text{Re}\alpha < -1 - l$. Since these inequalities are satisfied in the limit as $\text{Re}\alpha \rightarrow -\infty$, we may write

$$
\int_{-1}^{1} g(t)dt = -\int_{C_1} g(z)dz - \int_{C_2} g(z)dz \text{ as } R \to +\infty. \text{ (C3)}
$$

A new representation of $V_l(\alpha)$ is obtained from (C2) and $(C3)$:

$$
V_{l}(\alpha) = \frac{-\gamma(-1)^{l}}{l!4^{l}} \left[\int_{0}^{\infty} \frac{\partial^{l} I_{l}(\alpha, y, \epsilon)}{\partial \epsilon^{l}} dy - \int_{0}^{\infty} \frac{\partial^{l} \bar{I}_{l}(\alpha, y, \epsilon)}{\partial \epsilon^{l}} dy \right], \quad (C4)
$$
with

$$
u(\alpha, y, \epsilon) = iy^{i}(y+2i)^{i}(\alpha - c)^{i}
$$

$$
\times \frac{\Gamma(1-\alpha)\Gamma(\epsilon + \frac{1}{2}iy(\alpha - c))}{\Gamma(\epsilon - c + (\frac{1}{2}iy - 1)(\alpha - c))}, \quad (C5)
$$

$$
\bar{I}_l(\alpha, y, \epsilon) = iy^l (y - 2i)^l (\alpha - c)^l
$$

$$
\times \frac{\Gamma(1 - \alpha) \Gamma(\epsilon + (\frac{1}{2}iy + 1)(\alpha - c))}{\Gamma(\epsilon - c + \frac{1}{2}iy(\alpha - c))}, \quad (C6)
$$

if $\text{Re}\alpha < -1 - l$ and $\text{Im}\alpha < 0$.

The asymptotic behavior of $V_l(\alpha)$ as $\text{Re}\alpha \rightarrow -\infty$ can be determined by an examination of the integrands of (C4) in the limit as $|\alpha| \rightarrow \infty$. Since the asymptotic behavior of these integrands will depend on the value

FIG. 3. Contour used in the analysis of $V_l(s)$ as Res $\rightarrow -\infty$.

of γ , it is convenient to divide each of the two integrals in $(C4)$ into three parts:

$$
\int_0^\infty \frac{\partial^l I_l}{\partial \epsilon^l} dy = \int_0^{|a|-\lambda} \frac{\partial^l I_l}{\partial \epsilon^l} dy + \int_{|a|-\lambda}^{|a|} \frac{\partial^l I_l}{\partial \epsilon^l} dy + \int_{|a|}^\infty \frac{\partial^l I_l}{\partial \epsilon^l} dy, \quad (C7)
$$

where λ is an arbitrary parameter which satisfies $0<\lambda<1$. The same relation can be written for \bar{I}_{l} .

We will now place asymptotic bounds on each of the integrals appearing in (C7) in the limit as $\text{Re}\alpha \rightarrow -\infty$. When y is in the region $|\alpha|^{-\lambda} \leq y \leq |\alpha|$, the asymptotic behavior of $\ln |\partial^l I_i/\partial \epsilon^l|$ to leading order is given by

$$
\ln \left| \frac{\partial^l I_l}{\partial \epsilon^l} \right| \to \text{Re}\alpha \left[\frac{1}{2} y \arg(1+2i/y) + \frac{1}{2} \ln(1+\frac{1}{4}y^2) \right]
$$

$$
+ \text{Im}\alpha \left[\frac{1}{4} y \ln(1+4/y^2) - \arg(1-\frac{1}{2}iy) \right]
$$
as $\text{Re}\alpha \to -\infty$. (C8)

The argument functions of (C8) are restricted to values less than π by (15). When Ima < 0 and Rea $\rightarrow -\infty$, this expression for $\ln |\partial^l I_l/\partial \epsilon^l|$ approaches $-\infty$ as $|\alpha| \to \infty$. More precisely, there exist positive numbers M and \overline{M} and a function $H(\alpha)$ such that for all y in the interval $|\alpha|^{-\lambda} \leq y \leq |\alpha|$

$$
\left|\frac{\partial^{i}I_{i}}{\partial\epsilon^{i}}\right| \leq H(\alpha)\exp(M\operatorname{Re}\alpha|\alpha|^{-\lambda} + \bar{M}\operatorname{Im}\alpha|\alpha|^{-\lambda}), \quad \text{(C9)}
$$

where $\ln |H(\alpha)|/(M \operatorname{Re}\alpha |\alpha|^{-\lambda} + \overline{M} \operatorname{Im}\alpha |\alpha|^{-\lambda}) \to 0$ as $|\alpha| \rightarrow \infty$. Therefore,

$$
\left| \int_{|\alpha|^{-\lambda}}^{|\alpha|} \frac{\partial^l I_l}{\partial \epsilon^l} dy \right| \le H(\alpha) \exp(M \operatorname{Re}\alpha |\alpha|^{-\lambda} + \overline{M} \operatorname{Im}\alpha |\alpha|^{-\lambda}) \times \left[|\alpha| - |\alpha|^{-\lambda} \right]. \tag{C10}
$$

We conclude that the integral of $\partial^l I_l/\partial \epsilon^l$ from $|\alpha|^{-\lambda}$ to $|\alpha|$ decreases exponentially to zero as $|\alpha| \rightarrow \infty$ when $\text{Re}\alpha \rightarrow -\infty$ and $\text{Im}\alpha < 0$.

For $y \geq |\alpha|$, the asymptotic behavior of $\partial^l I_i/\partial \epsilon^l$ to leading order is given by

$$
\ln \left| \frac{\partial^l I_l}{\partial \epsilon^l} \right| \to (\text{Re}\alpha + l) \ln y + \frac{1}{2}\pi \text{Im}\alpha. \tag{C11}
$$

We may use this equation to write

$$
\left| \int_{|\alpha|}^{\infty} \frac{\partial^{l} I_{l}}{\partial \epsilon^{l}} dy \right| \leq \bar{H}(\alpha) e^{(\pi/2) \operatorname{Im} \alpha} \int_{|\alpha|}^{\infty} y^{\operatorname{Re} \alpha + l} dy, \quad (C12)
$$

where

$$
\ln |\bar{H}(\alpha)| / [\frac{1}{2}\pi \operatorname{Im} \alpha + (\operatorname{Re} \alpha + l) \ln y] \to 0 \text{ as } |\alpha| \to \infty.
$$

For Im α <0 and Re $\alpha \rightarrow -\infty$, this integral goes to zero exponentially.

Consider the integral of $\partial^l I_l/\partial \epsilon^l$ from 0 to $|\alpha|^{-\lambda}$. For y in this range, $|\alpha y|$ can approach infinity or remain bounded as $|\alpha| \to \infty$. The asymptotic behavior of $\ln |\partial^l I_i/\partial \epsilon^l|$ when $|\alpha y| \to \infty$ is given by the right-hand side of (C8) plus the quantity $(1-\epsilon) \ln |\alpha|$. When αy remains bounded as $|\alpha| \to \infty$, we obtain

$$
\left|\frac{\partial^l I_l}{\partial \epsilon^l}\right| \to |\alpha y|^l |\alpha|^{1-\epsilon+y/2 \text{ Im}\alpha} \quad \text{for} \quad \text{Im}\alpha < 0. \quad \text{(C13)}
$$

We conclude that the most divergent behavior of $\partial^l I_l/\partial \epsilon^l$ for y in the region $0 \leq y \leq |\alpha|^{-\lambda}$ is $|\alpha|^b$. Hence for any constant $\delta > 0$

$$
|\alpha|^{1-b-\delta} \int_0^{|\alpha|-\lambda} \frac{\partial^l I_l}{\partial \epsilon^l} dy \to 0.
$$
 (C14)

In the limit as $\text{Re}\alpha \rightarrow -\infty$ with $\text{Im}\alpha < 0$, we have shown that for any number $\delta > 0$

$$
\alpha^{1-b-\delta} \int_0^\infty \frac{\partial^l I_l(\alpha, y, \epsilon)}{\partial \epsilon^l} dy \to 0. \tag{C15}
$$

We now determine the conditions under which the integral of $\partial^i \bar{I}_l / \partial \epsilon^l$ goes to zero as $|\alpha| \to \infty$. For y in the region $|\alpha|^{-\lambda} \leq y \leq |\alpha|$, the expansion of $\ln |\partial^i I_i/\partial \epsilon^i|$ to leading order in α becomes

$$
\ln \left| \frac{\partial^i \bar{I}_l}{\partial \epsilon^i} \right| \to \text{Re}\alpha \left[\frac{1}{2} y \arg(1+2i/y) + \frac{1}{2} \ln(1+\frac{1}{4}y^2) \right]
$$

$$
+ \text{Im}\alpha \left[-\arg(-1-\frac{1}{2}iy) - \frac{1}{4} y \ln(1+4/y^2) \right] \quad (C16)
$$

as $|\alpha| \to \infty$ if Im $\alpha < 0$ and Re $\alpha \to -\infty$. If $y \ge |\alpha|$, it son (private communication).

follows that

$$
\ln \left| \frac{\partial^l \bar{I}_l}{\partial \epsilon^l} \right| \to (\text{Re}\alpha + l) \ln y + \frac{1}{2}\pi \text{Im}\alpha \qquad (C17)
$$

as $\text{Re}\alpha \rightarrow -\infty$ with $\text{Im}\alpha < 0$. Arguments similar to those used to prove $(C10)$ and $(C12)$ were zero as $|\alpha| \rightarrow \infty$ can now be used to show that

$$
\int_{|\alpha|^{-\lambda}}^{\infty} \frac{\partial^i \bar{I}_l}{\partial \epsilon^l} dy \to 0 \text{ (exponentially)}, \qquad \text{(C18)}
$$

where $\text{Re}\alpha \rightarrow -\infty$ and $\text{Im}\alpha < 0$.

For $0 \le y \le |\alpha|^{-\lambda}$, $|\alpha y|$ approaches infinity or remains bounded as $|\alpha| \to \infty$. Formula (C16) plus $(\epsilon - c) \ln |\alpha|$ gives the asymptotic behavior of $\partial^i \overline{I}_i / \partial \epsilon^i$ as $|\alpha| \to \infty$ and $|\alpha y| \to \infty$. When $|\alpha y|$ is bounded as $|\alpha| \to \infty$, we obtain to leading order in α

$$
\ln \left| \frac{\partial^i \bar{I}_l}{\partial \epsilon^l} \right| \to (\epsilon - c) \ln |\alpha| + \text{Im}\alpha(\pi - \frac{1}{2}y \ln |\alpha|) + l \ln |\alpha y| \,. \tag{C19}
$$

If $|\text{Im}\alpha/\text{ln}\alpha| \to \infty$ as $|\alpha| \to \infty$ with $|\alpha y|$ bounded, $\partial^l \bar{I}_l / \partial \epsilon^l$ approaches zero exponentially. In general, the most divergent behavior of $\partial^l \bar{I}_l / \partial \epsilon_l$ is $|\alpha|^{(-c)}$. These results and Eq. $(C18)$ can be combined to show that as $\text{Re}\alpha \rightarrow -\infty$ with $\text{Im}\alpha < 0$

$$
\int_0^\infty \frac{\partial^l \bar{I}_l}{\partial \epsilon^l} dy \to 0 \text{ (exponentially)} \tag{C20}
$$

if $|\text{Im}\alpha/\text{ln}\alpha| \rightarrow \infty$, and

$$
\alpha^{2b+4am\pi^2-\delta} \int_0^\infty \frac{\partial^l \bar{I}_l}{\partial \epsilon^l} dy \to 0, \qquad (C21)
$$

where δ is any positive number.

Based on Eqs. $(C4)$, $(C15)$, $(C20)$, and $(C21)$, we have extended the result stated in Sec. III to the case of $\text{Re}\alpha \rightarrow -\infty$ and $\text{Im}\alpha < 0$.

The representation (12) has the property $V_l(\alpha)$ $=V_i^*(\alpha^*)$. This means that $|V_i(\alpha)|$ and $|V_i(\alpha^*)|$ have the same properties as $|\alpha| \rightarrow \infty$ and the conclusions obtained in this Appendix apply equally well in the case where $\text{Im}\alpha > 0$.

Note added in proof. The formula which we have derived for $\pi\pi$ partial widths was also obtained by Sivers and Yellin.⁵ The asymptotic and oscillatory behavior of disc $V_l(s)$ has been studied independently by Atkinson with conclusions similar to our own [D. Atkin-