PHYSICAL REVIEW D

VOLUME 2,

15 AUGUST 1970

NUMBER 4

Dispersion Relations and Asymptotic Behavior of the Veneziano
Partial-Wave Amplitude in the Complex s Plane*

RoBERT T'. PARK AND BiriN R. DESAT
Department of Plysics, University of California, Riverside, California 92502
(Received 4 May 1970)

The asymptotic behavior of the Veneziano partial-wave 7 =1 amplitude V;(s) for == scattering is studied

in the complex s plane for physical ! values. The p-f° exchange-degenerate trajectory

is of the

form a(s) =as+b. For <1 and 3b+4am.>>1, it is shown that, asymptotically, Vi(s)~o(s*"1). Under the
same conditions, the resonance partial widths for fixed / have the property I'sg~o0 (s*~*?). The discontinuity
of Vy(s) across the left-hand cut oscillates, and if b <1, then, asymptotically, disc V;(s)~o (s~%~%ms%)_In the
case —2am.2<b<1,disc Vi(s) > 0ass — — o and Vi(s) — 0 as |s|— « and V;(s) can be written in the
form of unsubtracted partial-wave dispersion relations, i.e.,as an integral along the left-hand cut plus the sum
of an infinite number of poles along the right-hand real axis. Thus for the particular case of the p-trajectory
(b=~%, a=1 BeV~?), an unsubtracted dispersion relation can be written.

I. INTRODUCTION

SIMPLE representation for the scattering ampli-

tude which meets the requirements of Regge
asymptotic behavior and crossing symmetry and which
exhibits zero-width resonance poles has been introduced
by Veneziano.!

In this paper, we study the asymptotic properties
of the /=1 continued Veneziano-Lovelace? == partial-
wave amplitude in the complex s plane. Although the
analysis is limited to 7= scattering, the methods used
should be applied easily to other Veneziano-type
amplitudes.

In Sec. IT the formalism is developed. We assume
that the exchange degenerate p-f° trajectory is linear
and given by a(s)=as-+b. The analysis is carried out
for & <1, since 6> 1 violates the Froissart-Gribov bound
and b=1 corresponds to the Pomeranchuk trajectory.
We first consider the discontinuity across the left-hand
cut. We show that disc Vi(s)~o (s—20—%m=?) a5 5 — — o0 .3
In the special case of the p meson where b~% and a~1
BeV—2, disc V,(s) goes to zero faster than 1/s along the
left-hand cut. If 2b+44am,*>0, disc Vi(s)— 0 as
§— — 0,

In Sec. ITI we examine the asymptotic behavior of the
partial-wave amplitude in the complex s plane. Our
results are conveniently expressed in terms of a param-
eter x, which is defined to be the minimum of 1—5 and
2b+4am,* For b<1 and § any positive number, it is
shown that (i) V,(s)— 0 as |s| — « provided that
Ims=#0 and 2b+4am,>>0; (i) V,(s)~o(s*) if 3b
+4am,*>1 or if |Ims/lns| — o as |s| — «; (iii)
s*7Y(s) — 0 as |s| — o if Imss%0. When b=1% and
a=1BeV~2 this reduces to V;(s)~o(1/+/s) as | s| — .

* Work supported in part by U. S. Atomic Energy Commission
under Contract No. AEC AT(11-1) 34 P107A.

1 G. Veneziano, Nuovo Cimento 57A, 190 (1968).

2 C. Lovelace, Phys. Letters 28B, 264 (1968).

3The asymptotic relation f(x)~o(x*) means that, for any
positive number 8, [(x)x™* % — 0 as x —w. Ior example, if
[(x) = x¢/Inx as ¥ — 0, then f(x)~o(x).

2

Part of the proof of this theorem is given in Appendix
C. It is interesting to note that the condition 36+44am.?
>1 is just the result found by Shapiro and Yellin?
in order to guarantee positivity of the resonance
widths of the first daughter trajectory.

In Sec. IV the asymptotic behavior of wr partial
widths is studied. For fixed / we find that I'sp~
o(sg~*12), where the parameter x has been specified
above. When 3b+4am,?>1, a more concise formula is
Tsp~o(sg®3?).

We show that partial-wave dispersion relations can be
obtained for the /=1 Veneziano amplitude when < 1.
It will be necessary to make subtractions if 2b-4-4am.?
<0. This result disagrees with Drago and Matsuda,’
who suggested without proof that partial-wave disper-
sion relations could not be used, and also with Sivers
and Yellin.® For 7=0 or /=2, the presence of a V ({,u)
term in the amplitude causes disc V;(s) to diverge expo-
nentially as s — — « and partial-wave dispersion rela-
tions are not valid.

We propose a method for obtaining a unitary =r
scattering amplitude from the Veneziano model.

II. DISCONTINUITY ACROSS LEFT-HAND CUT
We define the amplitude V (s,f)

I'(1—a(s))T(1—a(0)

Vis,)=— (1)
TP —a(s)—a()
and write for the isospin-1 77 scattering amplitude
A (stu) =V (s,t) —V (s,u). 2)

Here a(s) is the p- f* exchange-degenerate trajectory and
is assumed to have a linear form:
a(s)=as+b, a>0. (3)
4 J. Shapiro and J. Yellin, LRL Report No. 18500 (unpublished).
5I°. Drago and S. Matsuda, Phys. Rev. 181, 2095 (1969);
D. Sivers and J. Yellin, Ann. Phys. (N. Y.) 55, 107 (1969).
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2 DISPERSION RELATIONS

The partial-wave projection of A'(s,l,u) for physical
! values can be written®

a(s) » I'(nta(s)+1) (
1

Vi(s) =~ l
() ag? »=0 n!l(a(s)+1)

n—i—l——b)
2ag*
I>Rea(s). (4)

For <1, this expression is an analytic function of s
with a left-hand cut (LHC) starting at s=s,=4m.?
+(b—1)/a and a series of branch points on the cut at
st—(m—1)/aforn=1,2, ....

The discontinuity across the cut is given by

a(s) » I'(n4a(s)+1)
ag? »=0 n!l'(a(s)+1)

n+1—>
><Pz<1+—

disc Vi(s) =Liny

2aa? )a SSSL (5)
aq

where p is the largest integer less than or equal to
b—1—4ag®. Because p is a step function of s, disc
Vi(s) may be discontinuous at the branch points of
Eq. (4). For all other values of s on the left-hand cut,
disc V,(s) and its derivatives are defined and con-
tinuous. A typical graph of disc V;(s) is shown in
Fig. 1.

Our primary objective is to place an asymptotic
bound on the behavior of disc V;(s) as s— — . This
is conveniently done by rewriting (5) in terms of an
infinite series. In Appendix A we show that

= T'(ntals)+1)

— n*=0
n=0 n!l(a(s)+1)

if a(s)<—1—k (6)

for all non-negative integers k. Since the Legendre
function Py(14(n41—0)/2a¢®) can be expanded in
powers of 1+4-(1—0)/2aq* and n/2aq?, (5) becomes

a(s) o T(n4als)+1)

disc Vi(s)=—3r
l : ’a(f n=p+1 n!0(a(s)+1)

n+1-—b

XP;(H— -

) s )
aq

which converges (absolutely) for a(s)<—1—1I. Using

the relation I'(z)I'(1—2)=m/sinwz, this equation may
be rewritten in the form

. als)
disc Vi(s) =%'y—2 sinra(s)T'(—a(s))

aq
w TI'(n+ +1 +1-=06
S _<_"_f%<~iL_2Pl<l D), e @
n=pt1  D'(n+41) 2aq?

¢ D. I. Fivel and P. K. Mitter, Phys. Rev. 183, 1240 (1969).
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I16. 1. Discontinuity across the left-hand cut of V;1(s). In this
graph b=3%, a=1 BeV™2 m,=0, and v=0.5.

From this expression, we see that, in general, disc
Vi(s) is an oscillating function of s with an infinite
number of zeros on the real s axis. For 2b+4am,2>0
and a(s) <—2—1, there are zeros at a(s)=—2—I,
—3—1, —4—I, ..., and these are unique. In addition,
there will be a finite number of zeros for a(sy)>a(s)
> —2—I[. When 2b+4am,%<0, the position of zeros of
disc V,(s) is not obviously determined from Eq. (8),
since the zeros of sinwa are cancelled by T'(n+a(s)+1).

Expanding P(14(n+1—b0)/2a¢®) in powers of
n/2aq?, we observe that the asymptotic behavior of
(8) as s — — o is controlled by terms of the form

sinra(s)I'(—a(s)) i

n=p+1

I'(n+a(s) —{—2(2)"
I'(n+1) s
with 0<k<I. (9)

From the definition of p, there exists a number {,
0<¢ < 1, such that as=b-+4am,2—1—p—¢. Rewriting
(9) in terms of p and ¢, we obtain

r(1—26—4am.*4p+¢)
Pk

M (p) sinw(2b+4am 2 +1—7)

w  T(n+42b+4am.2—p—i) .
I'(n+1)

where M (p) is bounded as p— 4. An analysis in
Appendix B shows that Eq. (10) is bounded by
p(H2bHam=8) 4 p—5 oo, Therefore, to leading order
in p, disc Vi(s) is also bounded by p—(H2bHem—1) We
may conclude that for any positive real number &

n=p+1

(11)
In the case 2b4-4am.>>0, disc V;(s) > 0 as s— — .

s2oHame=s disc V,(s) | Luc — 0 as s— —w.

III. ASYMPTOTIC BEHAVIOR OF
PARTIAL-WAVE AMPLITUDE

In order to study the asymptotic properties of V,(s),
we construct a formula® from Eq. (4) which is defined
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in the entire complex s plane:
1
di(1—13)t
-1

Vils) = —vf‘flg,l<—1>lr(1—a<s>)

Xi I'(e+2g%(t+1))
¢! T'(—a(s)+e+2¢%a(t+1))

For b<1 this formula has poles on the positive real s
axis and has a LHC. The properties of the LHC and
corresponding branch points have already been discus-
sed on the basis of Eq. (4). Vi(s) is a holomorphic
function in any domain not containing the real s axis.
In studying the asymptotic properties of V(s), we will
assume b<1 and Ims>£0 as |s| — .

In (12) we eliminate ag? in terms of a and make the
substitution £=2r—1 on the integral. Then defining a
constant ¢=>b-4am,?, we may write the amplitude as
a function of « as follows:

(12)

e=1—b

2y(—=1) 13K (a,r,e)
Vile)=— ( / ¢ dr, (13)
I 0 d¢ e=1-b
where
I'(1—a)T'(e—rc+ra)
Kifayr,e) =r'(1—r)"a—c)" (14)

I'(e—rc—(1—7)a) ’

Our study of V;(e) as |a] — « will be based on the
asymptotic properties of the integrand of (13). For an
arbitrary complex constant @, we use the standard
formula

InT'(34+4a) — (3+a—1%) Inz—z+3 In27+0(1/3),
largz| <= (15)

to expand the T functions of (14). Regardless of the
magnitude of @, there will always be regions near =0
and r=1 in the integral of (13) for which |ra| and
|(1=7)a| are small or zero. Hence the expansion
formula (15) will not be applicable to all three I’
functions of (14) near r=0 or r=1. It is therefore
convenient to divide the region of integration into three
parts: a region near r=0, a region where |ra| and
|(1—7)a| — » as |a| — «, and a region near r=1.
We choose a number 5 with the property 0<y<1 and
write

191K, lal=7 9L, 1=lal=1 gl
—dr= / —— / ——dr
o Oé 0 Jde lal ™" J€

1 9K,
—I—/ dr. (16)
1-]a|" O€

Consider the integral of 9'K,;/d¢ from |a|™ to
1—|a|™. For all » in the region of integration, |ra|
and | (1—7)a| — » as |a| — « and

K,

Py — Rea[7 Inr+(1—7) In(1—7) ]—rx | Ima| (17)
€

In
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to leading order in &. When Rea is bounded from below,
(17) shows that 9'K;/de! decreases exponentially to
zero as |a| — . In this case the second integral of
(16) must go to zero exponentially as |a| — .

When Rea— —o as |s| — o, 9'K,;/9¢ diverges
exponentially provided Ime does not go to infinity too
fast. Then for infinitely many 7 in the region of integra-
tion of (13), the integrand diverges as Rea— — .
However, because there is cancellation of positive and
negative values of the integrand, the integral itself
may not blow up.

Our study of the asymptotic properties of V;(s) will
be divided into two parts depending on whether
Rea— — o« . We begin by assuming that Rea is bounded
from below. From (17) it follows that

-lal™ U,
/ ~——dr — 0 (exponentially) as |a|—=
laj™" €

if Rea —oo. (18)

We consider the integral of 'K ,/d€' with respect to r
from 7=0 to r=|a|™. Any point 7 in the region of
integration must approach zero as |a|— «. The
quantity |ar| can approach infinity or remain bounded
as |a| — « and the asymptotic behavior of 3'K/de
to leading order in « is given by

K,
In|——| — Rea[7 Inr+(1—7) In(1 —7) ]—rr | Ima|
Jde
+(1—e) In|a| if |ra] 2w (19)
—lIn|ra|+(1—e—r Rea) In|e|
if |7a| is bounded. (20)

Because Rea is bounded from below as || — o, the
most divergent behavior possible for |9'K;/d¢!| for all
7 in the region 0<7<|a|™ is G(a)|a|'™, where G(a)
has the property In|G(a)|/In|a| —0 as |a| — .
Thus we can write

la|™n alKl Jef™n
[l
0 d¢ 0

For any real number >0, we may choose an 5 such
that 1—8<n<1, and therefore from (21)

|a|™n 6lKl
la‘1~b—6/ ——l—(lf"-)()
0

I'K;
J¢et

<G| |e|t . (21)

Jde

as |a| o if Read —o. (22)

For r in the region 1—|a|"<r<1, |(1—r)a| will
either approach infinity or remain bounded as |a| — .
When |(1—7)a| — © as |a] — «, Eq. (17) may be
used to show that 9'K;/d€' approaches zero exponent-
ially if Rea+> —w. When [(1—7r)a| is bounded as
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|a| — o, we obtain

'K

In — IIn|(1—7)a]

+[e—c—(1—7) Rea]In|a| —7| Ima|

de

(23)

to leading order in a. Then provided Rea +> — o, the
most divergent behavior of 9'K;/dé! as |a| — = is
G(a)|a|=, where In|G(a)|/In|a] — 0 as |a| — ». If
|Ima/Ina| — ® as |a| — «, 9'K;/det goes to zero
regardless of the value of e—c. Yet when Ime is bounded
as |a| — », 3'K;/d€ can blow up if e—¢>0.

To obtain an asymptotic bound on the integral of
'K ;/9€ from r=1—|a|™ to r=1, we write

l

/1 MK
1—|e| 7"

Jde

Har<|G@)] o], Reads —oo. (24)

For any 6>>0, 5 can be chosen such that 1—-6<n<1 and

we obtain
'K,
——dr—0

1
lal2b+4amﬂz—n/
1-lal”? O€

as |a| — o if Rea+ — . The integral of (25) will
approach zero as |a| — « even when 2b+4am,® <0
provided that |Ima/Ina| — « as |a] — .

The asymptotic behavior of Vi(a) can now be
determined. We define a number x to be the minimum
of 1—b and 2b+4am,%. Combining (13), (16), (18),
(22), and (25), for b<1 we have shown that for any
number 6>0

57 Vi(s) — 0, (26)
STV (s) = 0 if (27)

as |s| > » if Res+ — o and Ims>%0. In Appendix C
we show that this theorem is exactly true even when
Res— — o as [s] — o,

(25)

| Ims/Ins| — o

IV. PARTIAL-WAVE DISPERSION RELATIONS

In this section we assume for convenience that
—2am,*<b<1. When this condition is satisfied,
Vi(s)— 0 as |s| = « and disc V;(s) > 0as s— — oo,
We perform an integral of V,(s")/(s’—s) over the
contour shown in Fig. 2. The result is an unsubtracted
partial-wave dispersion relation

Vi(s)= 2

n=l1§—S8, T .J_p

w B,® 1/'“ disc Vi(s")ds’
s—s

where s,=(n—b)/a and 8,® is the residue of V,(s) at
s=s,. When the p-f° trajectory is purely real and
b<1, the residues 8,® are zero whenever />#. Hence
a more concise representation for V,;(s) can be written

b Bﬂ
Vi) =% —— - |

n=l§—g§, i

- (29)
o s'—s

w1 /u disc Vi(s")ds'

RELATIONS AND
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Im s'
A

—~—-vx~x~x~x~x~x~@‘€*4—’+°—°—0——> Re SI

F16. 2. Contour used to obtain Veneziano partial-wave
dispersion relations.

Since V,(s) and the integral in (29) are well defined for
all s, if Ims>20, we conclude that the sum in (29) con-
verges for all s provided that Imss0.

It can be shown directly that the sum in (29) con-
verges. To do this we determine the asymptotic behavior
of the residues. From the definition of 8, and Egs.
(13) and (14), we obtain

2,),(___1)n+l+l 1 (')l
Bn(l)= —'—“—-—""(W—C)l / ——71(1—7')1
l'(lF(ﬂ) 0 Jel
T'(e—rc+rn)

dr. (30
I'(e—rc—(1—7r)n) (30)

The behavior of this equation as #— o follows easily
by analogy to the analysis of Egs. (13) and (14).
We define a parameter x to be the minimum of 1—5
and 2b-+4am,% Then for any §>0

n=3, 0 —0 as n-— o

with [ fixed. (31)

Since 1/(s—s,) behaves as 1/x in the limit as n— «,
the sum in (29) converges if x>0. But >0 is equivalent
to —2am.2<b<1.

The partial widths of mx resonances in the zero-
width approximation are related to 8, by the formula

I,O=—-8,0//s, as (32)
Combining (31) and (32), for fixed / the result is

pilzte=sT (D 5 () as

n— o,

n— o,

Therefore, for the standard p-f° trajectory, which has
a~1 BeV~? and b~~%, the partial widths predicted by
the Veneziano model must go to zero as fast as 1/s as
s— .

The outstanding problem of the Veneziano model is
its failure to satisfy unitarity. We suggest a method of
unitarizing the Veneziano amplitude which uses the
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N/D equations.” The N/D equations are derived in
the standard way from a unitary amplitude with a
right- and left-hand cut. Then the Veneziano amplitude
may be used to obtain an input discontinuity across
the LHC. From our results in Sec. II, disc V;(s) is an
oscillating function which decreases to zero as s — — 0.
Hence a unitary solution to the N/D equations can be
obtained and we may look for a bootstrapped p meson
in the output. In this way, one can determine how
closely the Veneziano LHC approximates the true
LHC for mm scattering.
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APPENDIX A

In this Appendix we prove the result stated in Sec. IT,
namely,
w D(n+a(s)+1)

ﬂvﬂkzo

20 wID(a(s)+1)

The proof is by induction. For k=0 we observe that

i als)<—1—k. (A1)

w I'(n4a(s)+1)
. — = l_x)—l—a(s) :0
20 P +1) -
if a(s)<—1. (A2)
I'(1+2b+4am.2—¢)
G

PARK AND B. R.

n i (n42b+4am,2—¢)- - - (242b+4am,2—)(142b+4am2—¢)

DESAI 2

Now assume that (A1) is true for k=0, 1, 2, ..., L
Since there exist constants ¢;(/) such that

1
ntl=nn—1) - -(n—=0)+2 cnt, (A3)
i=1
we can write
o I'(n+a(s)+1 o I'(n+a(s)41)
———( )n’+1= > . (A4)
n=0 7L'F(a(s)+1) n={+1 I‘(n—-l)l‘(a(s)—f—l)
The latter sum is equal to
Mﬂ l_x)—l—a(s)—2 =0
I'(a(s)+1) =1
if a(s)<—I1-2. (AS)
This completes the proof.
APPENDIX B

We prove that Eq. (10) is bounded by p—(1+2btdams>=)
as p— +w. We do this by finding the asymptotic
behavior of the sum in Eq. (10). When 14-2b+4am.,*
—{#0, —1, —2, ..., the sum can be rewritten

i () - (p+2) (p+1)

We choose an integer N with the property

N2> |142b+4am,?| and N> |2b+4am.?|.
Then the magnitude of (B1) is bounded by
(G0 1 (n4-p+ 1)+

Pl (V=Dlam b VN1 (0p)
(B2)

to leading order in p. In the case where £=0, the sum
in (B2) can be performed® and (B2) is equal to

Co!(p—N+DT.
Fork>1, (n+p-+1)*"' may be expanded by the formula

—1
)(n—ia\')’(p—.\'—{—l)”‘l*’.
" (B3)
7 G. F. Chew and S. Mandelstam, Phys. Rev. 119, 467 (1960).

8 1. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series,
and Products (English translation) (Academic, New York, 1965).

k-1 sk
otp =

(P+n+1)’°*lil. (B1)

This leads to a new upper bound for (B2):

(p+1)%1! 1 k=1 k=1
=T
p! (N=1)!r=0

o 1
X3 .
3 At N4) - (e p D ()

The sum over # is calculated® with the result that (B4)
behaves as p*¥71/p! to leading order in p.

When 2b+4am.2+1—{ is a nonpositive integer, —m,
which occurs only if 20+4am.*<0, the first m—-1 terms
of the sum in Eq. (10) have poles. The poles are
multiplied by the zeros of the sine function and the
series itself may be terminated after m--1 terms. The
first term dominates asymptotically and behaves as
/P

We have shown that the product of the sine func-
tion and sum in Eq. (10) is bounded by p*71/p! as

p— +oo. It follows easily that Eq. (10) is bounded by
P—(1+2b+4amx2—i')_

>(P_‘V+ l)kfl—r

¥

B4)
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APPENDIX C

In this Appendix we prove the result stated in Sec. IIT
in the case where Rea— — . Expression (12) for
Vi(a) may be replaced by another integral representa-
tion which allows us to study the asymptotic behavior
of Vi(a) as Rea— — o, Fixing ¢ and @, we define
a function g(z) by

I'(e—3c+3a+3z(a—c)
9€¢ T'(e—3ic—3a+32(a—c))
and from (12) note that

(a_c) ~(=1T(1-a) l

-1

gx)=(1 —ZZ)’

, (€D

e=1—b

gdi. (C2)

We compute the integral of g(z) in the complex z
plane over the closed contour shown in Fig. 3. g(z)
is a meromorphic function and has no poles inside or
on the contour of integration, provided that <1 and
Ima<0. In what follows we assume that Ima<O0, in
which case the integral of g(z) vanishes. Later the results
are extended to the case where Ima>0.

As the height R of C; approaches + (see Fig. 3),
the integral of g(2) along C; approaches zero, provided
that Rea<< —/. The integrals along C; and C; converge
absolutely if Rea< —1—1/. Since these inequalities are
satisfied in the limit as Rea — — o, we may write

/ g(t)dl=—/ g(z)dz—f g(z)dz as R— + o . (C3)
-1 C1 C2

A new representation of V;(a) is obtained from (C2)

and (C3):
——7( 1 alll(ayyye)
Vile) = /
me L
= 0 1(a,y,€)
_/ _l—_y-dy:I’ (C4)

0 (961

with

Ii(o,y,6) =iy (y424) (@—c)*
I(1—a)I(e+3iy(a—c)
D(e—c+Giy—1)(a—0))’

Ii(a,y,€) =iy (y—2i) (e—c)!

o T (et Gy 1) (a—)
I'(e—c+3iy(@—0))

if Rea< —1—/ and Ima<0.

The asymptotic behavior of Vi(a) as Rea— —
can be determined by an examination of the integrands
of (C4) in the limit as |a| — <. Since the asymptotic
behavior of these integrands will depend on the value

(CS)

,» (C6)
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Imz

A

> Re 2

Y

- +1

F16. 3. Contour used in the analysis of V;(s) as Res — — .

of v, it is convenient to divide each of the two integrals
in (C4) into three parts:

= 8, lal= i, el 91,
—ﬁdy / hdy+f —dy
0 (‘)e 0 65’ Iﬂll—)‘ ae

00 1 !
+ "_ldy,

la] O€

(C7)

where A is an arbitrary parameter which satisfies
0<A<1. The same relation can be written for I,.

We will now place asymptotic bounds on each of the
integrals appearing in (C7) in the limit as Rea — — 0,
When v is in the region |a|<y<|a|, the asymptotic
behavior of In|9';/9¢€!| to leading order is given by
a,
In|—

— Rea[ 3y arg(142i/y)+3 In(14+31v2)]

Jé
+Ima[§y In(144/y*) —arg(1—3iy)]

as Rea— —w. (C8)
The argument functions of (C8) are restricted to values
less than = by (15). When Ima< 0 and Rea — — o« this
expression for In |9,/ €!| approaches —« as |a]| — .
More precisely, there exist positive numbers M and M
and a function H (a) such that for all y in the interval

la|?<y<|a|
ol

——ll < H(a) exp(M Rea|a| 41T Tmala| ), (C9)

Jde

where In|H(e)|/(M Rea|a|>+M Ima|a|)— 0 as
|a] — oo. Therefore,

lal 9,
2
|

/| <H(a) exp(M Rea|a| M Ima|a|—>)
X[Lla|=la|]. (C10)
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We conclude that the integral of 9/,/d¢€ from |a|™
to |a| decreases exponentially to zero as |a| — «© when
Rea— — o and Ima< 0.

For y> |a|, the asymptotic behavior of 9'7;/d€ to
leading order is given by

ol

Jde

In|——| — (Rea--) Iny-+3r Tma.  (C11)

We may use this equation to write

0 al]l _ 0
/ ;dy SH(a)e(‘n'/?)Ima / yllea+ldy , (Clz)
la| O€ J el

where
In|H(a)|/[37 Ima+ (Rea+1) Iny]— 0 as |a| — «.

For Ima<0 and Rea— — o, this integral goes to
zero exponentially.

Consider the integral of 8'7,/d€¢* from 0 to |a|™
For y in this range, |ay| can approach infinity or remain
bounded as |a|— o. The asymptotic behavior of
In|9%,/d€!| when |ay| — o is given by the right-hand
side of (C8) plus the quantity (1—e) In|a|. When ay
remains bounded as |a| — o, we obtain

i,

(C13)

— |ay|ta|-etv/2Ime for  Ima<O0.

We conclude that the most divergent behavior of
d,/d€ for y in the region 0<y< |a|™ is |a|®. Hence
for any constant 6>0

lal = g1,
]a‘l_b_a/ —dy—0.
0 ael

In the limit as Rea — — « with Ima < 0, we have shown
that for any number 6>0

0 al
e / 7 Il(a’y’E)dy
0 aél

(C14)

(C15)

—0.

We now determine the conditions under which the
integral of 9';/d ¢! goes to zero as |a| — . For y in the
region |a|*<y<|a|, the expansion of In|d,;/d¢|
to leading order in a becomes
o,

e

— Rea[ 3y arg(1+2i/y)+3 In(1+4y) ]

In

+Ima[ —arg(—1—3iy) —1y In(1+4/99] (C16)

as |a| — o« if Ima<0 and Rea— —. If y> |al, it
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follows that

o,
In|—| — (Rea+!) Iny+37 Ima (C17)

de

as Rea— —o with Ima<0. Arguments similar to
those used to prove (C10) and (C12) were zero as
|a] — o can now be used to show that

I,

/ ~(;7¢iy——> 0 (exponentially) , (C18)
Jlal™ Oe

where Rea — — o and Ima<0.

For 0<y<|a|™, |ay| approaches infinity or remains
bounded as || — «. Formula (C16) plus (e—c) In|a|
gives the asymptotic behavior of 8'1;/d¢ as |a| — o
and |ay| — . When |ay| is bounded as |a| — =,
we obtain to leading order in «

o,
In —( — (e—¢) In|a|
d¢€

+Ima(r—3yIn|a|)+ilnjay|. (C19)
If |Ime/lna| — © as |a] — « with |ay| bounded,
9',/9€ approaches zero exponentially. In general, the
most divergent behavior of d;/d€; is |a|<*. These
results and Eq. (C18) can be combined to show that
as Rea — — o with Ima<0

© U,
/ ;l-dy — 0 (exponentially) (C20)
0 €
if |Ima/Ina| — o, and
* 9,
o 2btdamg?—s / —dy—0, (CZI)
o Oé

where § is any positive number.

Based on Egs. (C4), (C15), (C20), and (C21), we
have extended the result stated in Sec. III to the case
of Rea — — o and Ima < 0.

The representation (12) has the property Vi(a)
=V*(e*). This means that |V,(e)| and |V(a*)]
have the same properties as |a| — o and the conclu-
sions obtained in this Appendix apply equally well in
the case where Ima>0.

Note added in proof. The formula which we have de-
rived for 7w partial widths was also obtained by Sivers
and Yellin.® The asymptotic and oscillatory behavior
of disc Vi(s) has been studied independently by
Atkinson with conclusions similar to our own [D. Atkin-
son (private communication)].



