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Dispersion Relations and Asymptotic Behavior of the Veneziano
Partial-Wave Amplitude in the Complex s Plane*
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The asymptotic behavior of the Veneziano partial-wave I=1 amplitude VI(s) for ~w scattering is studied
in the complex s plane for physical I values. The p-f' exchange-degenerate trajectory is of the
form o. (s) =as+b. For b&1 and 3b+4aw '&1, it is shown that, asymptotically, UI(s) o(sb '). Under the
same conditions, the resonance partial widths for fixed l have the property Fsz o(sz~ ' ).The discontinuity
of VI(s) across the left-hand cut oscillates, and if b(1, then, asymptotically, disc VI(s)~0(s 'b 4 ~ ). In the
case —2am '&b& 1, disc V~(s) ~ 0 ass ~ —~ and Vi(s) —+ 0 as ~s~~ ~ and V~(s) can be written in the
form of unsubtracted partial-wave dispersion relations, i.e., as an integral along the left-hand cut plus the sum
of an infinite number of poles along the right-hand real axis. Thus for the particular case of the p-trajectory
(b=-„a=1 BeV 2), an unsubtracted dispersion relation can be written.

I. INTRODUCTION Part of the proof of this theorem is given in Appendix
C. It is interesting to note that the condition 3b+4am
&1 is just the result found by Shapiro and Yellin'
in order to guarantee positivity of the resonance
widths of the first daughter trajectory.

In Sec. IV the asymptotic behavior of zrx partial
widths is studied. For fixed l we find that Fs~
o(sa * '"), where the parameter x has been specified
above. When 3b+4am '&1, a more concise formula is

rsvp

o (sa ~"').
We show that partial-wave dispersion relations can be

obtained for the I=1 Veneziano amplitude when b(1.
It will be necessary to make subtractions if 2b+4am '
&0. This result disagrees with Drago and Matsuda, '
who suggested without proof that partial-wave disper-
sion relations could not be used, and also with Sivers
and Yellin. ' For I=O or I= 2, the presence of a, V(t,n)
term in the amplitude causes disc Vt (s) to diverge expo-
nentially as s~ —~ and partial-wave dispersion rela-

tions are not valid.
We propose a method for obtaining a unitary wz

scattering amplitude from the Veneziano model.

II. DISCONTINUITY ACROSS LEFT-HAND CUT

We define the amplitude V(s, f)

I'(1 —tr (s))I'(1 —ti(t))
V(s, t) = —y—

I'(1 —ct(s) —n(/))

and write for the isospin-1 ~x scattering aniplitu(le

A'(s, t,u) = V(s, t) —V(s,u) . (2)

Here n(s) is the p fe exchange-degener-ate trajectory and
is assumed to have a linear form:* Work supported in part by U. S. Atomic Energy Commission

under Contract No. AEC AT(11-1) 34 P107A.' G. Veneziano, Nuovo Cimento SPA, 190 (1968).' C. Lovelace, Phys. Letters 288, 264 (1968).
'The asymptotic relation j(x)~o(x") means that, for '

positive number 5, f(x)x " b ~ 0 as x ~ oo . For example,
/'(x) —+ x /lnx as x ~ co, then f(x)~o(x ),

(3)n(s) =as+b, a&0.

any 4 J. Shapiro and J. Yellin, I RI. IZeport No. 18500 (ullpul)lishe(1).
if F. Drago and S. Matsuda, Phvs. Rev. 181 2095 (1969) )

D. Sivers and J. Yellin, Ann. Phys. (N. Y.) 55, 107 (1969).
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A SIMPLE representation for the scattering ampli-
tude which meets the requirements of Regge

asymptotic behavior and crossing symmetry and which
exhibits zero-width resonance poles has been introduced
by Veneziano. '

In this paper, we study the asymptotic properties
of the I=1 continued Veneziano-Lovelace' m.x partial-
wave amplitude in the complex s plane. Although the
analysis is limited to mm scattering, the methods used
should be applied easily to other Veneziano-type
amplitudes.

In Sec. II the formalism is developed. We assume
that the exchange degenerate p fe trajectory -is linear
and given by tr(s) =as+b The ana. lysis is carried out
for b = 1, since b& 1 violates the Froissart-Gribov bound
and b=1 corresponds to the Pomeranchuk trajectory.
We first consider the discontinuity across the left-hand
cut. Weshowthatdisc Vi(s) o(s " 4' ') ass —+ —~.'
In the special case of the p meson where b~~ and a~1
BeV ', disc Vt(s) goes to zero faster than 1/s along the
left-hand cut. If 2b+4am '& 0, disc Vi(s) ~ 0 as
g ~ —oo.

In Sec. III we examine the asymptotic behavior of the
partial-wave amplitude in the complex s plane. Our
results are conveniently expressed in terms of a param-
eter x, which is de6ned to be the minimum of 1—b and
2b+4am '. For b(1 and 8 any positive number, it is
shown that (i) Vi(s) —&0 as ~s~

—& ~ provided that
I ms&0 and 2b+4am s&0; (ii) Vi(s) o(s~') if 3b
+4am '&1 or if ~ims/lns~ ~ ee as ~s~ ~ ec; (iii)
s" 'Vi(s) ~ 0 as ~s~ ~ ~ if Ims&0. When b= ,' and-
o= 1 Be& ', this reduces to V~(s) o(1/Qs) as ~s~ ~ ~.
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The partial-wave projection of A'(s, t,u) for physical
I values can be written"

disc V, (s)

n(s) F(N+n(s)+1) I+1 b-
Vi(s)=v E — Qi 1+-

aq' =0 I!I'(n(s)+1) 2Gg

l) Ren(s) . (4)

For b(1, this expression is an analytic function of s
with a left-hand cut (LHC) starting at s=sr. ——4m '
+(b 1)/—a and a series of branch points on the cut at
sr. —(tt 1)/a —for @=1,2, . . . .

The discontinuity across the cut is given by

n(s) n I'(ii+n(s)+ 1)
disc Vi(s) =-,'iry-

aq' =0 n!I'(n(s)+1)

hz+1 —6
XI'& 1 s&sr, (5)

28(t

where p is the largest integer less than or equal to
b 1 4aq—' B—ecaus. e p is a step function of s, disc
Vi(s) may be discontinuous at the branch points of
Eq. (4). For all other values of s on the left-hand cut,
disc Vi(s) and its derivatives are defined and con-
tinuous. A typical graph of disc Vi(s) is shown in
Fig. 1.

Our primary objective is to place an asymptotic
bound on the behavior of disc Vi(s) as s —& —««. This
is conveniently done by rewriting (5) in terms of an
infinite series. In Appendix A we show that

F(ii+n(s)+1)
ii'=0 if n(s) & —1 —k (6)

=o n, !I'(n(s)+1)

for all non-negative integers k. Since the Legendre
function Pi(1+(I+1 b)/2aq'—) can be expanded in
powers of 1+(1—b)/2aq' and e/2aq', (5) becomes

(s) F(N+ (s)+1)
disc Vi(s) = —-', sy

aq' =&+i e!F(n(s)+1)

m+1 —0
XPl 1+ ) 5+SI 7

2Qg

which converges (absolutely) for n(s) & 1 l. Using- —
the relation F(s)F(1—s) =s/sinms, this equation may
be rewritten in the form

s(BeV )

FIG. 1. Discontinuity across the left-hand cut of VI (s). In this
graph 0=-'„a=1 BeV ', nz„=0, and y=0.5.

From the definition of p, there exists a number f',
0&f 1, suc.h-that as=b+4am ' 1 p f R——ewr—itin. g
(9) in terms of p and f', we obtain

I'(1 2b 4am —'+P—+f)
M(p) sins. (2b+4am '+I 1)—

F(ri+2b+4am '
p 1)——

X P 0&k&i (10)
F(m+1)n=p+ j

where cV(p) is bounded as p ~ +~. An analysis in
Appendix B shows that Eq. (10) is bounded by
p

—i'+'~4 ~.'—r& as p ~ +~ . Therefore, to leading order
in p, disc Vi(s) is also bounded by p "+"+~ .' r'. We
may conclude that for any positive real number 6

From this expression, we see that, in general, disc
Vi(s) is an oscillating function of s with an infinite
number of zeros on the real s axis. For 2b+4am 2)0
and n(s) & —2 —l, there are zeros at n(s) = —2 —l,—3—l, —4—1, . . . , and these are unique. In addition,
there will be a finite number of zeros for n(sr))n(s))—2 —l. When 2b+4am '&0, the position of zeros of
disc Vi(s) is not obviously determined from Eq. (8),
since the zeros of sinsn are cancelled by F(N+n(s)+1).

Expanding Pi(1+ (m+1 b)/2aq—2) in powers of
e/2aq', we observe that the asymptotic behavior of
(8) as s ~ —~ is controlled by terms of the form

F(n+n(s)+1) n "
sins n(s) F(—n(s))

+=@+i I (s+1) s

with 0&k& l (9).

s"+~~ ' 'disc Vi(s) ~LHo~0 as s~ —~ . (11)
In the case 2b+4am ') 0, disc Vi(s) ~ 0 as s —+ —~.

III. ASYMPTOTIC BEHAVIOR OF
PARTIAL-WAVE AMPLITUDE

n(s)
disc Vi(s) =-,'y sins-n(s) I'(—n(s))

Cg

In order to study the asymptotic properties of Vi(s),
we construct a formula' from Eq. (4) which is defined' D. I. Fivel and P. K. Mitter, Phys. Rev. 183, 1240 (1969).

F(n+n(s)+1) ri+1 b—
X Q — — Pi 1+.— ————,s&si, . (g)

=u+i I'i(m+ 1) 2aq'
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in thc entire coInpjcx 5 pla»c:

(aq')'
Vz(~) = —v——(—1)'I'(I —~(~))

)I
di(1 —P) '

I'(a+2It'zz(/+ 1))B
(12)

Bcz I'( —a(s)+~+2q'u(/+1)), =z z,

~ ~

For b&1 this formula has poles on the positive real s
axis and has a LHC. The properties of the I.HC and

d b h points have already been discus-

0 0

f tion in any domain not containing the real s axis.unc
In studying the asymptotic properties o. ~ «s„
assume Iz& 1 and ImsWO as

I
s

I
~ ~ .

In (12) we eliminate aII' in terms of n and make the

constant c= ~ am—b+4 ' we may write the amplitude as
a function of e as follows:

Vz(zz) = 2y( —1)' ' BzEz(zz, ,r, e)

0

dr, (13)

I'(1—n) I'(e —rc+rn)
Ez(n, ,e) =r (1—r) (zzz c)' — — . 14

l l "BEEE—+
Be'

l—jnj

dr
Be

BEEE
dr. (16)

l~l, BeE

Consider the integral of B'Ez/Be' from lzxl & to
1 —

I
n

I
. For all r in the region of integration,

I
rn

I

and l(1—r)nl —+ ~ as Inl ~ ~ and

ln ——+ RenI r Inr+(1 —r) ln(1 —r) 1—rzr
I
lmcz

I (17)
BeE

d of Vz(n) as lnl ~ ~ will be based on theOui stu y 0 E 0'.

as Ii totic properties of the integranu ox g ~, . Olasymp 0 ic p ~ . Ol

arbitrary complex constant a, we
formula

lnI'(s+a) ~ (s+a ——,') lns —s+-', 1n2zr+O(1/s),
largsl &zr (15)

to expand the I' functions of (14). Regardless of the
magrutude of cz, there will always be regions near r =

formula (15) will not be applicable to all three I'

functions o ~ z
— —. eie oref F14& near r=0 or r=i. It is t ere ore

convenient to divide the region of integration into three
par s: a r

I (1—r)nl ~ ~ as lzz
I

—+ ~, and a region near r= .
We choose a number p with the property 0(q& I and.

wi ltc

to leading o«cr i» &. %he» kc. is bou»ded from bc ow

(17) shows exponen tzally

nI this case the second integlal of
(16) t go to zero exponentzally as lal ~
exponentially provided Imn does not go to infinity too
fast. Then for inhnitely many r in the region of integra-

f z'13) the integrand diverges as Ren —+ —~.
However, because there is cancellation o posi

'

negative values of the integrand, the integral itself

~ ~ ~

11Our study of the asymptotic properties of VE s wi

be divided into two parts depending on whether
Reo. —& — .We begin by assuming that Rex is bounded
from below. From (17) it follows that

'—l l "BEEE—dr+0 (exponentially) as
I

fez" ~
Be

zf RezxW —txz . (18)

We consider the integral of B'Ez/Bez with respect to r
from r= to r= n=0 —

l I

~ Any point r in the region of
integration must approachh zero as, zxl ~ ~. The
quantity lerl can a~~roach infinity or remain oun e
as lzz

I

—+ Qz and the asymptotic behavior of B Ez/ e

to leading order in ~ is given by

ln ——+ RenLr lnr+(1 r)»i(—l r)j ra.
I
Im—zzz I—

y(1—.)». I~l if fr~i ~~ (1~~)

~ t lalml+(1 c rR—en—) ln, cz
I

t

zf
I
ra

I
is bounded. (20)

jaj rj BE+—dr &
Be'

BEIGE—— dr& IG(zx) I ln I
~&. (21)

Be

For any real number b&0, we may choose an g such
that 1 b&q& 1, an—d therefore from (21)

f~fz—b z—I l 'BEEE
dr —+0

BeE

as Izz.
l
~~ if Ren f+ —-~. (22)

ither. approach infinity or remain ounded as o. —+ ~.
When l(1 —r)nl —+ ~ as Izz.

l

—+ ~, Eq. ( )
used to s ow ah th t B'E /Bc' approaches zero exponent-
ially if Rea+& —~. When I(1—r)nf is bounde as

Because Rezz. is bounded from below as In l ~ ~, t e
most divergent behavior possible for E

' 1

Thus we can write
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in! ~ ~, we obtain Im s

O'EI,
ln —~ 1 in! (1—r)nl

B6
+I 6 —c—(1 r)—Renjlnlnl —z

I
Iinnl (23)

to leading order in o.. Then provided Reo, ~ —~, the
most. divergent behavior of B'Ei/Bc' as lnl ~ ~ is
&( ) lnl' ', where» I&(n) I/» lnl
IImn/inn! —+ ni as Ini —& ~, B'lti/Bc' goes to zero
regardless of the value of ~—c.Yet when Imo, is bounded
as ln I

~ ~
&

B'It i/B~' can blow up if e—c)0.
To obtain an asymptotic bound on the integral of

B'Iti/Bc' from r=l —lnl & to r=1, we write

I
vXWX, vX~}(~XwX~X~X ~ - - e S

B'EE——dr~0
—

I l

(25)

I

—+ ~ if RenW —~. The integral of (25) willas )Qi ~'x) 1 G

approac zero as o.h zer»s lnl ~" even when 2b+4o». =
p«»«d that IIinn/»nl ~ ~ a. Inl ~ ~.

The asyniptotic behavior of Vi(n) can now be
determined. We define a number x to be the minimum
of 1 band 2b+—4urN„' Combi.ning (13), (16), (18),
(22), and (25), for b&1 we have shown that for any
number 5&0

s* 'V (s) ~0 (26)

s' ' 'Vi(s) —+0 if IIms/lnsl —+ ~ (27)

as lsl —+ ~ if ResW —~ and Ims/0. In Appendix C
we show that this theorem is exactly true even when
Res —+ —~ as !s!—+ ~.

IV. PARTIAL-WAVE DISPERSION RELATIONS

In this section we assume for convenience that
—2am '& t)(1. When this condition is satisfied,
Vi(s) ~ 0 as Is I

—+ ni and. disc V~(s) ~ 0 as s —& —~.
We perform an integral of Vi(s')/(s' —s) over the
contour shown in Fig. 2. The result is a,n unsubtracted
partial-wave dispersion relation

P„"' 1 'c disc Vi(s')ds'
Vi(s) = 2 + (2g)

where s„=(I—b)/a and P„&" is the residue of Vi(s) at
s=s„. When the p f' trajectory is pu-rely real and
b&1, the residues P„"& are zero whenever t) n. Hence
a more concise representation for Vi(s) can be written

V(s)=g —+-
~=& s —s„

'c disc V,(s')ds'

s —s
(29)

O'Ki—,d &i&(-)ll-i--, R-~--. (24)

flax!

" BE

For any 5&0, g can be chosen such that I—8&q& 1 and
we obtain

FIG. 2. Contour used to obtain Veneziano partial-wave
dispersion relations.

Since Vi(s) and the integral in (29) are well defined for
all s, if Ims&0, we conclude that the sum in (29) con-
verges for all s provided that Ims&0.

It can be shown directly that the sum in (29) con-
verges. o o iT do this we determine the asymptotic behavior
of the residues. From the definition of p„' an . qs.
(13) and (14), we obtain

I - Bl—-r'(1 —r)'
BE

2v( —1)"'"'"'
p„&'& = — (I—c)'—

1!al'(n)

n" 'P„"'~0 as N~ ~ with /fixed. (31)
S' 1/( —s„) behaves as 1/I in the limit as e —+ ~,
the sum in (29) converges if x)0. But x)0 is equivalent
to —2am '&b(4.

The partial widths of wg resonances in the zero-
width approximation are related to P„("by the formula

I' ~"=—P "'/gs as ri —+ ~. (32)

Combining (31) and (32), for fixed 1 the result is

~I~2+'-~1 «)~0 as ~~~
Therefore, for the standard p fo trajectory, w-hich has
a~1. BeV ' and b~~, the partial widths predicted by
the Veneziano model must go to zero as fast as 1/s as
s —& oG.

el isThe outstanding problem of the Veneziano mode is
its failure to satisfy unitarity. We suggest a method of
unitarizing the Veneziano amplitude which uses the

I'(e rc+rm—)
&&

— dr. (30)—
I'(c —rc —(1—r)ri)

The behavior of this equa, tion as e ~ ~ follows easily
by ans. logy to the analysis of Kqs. (13) and (14).
We define a parameter x to be the minimum of j —b

and 2b+4am '. Then for any b&0
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lV/D equations. " The 1V/D equations are derived in
the standard way from a unitary amplitude with a
right- and left-hand cut. Then the Veneziano amplitude
may be used to obtain an input discontinuity across
the LHC. From our results in Sec. II, disc V&(s) is an
oscillating function which decreases to zero as s ~ —~ .
Hence a unitary solution to the E/D equations can be
obtained and we may look for a bootstrapped p meson
in the output. In this way, one can determine how
closely the Veneziano I.HC approximates the true
I,HC for xx scattering.
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rz'+'=rz(zz —1) ~ (rz —l)+ Q c;rz', (A3)

we can write

I'(n+n(s)+1) 1"(n+n(s)+1)
rz&+i Q = . (A4).=0 ~!P(n(s)+ 1) -=&+i r(~ —l,)l'(n(s)+1)

Now assume that (A1) is true for k=0, 1, 2, . . . , l.
Since there exist constants c,(l) such that

We wish to thank Professor Richard J. Eden for
discussions on this subject.

APPENDIX A

In this Appendix we prove the result stated in Sec, II,
namely,

I'(zz+n(s) +1)—e"=0 if n(s) (—1 —k. (A1)
=o zz!P(n(s)+I)

The latter sum is equal to

I'(l+n(s)+2)
(1 +) l as—

&)
——2

I'(n(s)+ 1)

This completes the proof.

=0

if n(s) (—l —2. (A5)

The proof is by induction. For 4 =0 we observe that

r(zz+n(s)+1)——=(1—x) '— &'& =0
.=o rz!r(n(s)+1) @=1

if n(s) (—1. (A2)

APPENDIX 8
We prove that Eq. (10) is bounded by P &'+' +"~" ri

as pi +~. We do this by finding the asymptotic
behavior of the sum in Eq. (10). When I+2b+4&zm '
—f/0, —1, —2, . . . , the sum can be rewritten

I'(I+2b+4&zm ' —I')
(p+1)" '

P 0
1

(iz+2b+4&zm ' I ) (2+2k+—4&zm ' f)(1+—2b+4am ' f)—+2 (p+~+ I)' ' (81)
n=l (p+~)" (p+2)(p+1)

We choose an integer E with the property

1V& ~1+2b+4am. '~ and 1V)
~

2b+4am. '~ .

Then the magnitude of (Bi) is bounded by

(p+1)'-' 1 - (~+p+I)"-'
+—

p! (!V—1)! =i (rz+ V) (rz+1V+1) (rz+p)
(82)

to leading order in p. In the case where k =0, the sum
in (82) can be performedz and (82) is equal to

Lp'(p —1V+1)3 '

For k& 1, (zz+ p+ 1)" ' may be expanded by the formula

I —i p —]
(rz+p+1)' '= p — (zz+.)i') "(p—.V+1)'—'—".

r=o y (83)
' G. I'. Chew and S. Mandelstam, Phys. Rev. 119, 467 (1960).' I. S. Gradshteyn and I. M. Ryzhik, Table of Ietegrals, Series,

and Products (English translation) (Academic, New York, 1965).

This leads to a new upper bound for (82):
(p+1)'-' 1 i i k —1

+ g (p &V+])i—i—r

p! (,'V —1)! =o r

00 1x~ (84)
~=i (rz+.V+r) (I+p+1)(rz+p)

The sum over zz is calculated' with the result that (84)
behaves as p" '/p! to leading order in p.

When 2b+4&zm '+1 I is a nonpositiv—e integer, —m,
which occurs only if 2b+4am, z(0, the first m+1 terms
of the sum in Eq. (10) have poles. The poles are
m.ultiplied by the zeros of the sine function and the
series itself may be terminated after m+1 terms. The
first term dominates asymptotically and behaves as
pz —

I/p&

We have shown that the product of the sine func-
tion and sum in Eq. (10) is bounded by p~ '/p! as

p ~ +~. It follows easily that Eq. (10) is bounded by
p

—(1+2~4~m zr2—f )
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APPENDIX C lmz

rove the result stated in Sec. IIIpp ' '" p'"

of Vi(a) as Rect~ —~. Fixing e an n, w
a function g(s) by

a' r(e -', c—+ ',n+-', s(n-c)—)
7g(s) =(1—s')'—,

and from (12) note that

(C1)

Cp

)(C,

g(t)dt. (C2) = Rez
+I

g(t)dt =— g(s)ds- g(s)ds as R~+. (C3)
—1

a is obtained from (C2A new representation of Vi(a) is o
and (C3):

ral of (s) in the complex sWe compute the integr. o g
the closed contour shown in ig.p

ic function an as n
dd h. b(i..df inte ration, provi eon the contour of

'
g

hat follows we assume a
vanishes Later the resultswhich case the integral of g(s) vanis es. a

are extended to th

g o g() g—l. The integrals along Ci an 2 co
—. S' these inequalities are1 if Reo,(—1—/. ince es

satisfied in the limit as Ren —& —00, w

Fzo. 3. Contour used in the analy
'

sis of V~(s) as Res~ —~.

z, ' ' d' 'de each of the two integralsoy, i is,
't convenient to ivi e eac

in (C4) into three parts:

I&I "B&Ig I&I B&Ig

dy+ dy
B6 ~sxl

-" B6p

"O'Ig
-dy=

p B6
O'I)

dy, (C7)

rent

B6

satisfiesX is an arbitrary parameter whic

We will now p
h limit as Ren —+ —~.carin in (C7) in the imi as

&
In I, the asymptoticn is in the region oI y n,

'I to leading order is given bybehavior of lnlB'Ii cte to ea

—y( —1)' "~ Ii(~,y, e)
Vi(o) =—

with

"~'I ( ,y, )
dy

0 BE'

I&(a,y, e) =iy'(y+2t)'(a c)'—
F(1—n) I'(e+-', iy(n —c))

I'(~ —c+(kiy —1)(~—c))
(C5)

1 ~ Renvoi y arg(1+2i(y)+si ln(1+ ~~y2))
B6

+Imn( y 1n (1+—4, y') —arg (1—s iy) ]
as Ren —+ —~ . (Cg)

ent functions of (CS) are restricted to values

there exist positive num ers
f... ;. .„„„..]and a, function II(cr) such that for a y in

I&(a,y, e) = ty'(y —2i) '(a —c) '

p(e —c+-', iy(n —c))

if Ren( —1—l and 0.nd Imo. (0.
as Reo. —& —~behavior of V~ n as
f h dd b an examination o eb rm y

of (C4) in the limii it as Inl ~ ~. mce
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