Dispersion Relations and Asymptotic Behavior of the Veneziano Partial-Wave Amplitude in the Complex s Plane*

ROBERT T. PARK AND BIPIN R. DESAI Department of Physics, University of California, Riverside, California 92502 (Received 4 May 1970)

The asymptotic behavior of the Veneziano partial-wave I = 1 amplitude $V_l(s)$ for $\pi\pi$ scattering is studied in the complex s plane for physical l values. The ρ -f⁰ exchange-degenerate trajectory is of the form $\alpha(s) = as + b$. For b < 1 and $3b + 4am_{\pi^2} \ge 1$, it is shown that, asymptotically, $V_l(s) \sim o(s^{b-1})$. Under the same conditions, the resonance partial widths for fixed l have the property $\Gamma s_R \sim o(s_R^{b-3/2})$. The discontinuity of $V_l(s)$ across the left-hand cut oscillates, and if b < 1, then, asymptotically, disc $V_l(s) \sim o(s^{-2b-4am\pi^2})$. In the case $-2am_{\pi}^2 < b < 1$, disc $V_l(s) \to 0$ as $s \to -\infty$ and $V_l(s) \to 0$ as $|s| \to \infty$ and $V_l(s)$ can be written in the form of unsubtracted partial-wave dispersion relations, i.e., as an integral along the left-hand cut plus the sum of an infinite number of poles along the right-hand real axis. Thus for the particular case of the ρ -trajectory $(b \approx \frac{1}{2}, a \approx 1 \text{ BeV}^{-2})$, an unsubtracted dispersion relation can be written.

I. INTRODUCTION

SIMPLE representation for the scattering amplitude which meets the requirements of Regge asymptotic behavior and crossing symmetry and which exhibits zero-width resonance poles has been introduced by Veneziano.¹

In this paper, we study the asymptotic properties of the I=1 continued Veneziano-Lovelace² $\pi\pi$ partialwave amplitude in the complex s plane. Although the analysis is limited to $\pi\pi$ scattering, the methods used should be applied easily to other Veneziano-type amplitudes.

In Sec. II the formalism is developed. We assume that the exchange degenerate $\rho - f^0$ trajectory is linear and given by $\alpha(s) = as + b$. The analysis is carried out for b < 1, since b > 1 violates the Froissart-Gribov bound and b=1 corresponds to the Pomeranchuk trajectory. We first consider the discontinuity across the left-hand cut. We show that disc $V_1(s) \sim o(s^{-2b-4am_{\pi}^2})$ as $s \to -\infty$.³ In the special case of the ρ meson where $b \simeq \frac{1}{2}$ and $a \simeq 1$ BeV⁻², disc $V_l(s)$ goes to zero faster than 1/s along the left-hand cut. If $2b+4am_{\pi}^2>0$, disc $V_l(s) \rightarrow 0$ as $s \rightarrow -\infty$.

In Sec. III we examine the asymptotic behavior of the partial-wave amplitude in the complex s plane. Our results are conveniently expressed in terms of a parameter x, which is defined to be the minimum of 1-b and $2b+4am_{\pi^2}$. For b<1 and δ any positive number, it is shown that (i) $V_l(s) \rightarrow 0$ as $|s| \rightarrow \infty$ provided that Ims $\neq 0$ and $2b+4am_{\pi}^{2}>0$; (ii) $V_{l}(s)\sim o(s^{b-1})$ if 3b $+4am_{\pi}^2 \ge 1$ or if $|\mathrm{Im}s/\mathrm{ln}s| \to \infty$ as $|s| \to \infty$; (iii) $s^{x-\delta}V_l(s) \to 0$ as $|s| \to \infty$ if $\operatorname{Im} s \neq 0$. When $b=\frac{1}{2}$ and $a = 1 \text{ BeV}^{-2}$, this reduces to $V_l(s) \sim o(1/\sqrt{s})$ as $|s| \to \infty$.

Part of the proof of this theorem is given in Appendix C. It is interesting to note that the condition $3b+4am_{\pi^2}$ ≥ 1 is just the result found by Shapiro and Yellin⁴ in order to guarantee positivity of the resonance widths of the first daughter trajectory.

In Sec. IV the asymptotic behavior of $\pi\pi$ partial widths is studied. For fixed l we find that $\Gamma s_R \sim$ $o(s_R^{-x-1/2})$, where the parameter x has been specified above. When $3b + 4am_{\pi^2} \ge 1$, a more concise formula is $\Gamma s_R \sim o(s_R^{b-3/2}).$

We show that partial-wave dispersion relations can be obtained for the I=1 Veneziano amplitude when b < 1. It will be necessary to make subtractions if $2b + 4am_{\pi^2}$ <0. This result disagrees with Drago and Matsuda,⁵ who suggested without proof that partial-wave dispersion relations could not be used, and also with Sivers and Yellin.⁵ For I=0 or I=2, the presence of a V(t,u)term in the amplitude causes disc $V_l(s)$ to diverge exponentially as $s \rightarrow -\infty$ and partial-wave dispersion relations are not valid.

We propose a method for obtaining a unitary $\pi\pi$ scattering amplitude from the Veneziano model.

II. DISCONTINUITY ACROSS LEFT-HAND CUT

We define the amplitude V(s,t)

$$V(s,t) = -\gamma \frac{\Gamma(1-\alpha(s))\Gamma(1-\alpha(t))}{\Gamma(1-\alpha(s)-\alpha(t))}$$
(1)

and write for the isospin-1 $\pi\pi$ scattering amplitude

$$A^{1}(s,t,u) = V(s,t) - V(s,u).$$
(2)

Here $\alpha(s)$ is the ρ -f⁰ exchange-degenerate trajectory and is assumed to have a linear form:

$$\alpha(s) = as + b, \quad a > 0. \tag{3}$$

^{*} Work supported in part by U. S. Atomic Energy Commission under Contract No. AEC AT(11-1) 34 P107A.

¹ G. Veneziano, Nuovo Cimento **57A**, 190 (1968). ² C. Lovelace, Phys. Letters **28B**, 264 (1968). ³ The asymptotic relation $f(x) \sim o(x^a)$ means that, for any positive number δ , $f(x)x^{-a-\delta} \to 0$ as $x \to \infty$. For example, if $f(x) \to x^a/\ln x$ as $x \to \infty$, then $f(x) \sim o(x^a)$.

 ⁴ J. Shapiro and J. Yellin, LRL Report No. 18500 (unpublished).
 ⁵ F. Drago and S. Matsuda, Phys. Rev. 181, 2095 (1969);
 D. Sivers and J. Yellin, Ann. Phys. (N. Y.) 55, 107 (1969).

The partial-wave projection of $A^{\dagger}(s,t,u)$ for physical l values can be written⁶

$$V_{l}(s) = \gamma \frac{\alpha(s)}{aq^{2}} \sum_{n=0}^{\infty} \frac{\Gamma(n+\alpha(s)+1)}{n!\Gamma(\alpha(s)+1)} Q_{l} \left(1 + \frac{n+1-b}{2aq^{2}}\right),$$
$$l > \operatorname{Re}\alpha(s). \quad (4)$$

For b < 1, this expression is an analytic function of s with a left-hand cut (LHC) starting at $s=s_L=4m_{\pi^2} + (b-1)/a$ and a series of branch points on the cut at $s_L-(n-1)/a$ for $n=1, 2, \ldots$

The discontinuity across the cut is given by

disc
$$V_l(s) = \frac{1}{2}\pi\gamma \frac{\alpha(s)}{aq^2} \sum_{n=0}^{p} \frac{\Gamma(n+\alpha(s)+1)}{n!\Gamma(\alpha(s)+1)}$$

 $\times P_l\left(1+\frac{n+1-b}{2aq^2}\right), s \le s_L$ (5)

where p is the largest integer less than or equal to $b-1-4aq^2$. Because p is a step function of s, disc $V_l(s)$ may be discontinuous at the branch points of Eq. (4). For all other values of s on the left-hand cut, disc $V_l(s)$ and its derivatives are defined and continuous. A typical graph of disc $V_l(s)$ is shown in Fig. 1.

Our primary objective is to place an asymptotic bound on the behavior of disc $V_l(s)$ as $s \to -\infty$. This is conveniently done by rewriting (5) in terms of an infinite series. In Appendix A we show that

$$\sum_{n=0}^{\infty} \frac{\Gamma(n+\alpha(s)+1)}{n!\Gamma(\alpha(s)+1)} n^k = 0 \quad \text{if} \quad \alpha(s) < -1-k \quad (6)$$

for all non-negative integers k. Since the Legendre function $P_l(1+(n+1-b)/2aq^2)$ can be expanded in powers of $1+(1-b)/2aq^2$ and $n/2aq^2$, (5) becomes

disc
$$V_l(s) = -\frac{1}{2}\pi\gamma \frac{\alpha(s)}{aq^2} \sum_{n=p+1}^{\infty} \frac{\Gamma(n+\alpha(s)+1)}{n!\Gamma(\alpha(s)+1)}$$

 $\times P_l\left(1+\frac{n+1-b}{2aq^2}\right), \quad s \le s_L \quad (7)$

which converges (absolutely) for $\alpha(s) < -1-l$. Using the relation $\Gamma(z)\Gamma(1-z) = \pi/\sin\pi z$, this equation may be rewritten in the form

disc
$$V_l(s) = \frac{1}{2} \gamma \frac{\alpha(s)}{aq^2} \sin \pi \alpha(s) \Gamma(-\alpha(s))$$

 $\times \sum_{n=p+1}^{\infty} \frac{\Gamma(n+\alpha(s)+1)}{\Gamma(n+1)} P_l\left(1+\frac{n+1-b}{2aq^2}\right), \quad s \le s_L.$ (8)

⁶ D. I. Fivel and P. K. Mitter, Phys. Rev. 183, 1240 (1969).

FIG. 1. Discontinuity across the left-hand cut of $V_1^{(s)}$. In this graph $b = \frac{1}{2}$, a = 1 BeV⁻², $m_{\pi} = 0$, and $\gamma = 0.5$.

From this expression, we see that, in general, disc $V_l(s)$ is an oscillating function of s with an infinite number of zeros on the real s axis. For $2b+4am_{\pi}^2>0$ and $\alpha(s) \leq -2-l$, there are zeros at $\alpha(s)=-2-l$, $-3-l, -4-l, \ldots$, and these are unique. In addition, there will be a finite number of zeros for $\alpha(s_L)>\alpha(s) > -2-l$. When $2b+4am_{\pi}^2<0$, the position of zeros of disc $V_l(s)$ is not obviously determined from Eq. (8), since the zeros of $\sin \pi \alpha$ are cancelled by $\Gamma(n+\alpha(s)+1)$.

Expanding $P_l(1+(n+1-b)/2aq^2)$ in powers of $n/2aq^2$, we observe that the asymptotic behavior of (8) as $s \to -\infty$ is controlled by terms of the form

$$\sin \pi \alpha(s) \Gamma(-\alpha(s)) \sum_{n=p+1}^{\infty} \frac{\Gamma(n+\alpha(s)+1)}{\Gamma(n+1)} {\binom{n}{s}}^k,$$

with $0 \le k \le l.$ (9)

From the definition of p, there exists a number ζ , $0 \le \zeta \le 1$, such that $as=b+4am_{\pi}^2-1-p-\zeta$. Rewriting (9) in terms of p and ζ , we obtain

$$M(p) \sin \pi (2b + 4am_{\pi}^{2} + 1 - \zeta) \frac{\Gamma(1 - 2b - 4am_{\pi}^{2} + p + \zeta)}{p^{k}}$$
$$\times \sum_{n=p+1}^{\infty} \frac{\Gamma(n+2b + 4am_{\pi}^{2} - p - \zeta)}{\Gamma(n+1)} n^{k}, \quad 0 \le k \le l \qquad (10)$$

where M(p) is bounded as $p \to +\infty$. An analysis in Appendix B shows that Eq. (10) is bounded by $p^{-(1+2b+4am_{\star}^{2}-\zeta)}$ as $p \to +\infty$. Therefore, to leading order in p, disc $V_{l}(s)$ is also bounded by $p^{-(1+2b+4am_{\star}^{2}-\zeta)}$. We may conclude that for any positive real number δ

 $s^{2b+4a m_{\pi}^2 - \delta} \operatorname{disc} V_l(s) |_{\operatorname{LHC}} \to 0 \quad \text{as} \quad s \to -\infty.$ (11)

In the case $2b+4am_{\pi}^2 > 0$, disc $V_l(s) \to 0$ as $s \to -\infty$.

III. ASYMPTOTIC BEHAVIOR OF PARTIAL-WAVE AMPLITUDE

In order to study the asymptotic properties of $V_l(s)$, we construct a formula⁵ from Eq. (4) which is defined in the entire complex *s* plane:

$$V_{l}(s) = -\gamma \frac{(aq^{2})^{l}}{l!} (-1)^{l} \Gamma(1-\alpha(s)) \int_{-1}^{1} dt (1-t^{2})^{l} \\ \times \frac{\partial^{l}}{\partial \epsilon^{l}} \frac{\Gamma(\epsilon+2q^{2}a(t+1))}{\Gamma(-\alpha(s)+\epsilon+2q^{2}a(t+1))} \Big|_{\epsilon=1-b}.$$
(12)

For b < 1 this formula has poles on the positive real s axis and has a LHC. The properties of the LHC and corresponding branch points have already been discussed on the basis of Eq. (4). $V_l(s)$ is a holomorphic function in any domain not containing the real s axis. In studying the asymptotic properties of $V_l(s)$, we will assume b < 1 and $\operatorname{Im} s \neq 0$ as $|s| \to \infty$.

In (12) we eliminate aq^2 in terms of α and make the substitution t=2r-1 on the integral. Then defining a constant $c=b+4am_{\pi}^2$, we may write the amplitude as a function of α as follows:

$$V_{l}(\alpha) = -\frac{2\gamma(-1)^{l}}{l!} \int_{0}^{1} \frac{\partial^{l} K_{l}(\alpha, r, \epsilon)}{\partial \epsilon^{l}} \bigg|_{\epsilon=1-b} dr, \quad (13)$$

where

$$K_{l}(\alpha, r, \epsilon) = r^{l}(1-r)^{l}(\alpha-c)^{l} \frac{\Gamma(1-\alpha)\Gamma(\epsilon-rc+r\alpha)}{\Gamma(\epsilon-rc-(1-r)\alpha)}.$$
 (14)

Our study of $V_l(\alpha)$ as $|\alpha| \to \infty$ will be based on the asymptotic properties of the integrand of (13). For an arbitrary complex constant a, we use the standard formula

$$\ln\Gamma(z+a) \to (z+a-\frac{1}{2}) \ln z - z + \frac{1}{2} \ln 2\pi + O(1/z),$$

$$|\arg z| < \pi \quad (15)$$

to expand the Γ functions of (14). Regardless of the magnitude of α , there will always be regions near r=0 and r=1 in the integral of (13) for which $|r\alpha|$ and $|(1-r)\alpha|$ are small or zero. Hence the expansion formula (15) will not be applicable to all three Γ functions of (14) near r=0 or r=1. It is therefore convenient to divide the region of integration into three parts: a region near r=0, a region where $|r\alpha|$ and $|(1-r)\alpha| \to \infty$ as $|\alpha| \to \infty$, and a region near r=1. We choose a number η with the property $0 < \eta < 1$ and write

$$\int_{0}^{1} \frac{\partial^{l} K_{l}}{\partial \epsilon^{l}} dr = \int_{0}^{|\alpha|^{-\eta}} \frac{\partial^{l} K_{l}}{\partial \epsilon^{l}} + \int_{|\alpha|^{-\eta}}^{1-|\alpha|^{-\eta}} \frac{\partial^{l} K_{l}}{\partial \epsilon^{l}} dr + \int_{1-|\alpha|^{-\eta}}^{1} \frac{\partial^{l} K_{l}}{\partial \epsilon^{l}} dr.$$
(16)

Consider the integral of $\partial^l K_l / \partial \epsilon^l$ from $|\alpha|^{-\eta}$ to $1 - |\alpha|^{-\eta}$. For all r in the region of integration, $|r\alpha|$ and $|(1-r)\alpha| \to \infty$ as $|\alpha| \to \infty$ and

$$\ln \left| \frac{\partial^{l} K_{l}}{\partial \epsilon^{l}} \right| \to \operatorname{Rea}[r \ln r + (1-r) \ln(1-r)] - r\pi |\operatorname{Im}\alpha| \quad (17)$$

to leading order in α . When Re α is bounded from below, (17) shows that $\partial^{i}K_{l}/\partial\epsilon^{i}$ decreases exponentially to zero as $|\alpha| \to \infty$. In this case the second integral of (16) must go to zero exponentially as $|\alpha| \to \infty$.

When $\operatorname{Re}\alpha \to -\infty$ as $|s| \to \infty$, $\partial^{i}K_{l}/\partial\epsilon^{i}$ diverges exponentially provided $\operatorname{Im}\alpha$ does not go to infinity too fast. Then for infinitely many r in the region of integration of (13), the integrand diverges as $\operatorname{Re}\alpha \to -\infty$. However, because there is cancellation of positive and negative values of the integrand, the integral itself may not blow up.

Our study of the asymptotic properties of $V_l(s)$ will be divided into two parts depending on whether $\operatorname{Re}\alpha \to -\infty$. We begin by assuming that $\operatorname{Re}\alpha$ is bounded from below. From (17) it follows that

$$\int_{|\alpha|^{-\eta}}^{1-|\alpha|^{-\eta}} \frac{\partial^l K_l}{\partial \epsilon^l} dr \to 0 \text{ (exponentially) as } |\alpha| \to \infty$$
if $\operatorname{Re} \alpha \to -\infty$. (18)

We consider the integral of $\partial^l K_l / \partial \epsilon^l$ with respect to r from r=0 to $r=|\alpha|^{-\eta}$. Any point r in the region of integration must approach zero as $|\alpha| \to \infty$. The quantity $|\alpha r|$ can approach infinity or remain bounded as $|\alpha| \to \infty$ and the asymptotic behavior of $\partial^l K_l / \partial \epsilon^l$ to leading order in α is given by

$$\ln \left| \frac{\partial^{l} K_{l}}{\partial \epsilon^{l}} \right| \to \operatorname{Rea} [r \ln r + (1 - r) \ln (1 - r)] - r\pi |\operatorname{Ima}| + (1 - \epsilon) \ln |\alpha| \quad \text{if } |r\alpha| \to \infty \quad (19)$$
$$\to l \ln |r\alpha| + (1 - \epsilon - r \operatorname{Rea}) \ln |\alpha| \quad \text{if } |r\alpha| \text{ is bounded.} \quad (20)$$

Because Re α is bounded from below as $|\alpha| \to \infty$, the most divergent behavior possible for $|\partial^l K_l / \partial \epsilon^l|$ for all r in the region $0 \le r \le |\alpha|^{-\eta}$ is $G(\alpha) |\alpha|^{1-\epsilon}$, where $G(\alpha)$ has the property $\ln |G(\alpha)| / \ln |\alpha| \to 0$ as $|\alpha| \to \infty$. Thus we can write

$$\left|\int_{0}^{|\alpha|^{-\eta}} \frac{\partial^{l} K_{l}}{\partial \epsilon^{l}} dr\right| \leq \int_{0}^{|\alpha|^{-\eta}} \left|\frac{\partial^{l} K_{l}}{\partial \epsilon^{l}}\right| dr \leq |G(\alpha)| |\alpha|^{b-\eta}.$$
 (21)

For any real number $\delta > 0$, we may choose an η such that $1-\delta < \eta < 1$, and therefore from (21)

$$|\alpha|^{1-b-\delta} \int_{0}^{|\alpha|^{-\eta}} \frac{\partial^{l} K_{l}}{\partial \epsilon^{l}} dr \to 0$$

as $|\alpha| \to \infty$ if $\operatorname{Re} \alpha \to -\infty$. (22)

For r in the region $1-|\alpha|^{-\eta} \le r \le 1$, $|(1-r)\alpha|$ will either approach infinity or remain bounded as $|\alpha| \to \infty$. When $|(1-r)\alpha| \to \infty$ as $|\alpha| \to \infty$, Eq. (17) may be used to show that $\partial^l K_l / \partial \epsilon^l$ approaches zero exponentially if $\operatorname{Re}\alpha \to -\infty$. When $|(1-r)\alpha|$ is bounded as $\mathbf{2}$

 $|\alpha| \rightarrow \infty$, we obtain

$$\ln \left| \frac{\partial^{l} K_{l}}{\partial \epsilon^{l}} \right| \rightarrow l \ln |(1-r)\alpha| + [\epsilon - c - (1-r) \operatorname{Re}\alpha] \ln |\alpha| - \pi |\operatorname{Im}\alpha| \quad (23)$$

to leading order in α . Then provided $\operatorname{Re} \alpha \to -\infty$, the most divergent behavior of $\partial^l K_l / \partial \epsilon^l$ as $|\alpha| \to \infty$ is $\overline{G}(\alpha) |\alpha|^{\epsilon-c}$, where $\ln |\overline{G}(\alpha)| / \ln |\alpha| \to 0$ as $|\alpha| \to \infty$. If $|\operatorname{Im} \alpha / \ln \alpha| \to \infty$ as $|\alpha| \to \infty$, $\partial^l K_l / \partial \epsilon^l$ goes to zero regardless of the value of $\epsilon-c$. Yet when $\operatorname{Im} \alpha$ is bounded as $|\alpha| \to \infty$, $\partial^l K_l / \partial \epsilon^l$ can blow up if $\epsilon-c > 0$.

To obtain an asymptotic bound on the integral of $\partial^l K_l / \partial \epsilon^l$ from $r = 1 - |\alpha|^{-\eta}$ to r = 1, we write

$$\int_{1-|\alpha|^{-\eta}}^{1} \left| \frac{\partial^{l} K_{l}}{\partial \epsilon^{l}} \right| dr \leq |\bar{G}(\alpha)| |\alpha|^{\epsilon-c-\eta}, \quad \text{Re}\alpha \to -\infty . \quad (24)$$

For any $\delta > 0$, η can be chosen such that $1 - \delta < \eta < 1$ and we obtain

$$|\alpha|^{2b+4am_{\pi}^{2}-\eta} \int_{1-|\alpha|^{-\eta}}^{1} \frac{\partial^{l} K_{l}}{\partial \epsilon^{l}} dr \to 0$$
 (25)

as $|\alpha| \to \infty$ if $\operatorname{Re}\alpha \to -\infty$. The integral of (25) will approach zero as $|\alpha| \to \infty$ even when $2b + 4am_{\pi}^2 < 0$ provided that $|\operatorname{Im}\alpha/\ln\alpha| \to \infty$ as $|\alpha| \to \infty$.

The asymptotic behavior of $V_l(\alpha)$ can now be determined. We define a number x to be the minimum of 1-b and $2b+4am_{\pi^2}$. Combining (13), (16), (18), (22), and (25), for b < 1 we have shown that for any number $\delta > 0$

$$s^{x-\delta}V_l(s) \to 0, \qquad (26)$$

$$s^{1-b-\delta}V_l(s) \to 0 \quad \text{if} \quad |\operatorname{Im} s/\ln s| \to \infty$$
 (27)

as $|s| \to \infty$ if Res $\to -\infty$ and Ims $\neq 0$. In Appendix C we show that this theorem is exactly true even when Res $\to -\infty$ as $|s| \to \infty$.

IV. PARTIAL-WAVE DISPERSION RELATIONS

In this section we assume for convenience that $-2am_{\pi}^2 < b < 1$. When this condition is satisfied, $V_l(s) \rightarrow 0$ as $|s| \rightarrow \infty$ and disc $V_l(s) \rightarrow 0$ as $s \rightarrow -\infty$. We perform an integral of $V_l(s')/(s'-s)$ over the contour shown in Fig. 2. The result is an unsubtracted partial-wave dispersion relation

$$V_{l}(s) = \sum_{n=1}^{\infty} \frac{\beta_{n}^{(l)}}{s - s_{n}} + \frac{1}{\pi} \int_{-\infty}^{s_{L}} \frac{\operatorname{disc} V_{l}(s') ds'}{s - s'}, \quad (28)$$

where $s_n = (n-b)/a$ and $\beta_n^{(l)}$ is the residue of $V_l(s)$ at $s=s_n$. When the ρ - f^0 trajectory is purely real and b < 1, the residues $\beta_n^{(l)}$ are zero whenever l > n. Hence a more concise representation for $V_l(s)$ can be written

$$V_{l}(s) = \sum_{n=l}^{\infty} \frac{\beta_{n}^{(l)}}{s - s_{n}} + \frac{1}{\pi} \int_{-\infty}^{s_{L}} \frac{\operatorname{disc} V_{l}(s') ds'}{s' - s}.$$
 (29)

FIG. 2. Contour used to obtain Veneziano partial-wave dispersion relations.

Since $V_l(s)$ and the integral in (29) are well defined for all s, if $\text{Im} s \neq 0$, we conclude that the sum in (29) converges for all s provided that $\text{Im} s \neq 0$.

It can be shown directly that the sum in (29) converges. To do this we determine the asymptotic behavior of the residues. From the definition of $\beta_n^{(l)}$ and Eqs. (13) and (14), we obtain

$$\beta_{n}{}^{(l)} = \frac{2\gamma(-1)^{n+l+1}}{l!a\Gamma(n)}(n-c)^{l} \int_{0}^{1} \frac{\partial^{l}}{\partial\epsilon^{l}} r^{l}(1-r)^{l} \\ \times \frac{\Gamma(\epsilon - rc + rn)}{\Gamma(\epsilon - rc - (1-r)n)} dr. \quad (30)$$

The behavior of this equation as $n \to \infty$ follows easily by analogy to the analysis of Eqs. (13) and (14). We define a parameter x to be the minimum of 1-band $2b+4am_{\pi}^2$. Then for any $\delta > 0$

$$n^{x-\delta}\beta_n{}^{(l)} \to 0 \text{ as } n \to \infty \text{ with } l \text{ fixed.}$$
 (31)

Since $1/(s-s_n)$ behaves as 1/n in the limit as $n \to \infty$, the sum in (29) converges if x > 0. But x > 0 is equivalent to $-2am_{\pi}^2 < b < 1$.

The partial widths of $\pi\pi$ resonances in the zerowidth approximation are related to $\beta_n^{(l)}$ by the formula

$$\Gamma_n{}^{(l)} = -\beta_n{}^{(l)}/\sqrt{s_n} \quad \text{as} \quad n \to \infty . \tag{32}$$

Combining (31) and (32), for fixed *l* the result is

$$n^{1/2+x-\delta}\Gamma_n^{(l)} \to 0 \text{ as } n \to \infty$$
.

Therefore, for the standard $\rho - f^0$ trajectory, which has $a \simeq 1 \text{ BeV}^{-2}$ and $b \simeq \frac{1}{2}$, the partial widths predicted by the Veneziano model must go to zero as fast as 1/s as $s \to \infty$.

The outstanding problem of the Veneziano model is its failure to satisfy unitarity. We suggest a method of unitarizing the Veneziano amplitude which uses the N/D equations.⁷ The N/D equations are derived in the standard way from a unitary amplitude with a right- and left-hand cut. Then the Veneziano amplitude may be used to obtain an input discontinuity across the LHC. From our results in Sec. II, disc $V_l(s)$ is an oscillating function which decreases to zero as $s \to -\infty$. Hence a unitary solution to the N/D equations can be obtained and we may look for a bootstrapped ρ meson in the output. In this way, one can determine how closely the Veneziano LHC approximates the true LHC for $\pi\pi$ scattering.

ACKNOWLEDGMENT

We wish to thank Professor Richard J. Eden for discussions on this subject.

APPENDIX A

In this Appendix we prove the result stated in Sec. II, namely,

$$\sum_{n=0}^{\infty} \frac{\Gamma(n+\alpha(s)+1)}{n!\Gamma(\alpha(s)+1)} n^k = 0 \quad \text{if} \quad \alpha(s) < -1-k. \quad (A1)$$

The proof is by induction. For k=0 we observe that

$$\sum_{n=0}^{\infty} \frac{\Gamma(n+\alpha(s)+1)}{n!\Gamma(\alpha(s)+1)} = (1-x)^{-1-\alpha(s)} \bigg|_{x=1} = 0$$

if $\alpha(s) < -1$. (A2)

Now assume that (A1) is true for
$$k=0, 1, 2, ..., l$$
.
Since there exist constants $c_i(l)$ such that

$$n^{l+1} = n(n-1)\cdots(n-l) + \sum_{i=1}^{l} c_i n^i,$$
 (A3)

we can write

$$\sum_{n=0}^{\infty} \frac{\Gamma(n+\alpha(s)+1)}{n!\Gamma(\alpha(s)+1)} n^{l+1} = \sum_{n=l+1}^{\infty} \frac{\Gamma(n+\alpha(s)+1)}{\Gamma(n-l)\Gamma(\alpha(s)+1)}.$$
 (A4)

The latter sum is equal to

$$\frac{\Gamma(l+\alpha(s)+2)}{\Gamma(\alpha(s)+1)}(1-x)^{-l-\alpha(s)-2}\Big|_{x=1}=0$$

if $\alpha(s) < -l-2$. (A5)

This completes the proof.

APPENDIX B

We prove that Eq. (10) is bounded by $p^{-(1+2b+4am_{\pi}^2-\zeta)}$ as $p \to +\infty$. We do this by finding the asymptotic behavior of the sum in Eq. (10). When $1+2b+4am_{\pi}^2$ $-\zeta \neq 0, -1, -2, \ldots$, the sum can be rewritten

$$\frac{\Gamma(1+2b+4am_{\pi}^{2}-\zeta)}{p!} \left[(p+1)^{k-1} + \sum_{n=1}^{\infty} \frac{(n+2b+4am_{\pi}^{2}-\zeta)\cdots(2+2b+4am_{\pi}^{2}-\zeta)(1+2b+4am_{\pi}^{2}-\zeta)}{(p+n)\cdots(p+2)(p+1)} (p+n+1)^{k-1} \right].$$
(B1)

We choose an integer N with the property

$$N \ge |1 + 2b + 4am_{\pi^2}|$$
 and $N \ge |2b + 4am_{\pi^2}|$.

Then the magnitude of (B1) is bounded by

$$\frac{(p+1)^{k-1}}{p!} + \frac{1}{(N-1)!} \sum_{n=1}^{\infty} \frac{(n+p+1)^{k-1}}{(n+N)(n+N+1)\cdots(n+p)}$$
(B2)

to leading order in p. In the case where k=0, the sum in (B2) can be performed⁸ and (B2) is equal to

$$[p!(p-N+1)]^{-1}.$$

For $k \ge 1$, $(n+p+1)^{k-1}$ may be expanded by the formula

$$(n+p+1)^{k-1} = \sum_{r=0}^{k-1} \binom{k-1}{r} (n+N)^r (p-N+1)^{k-1-r}.$$
(B3)

⁷ G. F. Chew and S. Mandelstam, Phys. Rev. **119**, 467 (1960). ⁸ I. S. Gradshteyn and I. M. Ryzhik, *Table of Integrals, Series,* and *Products* (English translation) (Academic, New York, 1965). This leads to a new upper bound for (B2):

$$\frac{(p+1)^{k-1}}{p!} + \frac{1}{(N-1)!} \sum_{r=0}^{k-1} {\binom{k-1}{r}} (p-N+1)^{k-1-r} \times \sum_{n=1}^{\infty} \frac{1}{(n+N+r)\cdots(n+p+1)(n+p)}.$$
 (B4)

The sum over *n* is calculated⁸ with the result that (B4) behaves as $p^{k-1}/p!$ to leading order in *p*.

When $2b+4am_{\pi}^2+1-\zeta$ is a nonpositive integer, -m, which occurs only if $2b+4am_{\pi}^2<0$, the first m+1 terms of the sum in Eq. (10) have poles. The poles are multiplied by the zeros of the sine function and the series itself may be terminated after m+1 terms. The first term dominates asymptotically and behaves as $p^{k-1}/p!$.

We have shown that the product of the sine function and sum in Eq. (10) is bounded by $p^{k-1}/p!$ as $p \to +\infty$. It follows easily that Eq. (10) is bounded by $p^{-(1+2b+4am_{\star}^2-\zeta)}$.

790

APPENDIX C

In this Appendix we prove the result stated in Sec. III in the case where $\text{Re}\alpha \rightarrow -\infty$. Expression (12) for $V_l(\alpha)$ may be replaced by another integral representation which allows us to study the asymptotic behavior of $V_l(\alpha)$ as $\operatorname{Re}\alpha \to -\infty$. Fixing ϵ and α , we define a function g(z) by

$$g(z) = (1-z^2)^l \frac{\partial^l}{\partial \epsilon^l} \frac{\Gamma(\epsilon - \frac{1}{2}c + \frac{1}{2}\alpha + \frac{1}{2}z(\alpha - c))}{\Gamma(\epsilon - \frac{1}{2}c - \frac{1}{2}\alpha + \frac{1}{2}z(\alpha - c))} \bigg|_{\epsilon = 1-b}, \quad (C1)$$

and from (12) note that

$$V_{l}(\alpha) = -\gamma \frac{(\alpha - c)^{l}}{4^{l} l!} (-1)^{l} \Gamma(1 - \alpha) \int_{-1}^{1} g(t) dt. \quad (C2)$$

We compute the integral of g(z) in the complex z plane over the closed contour shown in Fig. 3. g(z)is a meromorphic function and has no poles inside or on the contour of integration, provided that b < 1 and $Im\alpha < 0$. In what follows we assume that $Im\alpha < 0$, in which case the integral of g(z) vanishes. Later the results are extended to the case where $\text{Im}\alpha > 0$.

As the height R of C_3 approaches $+\infty$ (see Fig. 3), the integral of g(z) along C_3 approaches zero, provided that $\operatorname{Re}\alpha < -l$. The integrals along C_1 and C_2 converge absolutely if $\text{Re}\alpha < -1 - l$. Since these inequalities are satisfied in the limit as $\operatorname{Re}\alpha \to -\infty$, we may write

$$\int_{-1}^{1} g(t)dt = -\int_{C_1} g(z)dz - \int_{C_2} g(z)dz \text{ as } R \to +\infty .$$
(C3)

A new representation of $V_l(\alpha)$ is obtained from (C2) and (C3):

$$V_{l}(\alpha) = \frac{-\gamma(-1)^{l}}{l!4^{l}} \left[\int_{0}^{\infty} \frac{\partial^{l} I_{l}(\alpha, y, \epsilon)}{\partial \epsilon^{l}} dy - \int_{0}^{\infty} \frac{\partial^{l} \overline{I}_{l}(\alpha, y, \epsilon)}{\partial \epsilon^{l}} dy \right], \quad (C4)$$
with

$$I_{l}(\alpha, y, \epsilon) = iy^{l}(y+2i)^{l}(\alpha-c)^{l}$$
$$\Gamma(1-\alpha)\Gamma(\epsilon+\frac{1}{2}iy(\alpha-c))$$

$$\times \frac{\Gamma(1-\alpha)\Gamma(\epsilon+2iy(\alpha-c))}{\Gamma(\epsilon-c+(\frac{1}{2}iy-1)(\alpha-c))}, \quad (C5)$$

$$\bar{I}_{l}(\alpha, y, \epsilon) = iy^{l}(y - 2i)^{l}(\alpha - c)^{l} \times \frac{\Gamma(1 - \alpha)\Gamma(\epsilon + (\frac{1}{2}iy + 1)(\alpha - c))}{\Gamma(\epsilon - c + \frac{1}{2}iy(\alpha - c))}, \quad (C6)$$

if $\operatorname{Re}\alpha < -1 - l$ and $\operatorname{Im}\alpha < 0$.

The asymptotic behavior of $V_l(\alpha)$ as $\operatorname{Re}\alpha \to -\infty$ can be determined by an examination of the integrands of (C4) in the limit as $|\alpha| \to \infty$. Since the asymptotic behavior of these integrands will depend on the value

FIG. 3. Contour used in the analysis of $V_l(s)$ as $\text{Res} \to -\infty$.

of y, it is convenient to divide each of the two integrals in (C4) into three parts:

$$\int_{0}^{\infty} \frac{\partial^{l} I_{l}}{\partial \epsilon^{l}} dy = \int_{0}^{|\alpha|^{-\lambda}} \frac{\partial^{l} I_{l}}{\partial \epsilon^{l}} dy + \int_{|\alpha|^{-\lambda}}^{|\alpha|} \frac{\partial^{l} I_{l}}{\partial \epsilon^{l}} dy + \int_{|\alpha|}^{\infty} \frac{\partial^{l} I_{l}}{\partial \epsilon^{l}} dy, \quad (C7)$$

where λ is an arbitrary parameter which satisfies $0 < \lambda < 1$. The same relation can be written for \bar{I}_{l} .

We will now place asymptotic bounds on each of the integrals appearing in (C7) in the limit as $\text{Re}\alpha \rightarrow -\infty$. When y is in the region $|\alpha|^{-\lambda} \le y \le |\alpha|$, the asymptotic behavior of $\ln |\partial^l I_l / \partial \epsilon^l|$ to leading order is given by

$$\ln \left| \frac{\partial^{l} I_{l}}{\partial \epsilon^{l}} \right| \rightarrow \operatorname{Rea}\left[\frac{1}{2} y \operatorname{arg}(1+2i/y) + \frac{1}{2} \ln(1+\frac{1}{4}y^{2}) \right] \\ + \operatorname{Ima}\left[\frac{1}{4} y \ln(1+4/y^{2}) - \operatorname{arg}(1-\frac{1}{2}iy) \right] \\ \text{as} \quad \operatorname{Rea} \rightarrow -\infty . \quad (C8)$$

The argument functions of (C8) are restricted to values less than π by (15). When Im $\alpha < 0$ and Re $\alpha \rightarrow -\infty$, this expression for $\ln |\partial^l I_l / \partial \epsilon^l|$ approaches $-\infty$ as $|\alpha| \to \infty$. More precisely, there exist positive numbers M and \overline{M} and a function $H(\alpha)$ such that for all y in the interval $|\alpha|^{-\lambda} \leq y \leq |\alpha|$

$$\left|\frac{\partial^{l} I_{l}}{\partial \epsilon^{l}}\right| \leq H(\alpha) \exp(M \operatorname{Re}\alpha |\alpha|^{-\lambda} + \overline{M} \operatorname{Im}\alpha |\alpha|^{-\lambda}), \quad (C9)$$

where $\ln |H(\alpha)| / (M \operatorname{Re}\alpha |\alpha|^{-\lambda} + \overline{M} \operatorname{Im}\alpha |\alpha|^{-\lambda}) \to 0$ as $|\alpha| \rightarrow \infty$. Therefore,

$$\left| \int_{|\boldsymbol{\alpha}|^{-\lambda}}^{|\boldsymbol{\alpha}|} \frac{\partial^{l} I_{l}}{\partial \epsilon^{l}} dy \right| \leq H(\boldsymbol{\alpha}) \exp(M \operatorname{Re}\boldsymbol{\alpha} |\boldsymbol{\alpha}|^{-\lambda} + \bar{M} \operatorname{Im}\boldsymbol{\alpha} |\boldsymbol{\alpha}|^{-\lambda}) \times [|\boldsymbol{\alpha}| - |\boldsymbol{\alpha}|^{-\lambda}]. \quad (C10)$$

We conclude that the integral of $\partial^l I_l / \partial \epsilon^l$ from $|\alpha|^{-\lambda}$ to $|\alpha|$ decreases exponentially to zero as $|\alpha| \to \infty$ when $\operatorname{Re} \alpha \to -\infty$ and $\operatorname{Im} \alpha < 0$.

For $y \ge |\alpha|$, the asymptotic behavior of $\partial^l I_l / \partial \epsilon^l$ to leading order is given by

$$\ln \left| \frac{\partial^{l} I_{l}}{\partial \epsilon^{l}} \right| \to (\operatorname{Re}\alpha + l) \ln y + \frac{1}{2}\pi \operatorname{Im}\alpha.$$
 (C11)

We may use this equation to write

$$\left|\int_{|\alpha|}^{\infty} \frac{\partial^{l} I_{l}}{\partial \epsilon^{l}} dy\right| \leq \bar{H}(\alpha) e^{(\pi/2) \operatorname{Im}\alpha} \int_{|\alpha|}^{\infty} y^{\operatorname{Re}\alpha + l} dy, \quad (C12)$$

where

 $\ln |\bar{H}(\alpha)| / [\frac{1}{2}\pi \operatorname{Im}\alpha + (\operatorname{Re}\alpha + l) \ln y] \to 0 \quad \text{as} \quad |\alpha| \to \infty \,.$

For $\text{Im}\alpha < 0$ and $\text{Re}\alpha \rightarrow -\infty$, this integral goes to zero exponentially.

Consider the integral of $\partial^l I_l / \partial \epsilon^l$ from 0 to $|\alpha|^{-\lambda}$. For y in this range, $|\alpha y|$ can approach infinity or remain bounded as $|\alpha| \to \infty$. The asymptotic behavior of $\ln |\partial^l I_l / \partial \epsilon^l|$ when $|\alpha y| \to \infty$ is given by the right-hand side of (C8) plus the quantity $(1-\epsilon) \ln |\alpha|$. When αy remains bounded as $|\alpha| \to \infty$, we obtain

$$\left|\frac{\partial^{l} I_{l}}{\partial \epsilon^{l}}\right| \to |\alpha y|^{l} |\alpha|^{1-\epsilon+y/2 \operatorname{Im}\alpha} \quad \text{for} \quad \operatorname{Im}\alpha < 0. \quad (C13)$$

We conclude that the most divergent behavior of $\partial^l I_l / \partial \epsilon^l$ for y in the region $0 \le y \le |\alpha|^{-\lambda}$ is $|\alpha|^b$. Hence for any constant $\delta > 0$

$$|\alpha|^{1-b-\delta} \int_0^{|\alpha|-\lambda} \frac{\partial^l I_l}{\partial \epsilon^l} dy \to 0.$$
 (C14)

In the limit as $\operatorname{Re}\alpha \to -\infty$ with $\operatorname{Im}\alpha < 0$, we have shown that for any number $\delta > 0$

$$\alpha^{1-b-\delta} \int_0^\infty \frac{\partial^i I_l(\alpha, y, \epsilon)}{\partial \epsilon^i} dy \to 0.$$
 (C15)

We now determine the conditions under which the integral of $\partial^l \bar{I}_l / \partial \epsilon^l$ goes to zero as $|\alpha| \to \infty$. For y in the region $|\alpha|^{-\lambda} \le y \le |\alpha|$, the expansion of $\ln |\partial^l \bar{I}_l / \partial \epsilon^l|$ to leading order in α becomes

$$\ln \left| \frac{\partial^{l} \bar{I}_{l}}{\partial \epsilon^{l}} \right| \rightarrow \operatorname{Rea}\left[\frac{1}{2} y \operatorname{arg}(1 + 2i/y) + \frac{1}{2} \ln(1 + \frac{1}{4} y^{2}) \right] \\ + \operatorname{Ima}\left[-\operatorname{arg}(-1 - \frac{1}{2} i y) - \frac{1}{4} y \ln(1 + 4/y^{2}) \right] \quad (C16)$$

as $|\alpha| \to \infty$ if $\operatorname{Im} \alpha < 0$ and $\operatorname{Re} \alpha \to -\infty$. If $y \ge |\alpha|$, it

follows that

$$\ln \left| \frac{\partial^{l} \bar{I}_{l}}{\partial \epsilon^{l}} \right| \to (\operatorname{Re}\alpha + l) \ln y + \frac{1}{2}\pi \operatorname{Im}\alpha \qquad (C17)$$

as $\operatorname{Re}\alpha \to -\infty$ with $\operatorname{Im}\alpha < 0$. Arguments similar to those used to prove (C10) and (C12) were zero as $|\alpha| \to \infty$ can now be used to show that

$$\int_{|\alpha|^{-\lambda}}^{\infty} \frac{\partial^{l} \bar{I}_{l}}{\partial \epsilon^{l}} dy \to 0 \text{ (exponentially),} \qquad (C18)$$

where $\operatorname{Re}\alpha \to -\infty$ and $\operatorname{Im}\alpha < 0$.

For $0 \le y \le |\alpha|^{-\lambda}$, $|\alpha y|$ approaches infinity or remains bounded as $|\alpha| \to \infty$. Formula (C16) plus $(\epsilon - c) \ln |\alpha|$ gives the asymptotic behavior of $\partial^t \overline{I}_l / \partial \epsilon^l$ as $|\alpha| \to \infty$ and $|\alpha y| \to \infty$. When $|\alpha y|$ is bounded as $|\alpha| \to \infty$, we obtain to leading order in α

$$\ln \left| \frac{\partial^{l} \bar{I}_{l}}{\partial \epsilon^{l}} \right| \to (\epsilon - c) \ln |\alpha| + \operatorname{Im} \alpha (\pi - \frac{1}{2} y \ln |\alpha|) + l \ln |\alpha y|. \quad (C19)$$

If $|\operatorname{Im}\alpha/|n\alpha| \to \infty$ as $|\alpha| \to \infty$ with $|\alpha y|$ bounded, $\partial^{l} \overline{I}_{l}/\partial \epsilon^{l}$ approaches zero exponentially. In general, the most divergent behavior of $\partial^{l} \overline{I}_{l}/\partial \epsilon_{l}$ is $|\alpha|^{\epsilon-c}$. These results and Eq. (C18) can be combined to show that as $\operatorname{Re}\alpha \to -\infty$ with $\operatorname{Im}\alpha < 0$

$$\int_{0}^{\infty} \frac{\partial^{l} \bar{I}_{l}}{\partial \epsilon^{l}} dy \to 0 \text{ (exponentially)}$$
(C20)

if $|Im\alpha/ln\alpha| \rightarrow \infty$, and

$$\alpha^{2b+4am_{\pi}^2-\delta} \int_0^\infty \frac{\partial^l \bar{I}_l}{\partial \epsilon^l} dy \to 0, \qquad (C21)$$

where δ is any positive number.

Based on Eqs. (C4), (C15), (C20), and (C21), we have extended the result stated in Sec. III to the case of $\text{Re}\alpha \rightarrow -\infty$ and $\text{Im}\alpha < 0$.

The representation (12) has the property $V_l(\alpha) = V_l^*(\alpha^*)$. This means that $|V_l(\alpha)|$ and $|V_l(\alpha^*)|$ have the same properties as $|\alpha| \to \infty$ and the conclusions obtained in this Appendix apply equally well in the case where $\text{Im}\alpha > 0$.

Note added in proof. The formula which we have derived for $\pi\pi$ partial widths was also obtained by Sivers and Yellin.⁵ The asymptotic and oscillatory behavior of disc $V_l(s)$ has been studied independently by Atkinson with conclusions similar to our own [D. Atkinson (private communication)].

2

792