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The 1962 Amati-Bertocchi-Fubini-Stanghellini-Tonin (ABFST) multiperipheral model, witha kernel based
on an up-to-date guess for the elastic = cross section, is used to illuminate certain controversial concepts
that have arisen in multi-Regge models. The small magnitude of the elastic == cross section above the region
of prominent resonances is related to the small diffraction-dissociation cross section and to the small Pom-
eranchon coupling constant in the Chew-Pignotti (CP) model. Although lower trajectories in the multi-Regge
kernel give an inadequate representation of low-subenergy resonances, we show that an artificial CP-model
input can be found which roughly simulates the resonance component of the ABFST kernel. Byproducts of
our investigations are (1) a generalization of the Berestetsky-Pomeranchuk formula that provides a practical
basis for exact numerical evaluation of the ABIF'ST model at any energy, and (2) a perturbative analysis
of diffractive dissociation (d.d.) which reconciles a small d.d. cross section at accessible energies with a total
cross section that becomes entirely of the d.d. type in the extreme high-energy limit.

I. INTRODUCTION

N attempt has been made during the past two
years to elucidate the dynamical status of the
Pomeranchon and other high-ranking Regge trajectories
through the study of multiparticle production processes
via multi-Regge-pole models.'~7 Interesting results have
been achieved, but the shaky underpinning of multi-
Regge dynamics has left room for skepticism about their
significance. We here revive the 1962 Amati-Bertocchi-
Fubini-Stanghellini-Tonin (ABFST) multiperipheral
model® based on (non-Regge) pion exchange in an effort
to illuminate certain controversial aspects of the 1968
Chew-Pignotti (CP) multi-Regge-pole model.!*~¢ The
qualitative conclusions from the latter survive, and
there emerges a more specific and, perhaps, more
believable picture of the underlying mechanism.

It is an established experimental fact that if the final
particles from a multiple-production reaction are or-
dered according to longitudinal momenta, the mean
subenergy of a neighboring pion pair is less than or of
the order of 1 GeV.? This experimental importance of
small subenergies in the multiperipheral chain has three
immediate consequences that undermine confidence in
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the CP model while at the same time supporting the
ABFST model:

1. Kinematic approximations depending on large
values of subenergies are unjustified.

2. A multi-Regge-pole model based on leading tra-
jectories requires an extreme and perhaps unreasonable
significance for duality : an adequate Regge description
of the lowest-energy resonances.

3. A lower-lying trajectory containing a low-mass
particle may be more important than high-lying tra-
jectories containing no low-mass particle; that is, a
representation in the original “peripheral” sense based
on nearby poles in momentum transfer may be more
relevant than a representation based on high-ranking
poles in angular momentum.

We are thus led to reconsider the model based on
pion-pole dominance that was introduced in 1962 by
ABFST.® The small pion mass motivates the assump-
tion that the dominant multiperipheral chain is the one
shown in Fig. 1, which maximizes the number of pion-
exchange links in a collision of the type

A+B—> A+ B+2(N+1) pions. (1.1)

Every second link is to be approximated by a pion pole,
allowing the following factorization of the amplitude:

1 1
sFAB-»AB’+7Hrz frA(sAyaA)_—ffT(sl)al) e
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where f,.(s,0) is the elastic wx amplitude at c.m. angle §
and energy s'?, and fra4,z is the corresponding ampli-
tude for pions colliding with particles of type A4,B.
Since the s; are not large on the average, we shall not
use a Regge representation for these two-particle —
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T16. 1. Diagram representing the ABFST-model amplitude for
the process A+B — A+B+42(N+1)r.

two-particle amplitudes, but instead will employ a
realistic guess based on a combination of experimental
and theoretical sources. We shall not assume that the
low-energy resonance components of these two-particle
amplitudes are adequately described on the average by
a Regge representation, as was conjectured by Chew
and Pignotti.t

The model amplitude (1.2) is constructed so as to
have the pion poles at the correct positions with the
correct residues, but the implied prescription for moving
away from the poles is arbitrary. We shall identify 6, as
the angle, in the c.m. system of the outgoing 7th pion
pair, between the direction of the outgoing pions and the
direction of the spatial components of the adjacent
momentum transfers. This prescription leads to a
simple relation between the kernel of the multiperipheral
integral equation and the elastic o cross section. Other
equally plausible prescriptions lead to less manageable
relations.

In the ABFST model® the pion plays the role of a
zero-spin elementary particle, a fact which implies a
counterpart Bethe-Salpeter equation. ‘“Reggeizing” the
pion links would break the Bethe-Salpeter correspond-
ence and still leave a tractable problem,'®*? but the
logic behind such an “improvement” is not presently
clear. If a motivation emerges, pion Reggeization can
and will be studied in the future.

Both in the ABFST pion-exchange model and in the
multi-Regge-pole model, the result of summing all
partial cross sections leads to a total cross section with
Regge asymptotic behavior. Any model based on the
iteration of a multiperipheral kernel yields output Regge
poles, but the (input) multi-Regge-pole model ex-
plicitly characterizes the kernel through Regge tra-
jectories and residues and thereby closes an immediate
bootstrap cycle. The bootstrap implications of the
ABFST model are not fundamentally different but are
indirect—requiring an additional link that proceeds
outside the model and involves crossing. It would be
convenient if duality were to permit the multi-Regge
shortcut, but, as shown in Appendix C, the resulting
errors are quantitatively inadmissible.

A further simplification important to the CP model
was the neglect of phase-space correlation between
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adjacent momentum transfers in the multiperipheral
chain. It was thereby possible to factor the kernel, to
average over separate momentum transfers, and thus to
define effective coupling constants. These constants are
related so indirectly to Regge residues, even assuming
duality, that so far they have been determined only by
fitting multiple-production data. However, since kernel
factorization is equivalent to the trace approximation
for the Fredholm determinant, and in the ABFST model
the trace approximation turns out to be tolerable, we
have the possibility of calculating the effective CP
coupling constants from the ABFST kernel, that is, from
the wm elastic cross section. In particular, we shall be
able to understand a vital feature of the CP model, the
small value of the internal Pomeranchon coupling, in
terms of the small high-energy tail of the elastic mr
cross section.

A well-known and powerful technique for studying
the ABFST model is to write an integral equation for
the imaginary part of the forward amplitude and to
diagonalize the equation by a suitable transformation.
The transformation is from the energy s to the Toller
variable A: a ‘“higher angular momentum” in the !
channel. This approach directly yields the asymptotic s
properties of the cross section, but is less well adapted to
studying finite-energy properties of the model, par-
ticularly if the kernel has a small but nonzero com-
ponent at high subenergy. Such a component generates
fine structure in the output Regge-pole spectrum, so
that the physics of finite energies involves the positions
and residues of several output poles. We shall consider
the diagonalization approach in the final sections of this
paper, but in the earlier sections we shall study the
ABFST model by more elementary methods.

II. INDIVIDUAL CROSS SECTIONS FOR
MULTIPLE PION PRODUCTION

As the most elementary and straightforward approach
to the ABFST model, we present in this section the
model prediction for individual production cross sec-
tions. The notation will be useful for all subsequent
considerations. Referring to Fig. 1, let us define a set

of “vertex boost”1®"18 parameters g4, ¢1, ¢, - . ., qw, ¢5
by
Si—li—lip1
coshg;= , (2.1a)
2(=t:)1 P (=)'
A h SA—mA2—If1 ( )
sinhgq= ———— 2.1b
2ma(—1)12
. Sp—mp*—ini1
sinhgp= (2.1¢)

2m3(—tN+1)1/2 ’

BN. F. Bali, G. F. Chew, and A. Pignotti, Phys. Rev. 163,
1572 (1967); Phys. Rev. Letters 19, 614 (1967).
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together with the “over-all boost” parameter 7:

S—ma*—mp?
coshyp= (2.2)

ZmAmB

Let us also define quantities C 4 (s), C(s), and Cp(s) such
that!4

C(s)= (1/16x®*)\(s,m2m2)cer™ (s),  (2.3a)
Ca(s)= (1/16a*)\(s,m a2 m.2)oa™(s), (2.3b)
Cs(s)= (1/162* )\ (s;mp?m.>)aa™B(s), (2.3c)
with
N(x,y,2) = [a?+ 2+ 22— 2 (wy+xz+yz) V2. (2.4)

In terms of these quantities, we show in Appendix A

1673
O'NAB(S) e —
)\Z(s,mAZ,mB?)

Note that the index IV has been defined so that N=—1
has the significance

o_1A7(s)=0ca™(s). (2.6)

The special case of Eq. (2.5) with N =0 was first written
down by Berestetsky and Pomeranchuk.®

The derivation of Eq. (2.5) is given in Appendix A for
the case of neutral pions. When charge is included it is
convenient to diagonalize in the crossed-channel isotopic
spin, which may take the values 7=0, 1, 2 in the
ABFST model because two pions are exchanged be-
tween particles 4 and B in the sense of Fig. 2. One then
replaces Eq. (2.3a) by

1
CI(S) = ___>\(s)m1r27m7rz)z BII'O'el,I'T‘”(S) y (2.33./)
1673 I

where 817 is the isotopic-spin crossing matrix,

Brrr = [

fn(pr,pn1) =Fxt((p1—pws1)? p1%,pnia?)

2.7

ol GOl ol

|
SRS
|
o= olen eojen
—

E/dsl- cdsy C(s1) - - -C(sN)G)N—l/d“pz- ..t

/dSAdslliSz‘ . 'dSNdSBdlldtg' . 'dtN+1

Fre. 2. Diagram representing the cross section obtained by
squaring the ABFST amplitude of Fig. 1.

that the amplitude (1.2) leads to the following formula
for the cross section o 54 to produce &V internal pairs of
pions (see Fig. 2):

e —gu—g)"
N!
CA(SA)C(SI) -+ -C(sn)Cp(sB)

(h—ms2)(ts—ms2)?- - -

(n—qa—q1—

0(n—qa—q1—" - —gsn)

(2.5)

(iN+1 _"m7r2) 2

There will be a corresponding replacement of C4 and C'5
that depends on the isotopic spin of particles 4 and B.

The formulas of this section give the physical content
of the ABFST model in terms of input elastic cross
sections. At any finite energy, only a finite number of
the output inelastic cross sections o 42 are nonzero, so
with a sufficiently powerful computer the theoretical
task would now be finished, nothing but elementary
quadrature remaining. Already at lab energies <20
GeV, however, the number of important N values is
sufficiently large that important collective effects appear
in the total cross section, effects which are unlikely to be
illuminated by a simple-minded term-by-term evalua-
tion. It is thus worthwhile to study the summation over
N by the integral equation technique of ABFST.

III. RECURSION RELATION AND
ABFST INTEGRAL EQUATION

Following ABFST and using the notation of Sec.
II, we define a Lorentz-invariant function of two four-
vector variables,

T ((pa—p1)?—s1)- - -6 ((pxns1—pn)?—sn)

N CAY
(P22_m1r2)2‘ . (ﬁNz_m72)2

corresponding to Fig. 3, where all lines refer to pions. Although not explicitly so represented in its arguments, Fy*
is nonzero only for positive timelike components of (px.1— p1). The normalization is such that, by comparison with

14 Tf the incident particles (4,B) are not pions, Egs. (2.3b) and (2.3c) should be interpreted so that the cross sections o+4°!(s) include
d-function contributions at s=m4? corresponding to an end link in Fig. 1 leading to one particle rather than two.
15V. B. Berestetsky and I. Ya. Pomeranchuk Zh. Eksperim. i Teor. Fiz. 12, 752 (1961) [ Soviet Phys. JETP 39, 1078 (1960)J; Nucl.

Phys. 22, 629 (1961).
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Eq. (2.5) (see Appendix A),
En*(s,ma?ma) =[N(s,mama?) /167 Jo y—o™"(s) , 3.2)
or, more generally,
1673 2\?
O‘NAB(S) = /dSAdSB CA(SA)CB(SB) (—") /d4p1d4PN+1
)‘(s:m427m32) 0
5+ ((pr—1p4)*—54)6 (P —pav41)*—sB)
Iv(pupyer). (3.3)
(?12_m12)2(PN+12—mr2)2
Observe that although the definition (3.1) implies for with the kernel
the special case N=1 that the function (P —p")2—s")
K(' )= [as cy= L
F1+(s,t,t’)=C(s) (3'4) (Pl’2_m1_2)2
is independent of ¢ and ¢, in general, the functions Fyt fH@",p)
depend on all three scalars. = (3.8)
The functions fa(p,p’) satisfy the recursion relation ("2 —m4?)
. ) Equation (3.2), together with (2.6), implies
In(p,p")= /4 gdszv C(sN); Ft(s,ma2ma?) =[N (s,mam.2) /161 ] ™ (s),  (3.9)

5*((p'—pw)*—sw)

(PNz_'mr?)Z

fva(p,pn). (3.5)

X / d*pn

The upper limit of the sy integration is only formally
infinite, since sy must be less than (p—p’)? by some
finite amount. [This constraint is imposed in the py
integration, where it is impossible to simultaneously
satisfy the 6 function and have (p—pn)? above the
threshold for the function fy_; if sy> (p—p")2]

The definition

fbp) = Nz In(p.p) (3.6)

then leads to the ABFST integral equation

2
02 = Fi(pp)+ = f & S VK@), (3T

R,

I N +1

F1c. 3. Momenta and invariants used in the integral equation.

whereas replacement of fy by fin Eq. (3.3) yields a
total inelastic cross section for a general (4,B) collision.

If the integral equation (3.7) is solved by iteration
and substituted into (3.3), one simply reproduces the
sequence of partial cross sections given by (2.5). We
propose to study the solution by two other methods.
The first method depends on splitting the basic kernel-
determining function C(s) into two parts—one large and
one small—and treating the small part as a perturba-
tion. To motivate such a splitting of the kernel, we now
examine the structure of C(s) as revealed by experi-
mental 7= elastic scattering data.

Figure 4 shows our estimate, based partly on experi-
mental knowledge and partly on the Veneziano model,
of the three == elastic cross sections and the three C%’s.
We have included the following resonances: standard p
and f (both with a 140 MeV width), a broad e (I'c=450
MeV) at the p mass, and highly inelastic g and p”". The
assumed properties of these resonances are presented in
Table I. We also included a nonresonant =2 cross
section of 8-12 mb and forced the cross sections down to
approximately match the Weinberg scattering lengths

TasLE I. Estimated properties of the low-energy ar resonances.

Full
Reso- Mass  width Elasticity Y i8010t0t! (max)
nance (GeV) (GeV) =I'yz/Ttot (mb) d;fs
P 0.765 0.14 1.0 231 0.25
€ 0.765 0.45 1.0 26 0.09
f 1.26 0.14 1.0 46 0.05
g 1.65 0.14 0.35 38 0.04
f 1.65 0.14 0.28 7 0.01
dk=044

» Evaluated from Eq. (4.20) for T'=1 GeV2,
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at threshold.!® From Fig. 4 one sees that for s>3 GeV?,
the resonance fluctuations are expected to be negligible,
so that a representation in terms of Regge poles above
this energy is valid. One observes, furthermore, that the
cross sections for s>3 GeV? are expected to be small
relative to their values in the region of low-energy
resonances. From factorization (and also the intuitive
notion that, since the high-energy ratio oe1/otot is § to £
for both pp and wp, this ratio must have a similar value
for ), we obtain g404™= 16 mb and o¢""(asym)=2.5-
3.0 mb. Of course ¢,1""(s) is not constant, due to the
logarithmic shrinkage of the diffraction peak, so we
mean these values to hold for s=~20-50 GeV?2,

IV. WEAK POMERANCHUK COMPONENT OF
ABFST KERNEL AND DIFFRACTIVE
DISSOCIATION

The ABFST model, like a multi-Regge model, neces-
sarily implies multiple Pomeranchuk (2P) exchange.
When the model is expressed as an integral equation and
then diagonalized, as in Sec. V below, this P component
produces the kernel’s rightmost singularlty in the J
plane and complicates the leading singularity structure
of the output amplitude. The asymptotic behavior of
the amplitude at extreme high energies is correspond-
ingly affected. P-generated singularities have neverthe-
less been shown in the CP model to be so weak that at
moderate energies the P component of the kernel has
relatively minor physical consequence.!®* But because
the CP model employs dubious approximations to
achieve its high degree of tractability, the generality of
the “weak Pomeranchuk” notion has not been widely
appreciated. In this section we use the ABFST model to
study the same question in a different and perhaps more
persuasive context.

Rather than working in the J plane, we shall study in
a direct fashion the effect on the moderate-energy total
cross section of including or excluding from the ABFST
kernel the high-energy tail of the elastic = cross section.
Our starting point will be the undiagonalized integral
equation (3.7), together wlth perturbation theory. We
show for energies where s is large but Ins is not, that
single-P exchange is predicted to be small and multiple-
P exchange negligible. Exchange of at least one P in an
inelastic reaction is often characterized as diffractive
dissociation (d.d). Hence the objective of this section
is to show that moderate-energy d.d. cross sections are
relatively small.

The specification of “moderately high” energy is
crucial to an understanding of the subtle behavior of
d.d. We shall find that the proportion of the total cross
section involving at least one P exchange increases with
increasing energy. Eventually this fraction must ap-
proach unity, but not until energies at which Ins is a
large number. In other words, the rate of increase of the
d.d. cross section is so small that, even at energies at

16 S, Weinberg, Phys. Rev. Letters 17, 616 (1966).
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which Regge behavior of the total cross section is well
established (e.g., s=~20, lns~3), the d.d. component
remains a minor fraction.

It follows then that any model which attempts to
describe the total cross section purely in terms of P
exchange, single or multiple, is inadequate. On the
other hand, a crude model may omit P exchange if one
wishes to describe only moderately high energies.

After this lengthy preamble we now proceed to
estimate the first-order effect of the Pomeranchon on the
total cross section at energies where s, but not Ins, is
large. We shall separate the elastic wr cross section into
two components—a large low-energy resonance com-
ponent and a small high-energy tail—and then calculate
the effect of omitting or including this tail. We thus
begin by writing

f1(8)= frB(s)0(s*—s)+ frP(s)0(s—s*), (4.1)



770 CHEW,

where s* will usually be taken as about 3 GeV? (see
Fig. 4). Next we express the integral equation (3.7)
symbolically as

f=hH+feh
= fif+ fi?+ fg(f1*+ f7),

where g represents the pion propagator. Let fZ designate
the zeroth-order solution,

(4.2)

fE=fr"+ fRgfi%. (4.3)
Then, to first order in the small quantity fi%,
=R+ [P+ [P+ R fif+ fRe g/, (44)
or, also to first order in f17%,
Af=f—fR= [P+ [P f+ fefi"+ fg ifsf.  (45)

Separating off the first term, which corresponds to
elastic scattering, we have for our perturbation estimate
of diffractive dissociation

. f—?( / firef+ / e+ [ [ feiss)- (1)

The first two terms in the parentheses represent dis-
sociation of either one or the other of the two incident

1673

ad,d,””(s)z2~~—~ /d.h Ctm’(é‘l)/dﬁ C(S2)/Et

>\2(s>m7r21m7r2)
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particles, while the third represents dissociation of both.
We shall refer to these alternatives as ‘“‘single dissocia-
tion”” and ‘“double dissociation,” respectively.

We have at the outset agreed to treat the function
J1(p,p’) as depending only on the single scalar (p’— p)2.
Doing the same for f(p,p’) in Eq. (4.6), we may replace
f through Eq. (3.9) by the total or cross section. Now,
suppose we assume that the ABFST model has the
capacity to generate the physically observed pion-
production cross sections and the corresponding total
cross section. Then, to evaluate ¢q.4.7 via Eq. (4.6), we
do not require the resonance kernel f,2. We can substi-
tute in the observed total cross section. Assuming such
capacity for the model, we propose to use the experi-
mental total cross section in Eq. (4.6). The two types of
integrals therein are then formally identical to those
appearing in Eq. (2.5) for N=0, 1, except that certain
elastic cross sections now become total cross sections.

If at this point we restrict attention to zero isospin in
the crossed channel, and correspondingly define

N, 7% ms")

Ctot(s) = —-----3" Borotos, 2™ (s),  (4.7)
1673 r

we obtain by appropriate substitutions in Eq. (2.5) the

following explicit realization of Eq. (4.6):

dts
X / dsy C¥t(sy) / dsy C(sy) / ds; C¥(s3) / / (1—q1—¢2—¢5)0(n—q1—q2—gs).
(hi—ma®)?J (ta—m,?)?

Examination of the integrands appearing in (4.8)

dt 1673
Mg 26(7} Tt i;(s,m,ﬁ,m,,z)
dt
(4.8)
high- and low-energy components:
Ttot™™(5) = 010t (5)0 (5% —5)F- 01t ()0 (s—5*) . (4.9)

reveals that the simple pion propagators do not suffi-
ciently cut off the large-f contributions. As written, one
finds the important range of |¢;| to increase indefi-
nitely with increasing s, in violation of the underlying
physical assumption of peripheralism. A related fact
discussed below in Sec. V is that the diagonalized
ABFIST equation is not of Fredholm type unless a ¢
cutoff is imposed. [The cutoff parameter employed in
Sec. V is not precisely equivalent to that used here,
because in this section we have neglected the depen-
dence of f(p,p") on p* and p'%] This deficiency pre-
sumably arises from our having treated the exchanged
pions as elementary. In any event, when evaluating
(4.8) we shall employ a simple square cutoff in the ¢
integrals, recognizing that our original motivating as-
sumption of pion-pole dominance requires that such a
cutoff be not much larger than 1 GeV2,

To facilitate evaluation of Eq. (4.8), we break the
total cross section, and correspondingly Ctt(s), into

The formula for o4.4.”™ then becomes the sum of five
terms, which schematically we write as

a'd.d.wrz2/G'tothO'eIP+2/0'totPg0'elP
+/Vtotho'engUtotR—i_Z/UtothaengUtotP

+/Utotpg0elpg0totp. (410)

The first term of (4.10) may be described as a
“generalized Deck effect,”’” as depicted in Fig. 5(a).
When represented as the reaction wa+mp — wa*Fm5,

the mass range here of 74* is small [so small when R is

1 R. J. Deck, Phys, Rev. Letters 13, 169 (1964).



2 RELATION

*
Tg
% L J
A mass? > s*
(_A_____\
R
mass? < s*

i
Ta g A

(a)

BETWEEN THE MULTI-REGGE MODEL- - - 771

* X

Ty Ty

A A
(4 ) C hY
R . R

Ty \ m :7T

P T p T
T, T
e A B

(b)

F1c. 5. (a) Singly diffractive generalized Deck effect, 7 4* being a low-mass system; (b) single diffraction dissociation leading to a large-
mass 4*; (c) doubly diffractive reaction 74+rp—m4*+m5*, where both 7 4* and = * are low-mass systems containing only a few pions.

the p resonance as to allow a 3w (4,) resonance interpre-
tation]. It is well known that the model under study
here gives an acceptable description of diffractively
produced resonances.!®

The second term of (4.10) corresponds to Fig. 5(b)
and is less easy to identify with a clean physical
measurement because the mass of m4* is now un-
bounded. In missing-mass terminology, this second term
evidently corresponds to the region of large missing
mass, above the prominent individual resonances. Each
interval in missing mass yields a contribution to the
d.d. cross section that is constant in over-all energy, but
since the missing-mass range increases with energy, the
total contribution to d.d. from this second term in-
creases with s and must finally surpass the resonance
contribution.

So far only the first term of (4.10) has received
systematic experimental study. The final three terms
correspond to doubly diffractive dissociation, with or
without large masses for m4* and mp*. Figure 5(c), for
example, corresponds to the third term of (4.10), where
the masses of both m4* and 73* are constrained.

In evaluating the integrals we use the following
approximations:

oaf(s) ~const, (4.11)
otot” () ~const, (4.12)
(4.13)

G0t (s) =Y ai(max)rTimd(s —m.2) ,

where m;, I';, and o;(max) are the masses, widths, and
peak total cross sections of the important 7 resonances
(see Table I). Since we are concerned only with moder-
ate energies, we neglect the effect of diffraction peak
shrinkage on the elastic cross section.

There is no difficulty in numerically evaluating Eq.
(4.8), but understanding of the physics is enhanced by
further analysis. Let us suppose that sS>s*>T>>m.2 T
being the cutoff on the ¢ integration. Kinematic simpli-

18 0. Cyzyewski, in Proceedings of the Fourteenth International
Conference on High-Energy Physics, Vienna, 1968, edited by
J. Prentki and J. Steinberger (CERN, Geneva, 1968), p. 367.

fications explained in Appendix C then lead to the
following asymptotic approximations to the five com-
ponents of Eq. (4.10):

Z/O'tot goat =dPoa? (4.14)

Z/Utot goa P =d? In(s/8)oa’®, (4.15)

/Utot 80l gam ~ (dR)Zapl , (4.16)
Z/Utot 80l go'tot NldeR ln(s/s)ad (417)
/Umt 201 Pgoio = (dP)n2(s/S)oal, (4.18)

where
dP=(T/167%) 040", (4.19)
T 7T'imo;(max)
AR=3 dif=) ————.  (4.20)
i i 160 T+m?

The scale parameter § is of the order of magnitude
(s*)*/T.

All cross sections, including ¢q4.q4., refer to the linear
combination appearing in (4.7), which at high energies
is three times the actual = cross section. To avoid
confusion about normalization, it is helpful to think in
terms of the ratio of ¢4.4. to ge1, which is controlled by
the dimensionless quantities d¥ and d®. With T'=1
GeV? and g404""= 16 mb, we find from (4.19) the result

d*=0.25, (4.21)

while from the 7r resonance parameters listed in Sec.
111, Eq. (4.20) gives (see Table I)

dR~0.44. (4.22)
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With such moderate-sized coefficients one sees from
(4.16)—(4.18) that double d.d. is small compared with
single d.d. so long as Ins is not large.

It is easy now to see that multiple-P exchange is
totally negligible. Since in first order single d.d. is larger
than double d.d., in second order the largest term is

P
Z/Uelpa'el Utntpy

which, by comparison with (4.18), is
i‘(d},)2 (o'elp/ototp) In? (S/g)o'elp s

when the leading power of Ins is evaluated. Thus a good
estimate of the total moderate-energy d.d. in the
ABFST model is given by the first two terms of (4.10),
or, more generally, by the first term of (4.8)—which is
simply the Berestetsky-Pomeranchuk singly peripheral
formula'® with an elastic cross section at one vertex and
a total cross section at the other.

The Berestetsky-Pomeranchuk formula is sufficiently
simple that it can be numerically integrated without
approximations. In Fig. 6 we show the result of such an
integration, still using the simple forms (4.11)-(4.13)
but with an exact treatment of phase space and the
physical value of m.,.

The result of our estimate is that the moderate-energy
d.d. cross section is smaller than the elastic cross section,
and thus very small compared with the total. The d.d.
production of a fixed interval of missing mass has the
same dependence on total energy as the elastic cross
section, but the missing-mass spectrum elongates with
incident energy, so that the integrated d.d. cross section
increases logarithmically. When the integrated d.d.
cross section becomes comparable to the total, the
perturbation approach of this section becomes invalid,

(4.23)
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but from (4.15) and (5.21) we estimate that this will not
occur until

dP In(s/8)caf = ol , (4.24)
or, with
aelp/o'toth% )
In(s/5)~24. (4.25)

Thus for all except the highest cosmic-ray energies, it
is appropriate to think of the Pomeranchon component
of the ABFST kernel as a small perturbation.

V. DIAGONALIZED EQUATION AND
DETERMINATION OF REGGE-
POLE POSITIONS

We may use the variables of Bali, Chew, and
Pignotti!®® to reformulate the ABFST integral equa-
tion, which in Eq. (3.7) we have expressed through
conventional momentum variables. Diagonalization of
the equation is then possible, using the techniques of
Refs. 10-12. The result is the same as achieved by the
Bethe-Salpeter route,” and, now exposing the isospin
index, may be written

0
F(t)=Fr 1)+ / AFMLENKPE LY, (5.1)

where the “partial wave” F* is defined by

FA)= /

with

—()\+1)n(s t,t’)

d coshy ———— FrH(s,t,t'), (5.2)

coshy(s,t,t")= (s—t—1')/2(t")12, (5.3)

a similar projection formula defining the inhomogeneous
term Fr,;*. The projected kernel of the integral equation
turns out to be given by

KM=

(t”'—m72)2

X/ ds CI(S)
4m,2

The appropriate formula to invert the transformation
(5.2), given in Ref. 19, is

e (s, ,17)

(5.4)

et (\+1)n
(5.5)

Frst)=— / IO FAY),

sinhy

the integration over d\ running over a contour from
—1 to 4170, passing to the right of all A singularities
of F* The rightmost A\ singularities then control the
large-s asymptotic behavior of F;(s,t,t).

Roughly speaking, the A singularities of F* arise from
two different sources. Branch points already present in

19 M. Ciafaloni and C. DeTar, Phys. Rev. D 1, 2917 (1970).
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the kernel K/* and in the inhomogeneous term Frq*
propagate into the solution of the integral equation,
whereas poles in A arise from zeros of the Fredholm
determinant—corresponding to solutions of the homo-
geneous equation. Pole positions thus depend only on
the kernel and not at all on the inhomogeneous term.
We shall confine our attention here to the question of
pole positions, leaving the more difficult question of
residues for future investigation.

Equation (5.4) shows that, if the elastic =m cross
sections are power bounded, the kernel K (2,') is an
analytic function of A for Re\ sufficiently large. As
discussed in Sec. VI, Eq. (6.1), we assume the asymp-
totic behavior

(s/s0)P1
C ~ (L s 5.6
1(s) > In(s/s0) (5.6)
with
Bo=2ap(0)—1=1,
Bi=ap(0)+a,(0)—1~73, (8.7)

B2= 2‘19(0)_ lzoi

ap(0) and «,(0) being the zero- intercepts of the
Pomeranchuk and p trajectories, respectively. When
(5.6) is combined with (5.4), it follows that the right-
most \ singularity in Kr* is an infinite logarithmic
branch point at A=8;, with strength proportional to C*:

CI 712\ A 7\1/2 1
(@) ) )

. (5.8)
8 A1\ 50 ) (—m®)? A—B: (

le(t)t,)

Analytic continuation to the left of this branch point is
possible, but we shall be mainly concerned with the
region to the right, at least for /=0 and I=1.

The ¢ dependence of (5.8) shows that even for
Re\>Br, the kernel (5.4) is non-Fredholm, the simple
inverse power behavior in ¢ and ¢’ not being adequate to
produce convergence in (5.1). A cutoff of the large-:
region is required, just as in Sec. IV, and we shall
achieve this by replacing the — e lower limit in (5.1)
with —A, where we expect to choose AS1 GeVz We
shall find, fortunately, that certain important quali-
tative conclusions can be reached independently of the
value of A.

Once an assumption has been made about Cz(s), it is
a straightforward matter by numerical computation to
determine the Regge poles as values of \ for which the
kernel has a unit eigenvalue. Insight into the dynamics
is’enhanced, however, by considering the trace ap-
proximation to the Fredholm determinant, whose
vanishing corresponds to the unit eigenvalue:

DI(\)~1—TrKp

1 /“’ dt
=1—
M1/ ((—me?)?

X / ds e O+D1NC(s),  (5.9)
4m,-’

773

with coshn(s,f)=1—s/2¢. In this approximation, which
we have verified to be reasonably accurate by numerical
comparison with the exact solution, the location of
Regge poles is reduced to a simple quadrature.

VI. TRACE APPROXIMATION; COMPARISON
WITH CP MODEL

Since resonance fluctuations are expected to be small
for s>s*=3 GeV?, we break the integral, Eq. (5.9), into
low- and high-energy parts, employing a Regge repre-
sentation for the latter. Here the type of J-plane
singularity appears to be important, so we shall not
neglect the effects of diffraction-peak shrinkage. That
is, we take

Cil’ s\%
a9 =) e
> Ty bi1+ln(S/So) So
This form corresponds to an assumed Regge-pole be-
havior for the elastic wr amplitude, with residues
varying exponentially with 7, leading to a differential
cross section

dop®! 1 1 s \ @m(n)tan(r)
s o N
IV

dr So m,n So

or, with linear trajectories, to an integrated elastic
cross section

> Brrrop®!
II
1 (5/50)2m ©@-+an(®)
™ .
Amnl+ (@’ +an) In(s/s0)

The form (6.3) evidently leads to (6.1) through the
identifications

(6.3)

Bi=am(0)+a.(0)—1 (6.4)
and
Gt
b= . (6.5)
aml+an,

Since the isospin in question refers to the crossed
reaction, the leading trajectory combinations for /=0
are PP, PP, pp, and P'P’. For I=1, the leading
combinations are Pp, P’p, and pp, and for I=2 we
have pp. ‘

For DI(\), in the trace approximation, we now write

DI(\) = 1—Tres! (\) = Tasym! V), (6.6)
where
1 0 dt *
Tres!(N)= / / ds
A1J_a (t-—-ﬁ'l,,l.z)2 dmg?
Xe=MnaCI(s)y . (6.7)
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0 dt

 SEE— ds
—A (t—m,z)z »/s*

e(—MDn(s,t) s\B
X —————(——> . (6.8)
bT+In(s/s0) \ 5o

1
Tasyml()\) = Z CiI
A1

To evaluate Tasym? (\) we note that, since s is much
larger than ¢, e"=~ (—s/{). This gives

1 0 (_t))\+1 00
Tasym?(\) ~ —— / dt—— 3 O / ds
M1 (—me T s

§=OFD (5/50)8i

b ++1n(s/s0)

(6.9)

If X is not too close to zero, we may neglect the m.,? in
the ¢ integration. Then performing the ¢ integration and
changing variables in the s integral, we have

A A
&/ S(Q_ 3 Clebi 08

Tasyml(k) =
MAF1) i

e

00
X / dx —
(=B [b.1+In (s*/50)] x

A
_ _(A/XO) Z C,[Iebil()‘_ﬂi)
A1)

XEl[()\—ﬂi) <bi1—l— ln;:—:>:l .

In the integral form one can see the expected logarithmic
singularity.

Turning to the resonance component (6.7), it is
difficult to avoid a numerical s integration, but because
the range of s is restricted, we no longer need a cutoff in
¢. Inverting the order of integration and again setting
mL>=0, we have

1 s 0 dt
Twsl()\)z _/ ds CI(S)/ — e~ M Dn(s,t)
)\+1 4m7,-2 —® t2
. ) .

(6.10)

s ds
e — —C1(s). 6.7
A1) 0-2) Am,z ;O ©7)

It appears that the leading A singularity here is at
A=0, a surprising result, since the more correct ex-
pression (6.7) has only the pole at A=—1 that arose
from pion exchange (2a,— 1= —1). The pole in (6.7’) at
A=0 arises from the approximation of setting m,2=0, a
simplification unjustified for A<0. As before, however,
we shall be chiefly interested in the region where A\> 1.

ROGERS,

AND SNIDER 2

Combining the preceding results, we have

2 A\
{ R+ <_> 3 Cilebil 089

DIV ~1— S
A2 S0 i

A1)
XEl[(A—Bi)<bi’+lni)]}, (6.11)

So
s ds
Ri= / —CI(s).
4

my® S

where
(6.12)

Formula (6.11) above may be compared with the
denominator appearing in Eq. (4.2) of Ref. 5 to relate
the ABFST model to that of CP. To show more clearly
the relation between the models, we keep only the
leading cut and then make a pole approximation for this
cut. That is, we assume 4;/ to be large and use the
asymptotic expansion of the exponential integral,

e 1 1 e ?
Ei(z)~ M[l- - +O(——>:l~ ,  (6.13)
3 z 32 741
to get
1 2 A\? Ct
DI(\)=1— {——RH— <—> [—%:'
AA+1) N2 so/ LoT+In(s*/s0)
exp[—(A—B;) In(s¥/s0)]
} (6.14)
A—Br+1/[b741In(s*/s50) ]
for )
AN—=Br>——
bT+1In(s*/s0)

Thus the cut with a branch point at 87 and discontinuity
proportional to e*®=# is replaced by a pole at

1
 BfIn(s*/so)

theapproximate ““center of gravity” of the discontinuity.
Restricting discussion to /=0, where we are ap-
proximating the PP cut by a pole, we have, from (2.327),

Cols) 2, (s/16m)[so1,~0°(s) +07,=2°'(s)
+(5/3)01,-2°'(5)]

Br=8: (6.15)

=~ (3s/16m%)c°!(s) , (6.16)
and thus the single-term approximation
Co s\ Bo
Co(s) = —~——<—) 6.17)
b°+In(s/s0) \ so
corresponds, with o= 1, to
330 CO
ool(s) ~ —————. (6.18)
1673 b+In(s/s0)
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Thus the coefficient within the square bracket in (6.14)
may be evaluated as

(ol 350
~ a°l(s*), (6.19)
b+In(s*/so) 16w3
allowing (6.14) for 7=0 to be written as
1 2 A\ /350001 (s*)
il e )
A+ DLA+2 5 167
exp[ —(A\—py) In(s*
v pL—( o? n(s /So)]jl' 6.20)
A—Bo

For comparison with the CP model, we now consider
the denominator of Eq. (4.2) of Ref. 5 (identifying J
with X),

DN =1—gup™(N)—grtp?(N)p™ (),

where the propagator functions p?(\) are normalized to
(A—=B:)7! for A—pB; large. The corresponding functions
of X in (6.20) fall off more rapidly than the inverse first
power, but the resonance component of (6.20) decreases
smoothly after the pole at A=0, and the high-energy
component decreases smoothly after the pole at A= f.
We are chiefly interested in the region near A=1, so let
us replace all but these leading-pole factors in (6.20) by
the values taken at A=1. Then (6.20) becomes

(6.21)

1 A\ /3s00°'(s*)
DO~ 1=~ 3Rt — ) ———
Anear 1 A So 1673

{4
X ————_—]. (6.22)
A—=Bo

Comparing (6.21) with (6.22), we may now read off the
following rough equivalences:

Bu=0, (6.23)
Br=Bo, (6.24)
gu*=~%Ro, (6.25)
A\ 3s0°!(s*)
L R
so/ 1673

It is interesting to remark that Bx=0 means, ac-
cording to Eq. (6.4), that in the CP model an input-pion
trajectory behaves like a,(0)~% rather than a,(0)=0.
An equivalent statement is that an inelastic two-body—
to-two-body cross section with pion exchange varies as
571, not s72, for s not too large. Such a cross section is
given by

tmin 1 5—2
gAB>CD(5) o 3”2/ dt o
—00 (t - m7r2) 2

mw2 _tm in

7175
Since
tmin= — (mc*—ma®) (mp:—mz?) /s,
it follows that when s is small enough that |tmin|>>m.2,
cAB>CD(5) 5L,

The result (6.26) provides an estimate of the internal
Pomeranchon coupling in terms of the elastic wx cross
section. Previously we estimated o¢1""= 2.5— 3.0 mb for
=20-50 GeV2 Since s*=3 GeV? it may be that
0e1™™(s*) (actually just the Pomeranchon contribution
to it) is slightly larger, perhaps 3.5 mb. This estimate
gives, for gp?,

gp*=0.03A GeV2. (6.27)
Therefore our assumptions, AS 1 GeV?, implies a small
value for gp*, small enough to justify making a crude
model by dropping the Pomeranchon component of the
kernel. It should be obvious to the reader that we are
here repeating the estimate of Sec. IV, but now in a
“J-plane language.”

The estimate (6.27) is in satisfactory accord with the
requirements of Ref. 20, where the small high-energy
tail of the kernel is used in a CP-type model to split the
leading output pole into P plus P’. Such a splitting
capability requires gp*~0.03.

In papers employing the CP model,'*? it has been
shown that the large experimentally observed multi-
plicity implies that the effective output pole should be
produced primarily by the low-energy component of the
kernel. Neglecting gp*, or dropping the contribution to
the trace from s>s* in the more accurate equation
(6.11), leads to

DI\ ~1—2R;/NA+1) (\+2). (6.28)

To produce the P and p poles we evidently need to have

D'(A=~1)=0 and D'(A\=3})=0. (6.29)
By numerically integrating CZ(s)/s (see Fig. 4), one
obtains, from Eq. (6.12), R,=0.79, R;=0.31, and
R;=0.01 for s*=3 GeV2 The first two values are too
small by a factor of 3 to 4 to satisfy (6.29). Corre-
spondingly, evaluation of ga?* from Eq. (6.25) leads to
gu’=~%, whereas in CP,! gj® needs to be = 1.

In Ref. 20 we show for 7 =0 that it is unnecessary for
the low-energy component of the kernel to produce a
pole as high as A=1. If the kernel with only the low-
energy contribution can, via Eq. (6.28), produce a pole
at A=0.7, then addition of the high-energy-kernel tail
can boost the leading singularity to A= 1 and still main-
tain an acceptable multiplicity. Assuming such to be the
requirement, Ro~0.8 is seen to be roughly half of what
is needed.

2 G. I. Chew and D. R. Snider, Phys. Rev. D 1, 3453 (1970).
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Although the R;’s calculated from Eq. (6.12) are too
small, they have the proper ratio to explain the observed
ordering of the leading 7=0, 1, and 2 trajectories. In
Appendix C we point out that such is not the case for a
purely multi-Regge model based on duality.

VII. SUMMARY AND DISCUSSION

We began this paper by arguing that the ABFST
model has a firmer physical basis than multi-Regge
models, and we have explored various aspects of the
ABFST model to illuminate in particular the CP multi-
Regge model. We have confirmed the notion of a weak
Pomeranchon component in the multiperipheral kernel,
relating this idea to the small d.d. cross section and
obtaining an estimate for the CP Pomeranchon coupling
constant in terms of the high-energy elastic mr cross
section. The lower-trajectory aspects of the multi-Regge
kernel have been found to have weaker physical founda-
tion, duality giving a poor representation of the im-
portant resonance components of the ABFST kernel.
Nevertheless, if one foregoes direct identification of
input and output poles, it is possible to find input poles
for the CP model which roughly simulate the important
resonance input of the ABFST model. The factor-
izability of the CP kernel, although motivated originally
by an illegitimate assumption of large subenergies,
appears not to be grossly misleading.

In the course of the investigation, unanticipated light
was shed on several matters. (a) We discovered a
generalization of the Berestetsky-Pomeranchuk formula
which provides a practical basis for exact numerical
evaluation of the ABFST model at any energy. (b) We
found a way of looking at diffractive dissociation which
explains certain paradoxical features of this concept.
(c) We found that the exceptionally small pion mass
causes the pion-exchange effect in a CP-type multi-
Regge model to act like a trajectory with J=$% rather
than J=0.
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A disappointing discovery was the deficient strength,
by a factor 2 to 3, of the resonance component of the
ABFST kernel, based on a reasonable estimate of the =m
cross section. We can offer several possible explanations
for this deficiency, the most immediate being the
inherent limitation of the model. The basis of the model
is the presence in the multiparticle production ampli-
tude of pion poles, with residues that are related to the
elastic 7w amplitude. This fact suggests, but does not
determine, the multiparticle amplitude in its physical
region.?!

A second possible factor contributing to the inade-
quate kernel strength is our estimate of the = elastic
cross section. For example, Wolf,?2 in fitting reactions
with pion exchange, used = cross sections which were 6
to 8 times as large as ours at threshold. Another possible
source of error is interference terms (crossed graphs).”
Since the mean 7 subenergies are comparable to the
momentum transfers, the usual motivation for ne-
glecting crossed diagrams is diminished.

In spite of the inadequate kernel strength, the
qualitative characteristics of the ABFST model seem
impressively relevant to nature. With a “fudge factor”
to augment the resonance component, we expect that
this original version of the multiperipheral model will
prove extremely useful.
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APPENDIX A: GENERALIZATION OF
BERESTETSKY-POMERANCHUK
FORMULA

The general cross-section formula for producing n
particles is [see Fig. 7(a)]

(A1)

0'2~>n(s) =
2\(s,m42,mp?) =1

(2m)4 n d*k; 6t (k2—m?)
/ (2m)3

84 patpr—2 k)| Asn|®.
7==1

For the ABFST model, we group the final particles into N2 pairs and use a different labeling system, as shown

2 Various alternative “off-shell continuations” for the ABFST resonance kernel have been considered by D. Tow, Phys. Rev.
D 2,154 (1970). The strip model is a different version of a multiperipheral model, based on 7= amplitudes, which does not exhibit
an “off-shell ambiguity.” According to recent calculations by P. D. B. Collins and R. Johnson [Phys. Rev. 185, 2020 (1969);
177, 2472 (1969)], the resonance input to the strip model has adequate strength.

22 Gunter Wolf, Phys. Rev. 182, 1538 (1969).

% Any finite number of crossed diagrams could be generated by a more general kernel which still maintains the basic structure of

the integral equation.
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ko k
k 2 "3 k / / / / /
< o0 0
P P2 PN P4y
B Pa Pg
(a) (b)
F1c. 7. (a) Diagram showing significance of momentum labels in Eq. (A1); (b) diagram showing
significance of momentum labels in Eq. (A2).
in Fig. 7(b). With the factored reaction amplitude (1.2), the corresponding cross-section formula is
(2m)4 kg 0T (ka2—ma?) [ d*ka’ 6T (ks'2—m,?) N d*k; 8t (k2 —m.,?)
o AB(s) = / - / RASPNOWRIES | g Rt
2N(s,m4%,mp?) (27)3 (2m)3 i=1 (2m)3
d*k; 6t (k2 —m?) . d*kg’ 6% (kp'?—m.%) [ d*kp 6t (kpt—m,?)
X/ - ]f(siﬁi)iQ/ / | f5(s5,08)|*
(2m)? . (2m)3 (2m)3
N N1 1
X (patpr—Ka—Kp—3 Ki)]I , (A2)
i=1 i=1 ({;—m,2)?
where

s;=K; with Kj=kj+kj’, tj=pj2,

with p; defined as in Fig. 7(b), and 6; is the angle between %; and p; in the K ; rest frame. Note the important fact
that the momentum transfers p; can be expressed entirely in terms of the K ;.

Consider in Eq. (A2) the factors associated with a particular pair of outgoing particles, adding a formal integra-
tion over d*K ;, together with a compensating 6 function:

/ #K / Py 3Tk ) / OO, o) 108Gk b= K (A3)
‘K; 53,0;) | 20 (k' +k;— K. 3
(2m)® (2m)?

For a fixed K ;, the integration here over d*;d*, is evidently identical to that which occurs in the corresponding
elastic cross section. Expression (A3) consequently can be written

(2m)*

2N(sj,m A2 me2)
/ e

Gelnw(sj) ’

which with the definition (2.3a) becomes
2 2
- /d4Kj Clsi)=— /ds,- C(Sj)/d"Kj K =si), (A3)
™ ™

a corresponding rule also holding for the A and B pairs at the ends of the chain. Equation (A2) may thus be
contracted to

(2m)* 2\ N+2

UNAB(S)= —————-——*—(——) /dSA CA(SA)/dsl C(Sl) e /dSB CB(SB)/(Z4KA 5+(KA2—SA)
2N(s,m42,mp?) \1

N41 1

N
X/d“Kx 0T (K2—s1)" -+ /d4KB 8T (Kp?—sg) 8*(pat+ps—Kai—Kp— > Ki)I1

i=1 i=1 (ti—mﬁ)?

(A2)
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The region of integration for the K; in (A2’) is just the usual phase space for N+ 2 “particles” with “masses”
(s;)V2. The region of integration for the s; is more subtle. The lower limit for each s; is simply the appropriate elastic
threshold, but the upper limit is collectively determined by the requirement that

(s4)'7+ (33)1/2+§ (s < ()72 (A4)

With a change of variables from the K, to the p;, thereby eliminating the energy-momentum conservation &
function, Eq. (A2’) constitutes the basis for Sec. III.

To derive Eq. (2.5) from (A2’), we note that for a fixed set of s; the integration over the K /s amounts to just the
(N+2)-particle phase space. We treat this problem as a succession of two-particle phase-space calculations,
starting at the B end of the chain. Thus we first consider K 5 as one “‘particle,” the other “particle’” consisting of
all remaining pairs, with combined momentum (see Fig. 8)

Ky1=Ka+Ki+-+Ky.

This two-particle phase space may be calculated as

- - ~ 1
/d“KB 0t (Kp®—sp) d*Kni1 0" (K12 —oni1)04(pat pp— Kp—Kyy1) =tm—— /dtm—l; (AS)
}\(srmA27mB2)

the angular integrations having been performed in the absence of any factors in the model that depend on angles.
In (AS) we have introduced a factor & (K y11*—vy1) which does not appear in (A2’) and so, to compensate, we
must integrate over dv,.;. We also have introduced d*K 1, which we compensate with a factor 6*(Ky,—K.,
—K,---—Ky) that carries over to the next step, where we consider Ky as one ‘“‘particle” and Ky=K.+K;
+ -+ -Kn_1 as the other “particle.” The next two-particle phase-space calculation then leads to

1
T————— [ dtn, (A6)

Mowg1,mattnyg)

[N

together with an integration over dv,. Repeating the process down to the 4 end of the chain, we have

/d4KA 5+(K42—SA) /(14K1 5+(K12—51)' . '/(Z4KB 4 (KB2‘—SB)54(PA+]>B—KA—K1— s —KI;)

™ ™
= - /(il’N+1dtN+1 -_— /d‘Z)thN' ..
2N(s,m4%mp*) 2N(vny1,ma% b 1)

T
—_— / dvodty ~—————— [ dt;. (A7)
2N\ (vs,m a2 t3) 2N (v2,m42,t5)

The final step is to integrate over the v’s. Here the ’R‘
use of Toller variables is appropriate. In addition to the N +1
boosts defined by Egs. (2.1a) and (2.2), we define the —
parameter {;, Kg
vi—ma’—1; Mo ,ma’ts) \—[ f //
Sinh§i= —*—1/2 , COShg‘i= — 2’ (AS)
2m,4(—ti) ZmA(—ti) p N+
which boosts from the rest frame of particle A where p; pA PB

is “z-t like” to the frame where p; is “z like” and p4 is

“z-t like.” (By our numbering convention {;=g4.) We

also require the parameter &;, Whl(fh b%i)s‘fs lﬁl;orf,l the B F16. 8. Momentum diagram defining the “cluster momenta’
latter‘ frame t? the frame whe‘re piis still %z like” but K; used to express multiparticle phase space as a product of two-
piy1 is “z-t like.” The relation among these Toller body phase spaces.



2 RELATION BETWEEN THE

variables is

sinh{ ;41=sinh{; coshg, cosh&;+cosh{; sinhg;, (A9)
coshn=sinh{y.1 sinhgp coshéni:
+cosh{n41 coshgs. (A10)

Since each £; has a zero lower limit, {;.1 has a lower
limit equal to {;4-¢;, while in addition {»,; has an upper
limit equal to n—g¢sz.

Observe now from (A8) that, for fixed ¢;,

dv; d sinh¢;
= =d¢;. (A11)
Movima?t;)  coshg;
It then follows that
/ dvny1 / dvy
Nowy1,ma’ti1) N(va,m4%,t)
T—qB $4—q3 $3—aq2
=/ d§'N+1"'/ dﬁ/ d¢s
qA+q1+egN qA+q1+q2 94+4q1
=1/N)(n—gqa—q1—- - —gn—qp)"
XO0(n—qa—q1—- - —qv—qn). (Al12)

Insertion of (A12) into (A7) and thence into (A2’) leads
to the form (2.5) presented in the text.

APPENDIX B: ASYMPTOTIC PHASE-SPACE
SIMPLIFICATION FOR DIFFRACTIVE
DISSOCIATION FORMULA (4.8)

The large-s limit of the integrals appearing in Eq.
(4.8) can be evaluated in closed form if one realizes that,
because of the small pion mass the exterior vertex boosts
are always large, while the interior vertex (when it
occurs) involves only s;>s* and also, therefore, only
large boosts. We may consequently replace 2 sinhg; or
2 coshg; by e?%, as well as 2 coshn by e”. We may
furthermore simplify (2.2) to

COShQQ’*"Sg/Z (tltg)lﬂ
at an interior vertex, while (2.1b) leads to
sinhgy= (s1—11)/2m(—1)"2,

with a corresponding simplification at the other exterior
vertex. There is, of course, never any question about the
approximation

2 coshn=s/m,2.

Thus in the first term of (4.8) we employ the simpli-
fication

s(—1)

(sl—t)SZ’

1—q—¢g:~In

where even the ¢ in the denominator will be dropped for
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51>s*, while in the second term of (4.8) we use

1 Stltz
nN—@i—@—@p=In-—————
(s1—t1)s2(s535—12) ’

again dropping a denominator ¢ whenever the companion
s; is large.

Making the one additional and unquestionably
legitimate approximation of setting the pion mass equal
to zero in the propagators, it is then possible to evaluate
the integrals in closed form.

APPENDIX C: DUALITY AND KERNEL OF
ABFST INTEGRAL EQUATION

When the first multi-Regge model was proposed, it
was suggested that through “duality”” the Regge form
might represent the resonance region in some average
sense. At that time, however, it was not appreciated how
low the average subenergy actually is. Given that the
average subenergy is s$1 GeV?? the applicability of
duality to the multiperipheral model becomes more
doubtful. We shall show here that one realization of the
duality concept, based on the Veneziano model, leads to
a qualitatively wrong isospin dependence of the
ABFST kernel.

The Veneziano model for nr scattering?$? contains
both p and P’ trajectories. Because of the absence of
I=2 resonances, these trajectories are exchange de-
generate, a fact which fixes the ratio of their residues
and consequently fixes the ratio of the three ABFST
kernels. The Veneziano model gives for the s-channel rr
amplitudes

A1,=0=3[3B(s,0)+3B(s;u)— B(tu) ],
AIS=1=B(S,1)—B(S,%) )
and
4 Ig=2= B(t)u) )
where
BT(1—a(s))T(1—a(?)
r(—als)=a(®)

Except for the unfortunate p’, this model contains the
same resonances with roughly the same properties as we
use in Table I for the low-energy = cross sections.

To test the usefulness of duality in the multiperipheral
model, we take the asymptotic form of the Veneziano

model, and then use it, even in the low-energy region, to
determine the kernel. The large-s asymptotic form is

Ar—o~BT(1—a(t))(s/s0)*?P (Fe~ima®— 1)
Ar,1~BT (1—a(t))(s/so)*Pe~imalt) |

B(s,t)=

% C, Lovelace, Phys. Letters 28B, 264 (1968).
25 J, Shapiro, Phys. Rev. 179, 1345 (1969).
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and
A g pr~BU (L= (1)) (s/50) "

Notice that the Regge form of A7,— is real, a result
which, by duality, is necessary if the 7,=2 channel is to
have no resonances. On the other hand, when we square
the amplitudes to get the isospin cross sections, we will
obviously get equal 7,=1 and /,=2 cross sections.
Comparing with our estimated cross sections, Fig. 4(a),
we see that we must expect difficulties.

Neglecting this forewarning and continuing, we find,
for the differential cross sections needed in (6.2),

(1(7[8=0e1 s 2a(1)—2
—— = Irp2r2(1 —-a('r))(~—>
(ZT S0
X{3 sindra(r)+1}
dor—1®' dores°' 5\ 2e(n—2
**** - pr—ay()
(IT dT So

To obtain the CPs, Eq. (2.3a"), we cross to the ¢
channel before doing the 7 integration and find
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’

AND SNIDER

o
)\(s,m,,z,m,r”) 5\ 2aln—2
Cl| =4rf——— — /(/T T‘2(1—a(1))<*>
1673 o
2
3+sin 3ra(r)]
X | sin?[3ra(r)]
sin?[37ra(r)]

Since a(0)~3, the values of the integrands at 7=0 (at
the forward peak) are in the ratio 7:1:1 for /=0, 1, and
2, respectively. Taking the different widths of the
forward peaks into account, we see that C° C', and C?
are in the ratio r:1:1 with »>7. This implies that the
low-energy contributions to the kernel—the parts with
no singularity for A\>0—also stand in the ratio »:1:1.
These ratios can be compared with those calculated
directly from the low-energy resonances, where we
found the R; to stand in the ratio 0.79:0.31:0.01.

We see that the naive use of duality leads to the
disastrous prediction that output /=1 and I=2 poles
occur at the same value of . It also will probably lead
to an excessively large separation between the output
I=0 and /=1 poles.
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Induction of Quarklike Structure of Baryons*

Ricuarp H. Capps
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A set of self-consistency conditions for the interactions of a hypothetical set of even- and odd-parity
mesons and baryons is studied. These conditions, previously derived, are written in a form that makes some
of their implications transparent. Two types of SU (#)-invariant solutions are found; in only one of these
do baryon exchanges participate in the bootstrapping of the baryons. The conditions imply that the meson-
baryon-baryon interactions are proportional to matrix elements of the group generators in the space of a
single quark, yet the identification of baryons with simple quarks does not lead to a solution. Thus, the
baryons may be regarded as composites containing quarks. An approximate solution based on the SU(6)
group may correspond to experiment better than any exact solution.

I. INTRODUCTION

WO years ago, the author used fixed-angle dis-
persion relations and a simple dynamical assump-
tion to derive bootstrap consistency conditions on the
ratios of the trilinear coupling constants of a hypo-
thetical set of mesons and baryons of both parities.!:?
Recently, a slight modification of this set of consistency
conditions was obtained from an idealized Veneziano
model.? In this latter derivation, the “particles” are
* Supported in part by the U. S. Atomic Energy Commission.
1R. H. Capps, Phys. Rev. 168, 1731 (1968). This paper is

referred to as R1.
2R. H. Capps, Phys. Rev. 171, 1591 (1968). This paper is

referred to as R2.
8 R. H. Capps, Phys. Rev. D 1, 2395 (1970). This paper is

referred to as R3.

the lightest particles on Regge trajectories. In Ref. 3
(R3), an SU(3)-symmetric solution to these conditions
was found, involving singlets, octets, and a decuplet.

In the present paper, the bootstrap conditions of R3
are written in a more elegant form. This enables us to
generalize the solution of R3 to the symmetry group
SU(n). The new form makes it clear (as shown in
Sec. III) that any solution must have many of the
features of the quark model. It may be that dynamical
consistency conditions are the reason that the quark
model works.

The most physical solution corresponds to the group
SU(6), and is discussed in Sec. IV. The baryon tra-
jectories correspond to the SU(6) multiplets and
parities 56*, 70, 70—, and 20~. An approximate solu-



