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The constraints placed by scale invariance upon the asymptotic behavior of scattering amplitudes, in
theories with no dimensional coupling constants, are discussed. It is proved that for a wide class of La-
rangian theories, which include all renormalizable interactions except for qP coupling, scale invariance im-
plies invariance under conformal transformations. The equations that scattering amplitudes should satisfy in
theories where the breaking of scale invariance is due solely to nonzero masses are derived, under the assump-
tion of large energies compared to the masses. These equations are derived by two methods, first by direct
scale and conformal transformations of the Green's functions and second by considering the low-energy
theorem for the emission of the divergence of the currents which generate scale and conformal invariance.
These divergences are essentially given by the trace of the symmetric energy-momentum tensor. A low-
energy theorem is proved for the emission of an energy-momentum tensor {or graviton) from an arbitrary
process up to quadratic terms in the graviton momenta. The equations of scale and conformal invariance
are applied to the scattering of scalars o6 spinors, and photons. It is argued that scale invariance leads to
asymptotic behavior that is governed by fixed cuts and not by Regge poles in the angular momentum. Al-
though the strong interactions seem to be manifestly non-scale invariant, scale and conformal invariances
may prove useful in discussing asymptotic behavior in quantum electrodynamics, in model field theories,
and in high-energy inelastic electroproduction.

I. INTRODUCTION

A SCALE transformation is one that scales all
coordinates according to

s(x): x„—+ xx„.

At the same time all momenta are subjected to the
inverse scaling law

However, physical constants are left unchanged by this
transformation. In our units 0 =c=1, and they remain
unchanged under a scale transformation. Furthermore,
all masses are unchanged.

For the world to be invariant under scale transforma-
tions, it is clearly necessary that all particles have
vanishing masses' Lsince S(X): p' —+ (1/X)p'j, and
that there be no dependence of physical amplitudes
upon dimensional constants. A Lagrangian 6eld theory
will be scale invariant if it contains only massless
particles and dimensionless coupling constants. Quan-
tum electrodynamics would therefore be scale invariant
if the electron Inass were zero.

The dynamics of the strongly interacting hadrons is

'I. Wess, Nuovo Cimento 18, 1086 (1960). G. Mack and A.
Salam (Ref. 6) have suggested that the scale current might be
conserved even in a theory with massive particles, if the invariance
is broken by a degenerate vacuum with only a 0. particle being
massless.

2

manifestly non-scale invariant. Aside from the obvious
fact that there exists an abundance of massive particles,
the scattering amplitudes reveal many dimensional
constants. These include the widths of diffraction peaks
(mass ') and the slopes of Regge trajectories (mass ').

What is the purpose therefore of considering these
transformations if nature so blatantly violates scale
invariance? One can certainly not hope to treat scale
invariance as an exact symmetry. ' However, when all
relevant energies are very large, one might hope that
it would be possible to neglect all masses and thus
recover scale invariance. Consider, for example, quan-
tum electrodynamics. At very large energies and
momentum transfers (compared to the electron mass)
the scattering amplitudes should exhibit the features of
the scale-invariant theory that would result if the
electron were Inassless.

Accordingly, in this paper, we study scale invariance
as an asymptotic (high-energy) symmetry of scattering
amplitudes, in theories where the breaking of scale
invariance is due only to the existence of particles with
nonvanishing masses (i.e., no dimensional coupling

' Many authors have discussed the physical meaning and the
possible applications of scale and conformal invariance. A partial
list of literature can be found in F. Gursey, Nuovo Cimento 3,
98 (1956); T. Fulton, R. Rohrlich, and I.. W. Hen, Rev. Mod.
Phys. 34, 442 (1962); H. A. Kastrup, Ann. Phys. (N. Y.) 7,
388 (1962); H. A. Kastrup, in Particles, Currents, Symmetries,
edited by P. Urban (Springer-Verlag, New York, 1968) pp.
407—468; K. Wilson, Phys. Rev. 179, 1499 (1969).
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constants). These include all renormalizable field
theories, except for Ap' coupling.

Maxwell's equations and the quantum electrody-
namics of massless particles are invariant under
conformal transformations in addition to scale trans-
formations. These are de6ned as a four-parameter group
that transforms coordinates according to

x„+n„x'
C(n): x„—+

i+2n x+n'x'

These conformal and scale transformations form with
the Poincare transformations a 15-dimensional group.
There is no reason, II Priori, why a theory which is
scale invariant should necessarily be conformally
invariant. However, we shall prove that this is the case
for essentially all Lagrangian field theories of interest;
i.e., scale invariance implies conformal invariance. We
therefore shall study the restrictions that conformal and
scale invariance impose on the asymptotic behavior of
scattering amplitudes.

At 6rst sight it would seem that scale transformations
necessarily take one off the mass shell pp'~ (I/X)p'],
and that therefore one cannot obtain any useful
information regarding on-mass-shell amplitudes. That
this is not the case will be evident from the way in
which we derive the consequences of scale and conformal
invariance. It is well known that if

Q= d'x Jo(x,I)

gcllcl'arcs a sylllmct 1y tr ansfo11Ilatlon (BIQ=0) q
then

the consequences of this symmetry can be derived from
the low-energy theorem on the emission of the diver-
gence of the conserved current J„.In our case we shall
show that the divergence of the currents that generate
scale and conformal transforrnations are related to the
trace of the symmetric energy-momentum tensor.
Using the conservation of this tensor, one can derive a
low-energy theorem for the emission of a soft-energy
momentum tensor (or a graviton which couples to this
tensor) from any physical process up to terms of order
k' in the momenta (k) of the graviton. As in the case
of soft-photon emission, the low-energy theorem is
expressed in terms of the on-mass-shell 5 matrix for
the original process and does not involve o6-mass-shell
derivatives. Upon taking the trace of tliis low-energy
theorem, we shall derive the equations for the on-mass-
shell 5 matrix that embody scale LcoeKcient of the
(k„)' term] and conformal (the coeKcients of the k„
terms) invariance.

The equations we thereby derive are quite strong. In
fact, t;he pmpagator. of a scale-invariant theory is
uniqoely determined to be the free propagator. How-
ver, the propagator cannot be trivial, even in the case

of a massless scale-invariant theory. The resolution of

this paradox lies in the fact that owing to infrared
divergences the limit of zero masses does not strictly
exist. Alternatively, one can say that even for zero
masses there exist a seal- — the infrared cutoff P. This
scale appears, to any 6nite order in perturbation
theory, in logarithmic terms t e.g., in(s/X)] which
violate scale invariance. Accordingly, in theories with
finite masses, but which are otherwise scale invariant,
there will usually appear logarithmic violations of
asymptotic scale invariance, e.g. , of the form In(s/M').
Therefore, all our results concerning the asymptotic
behavior of amplitudes in such theories are only true
up to logarithmic terms of this nature. In other words,
we can determine the power behavior of the amphtudes,
but we have no contml over the logarithms. Further-
more, we must make the assumption, which seems to be
valid in all specific examples we have investigated, that
when one works to all orders in perturbation theory,
the logarithmic terms do not build up to powers.

Finally, to what use shall we put these equations'
One application is quantum electrodynamics, where we
know that the theory is scale invariant except for the
6nite electmn mass, and one can therefore partially
determine the asymptotic behavior, up to logarithmic
terms, of the amplitudes for any process. For other
renormalizable, and, except for masses, scale-invariant
theories, the same can be done. However, the relevance
of such theories to the strong interactions observed in
nature is unclear. In fact, we shall argue that these
scale-invariant theories do not have asymptotic
behavior corresponding to Regge poles but rather to
fixed cuts in angular momentum. Regge behavior is
inherently a non-scale-invariant phenomenon.

There is one other application we have in mind,
namely, high-energy inelastic lepton-hadron scattering
at large momentum transfers. In this case, the m.an-
ifestly non-scale-invariant contributions of discrete
states are rather small, owing to the rapidly falling form
factors of these states and the large momentum trans-
fers. Therefore, there is hope that one might see a scale-
invariant background, 3 and in fact recent data indicate
strongly that this is so.4 We therefore would hope to
impose conformal invariance on these amplitudes and
to determine tlielr' asymptotic forms.

The outline of the paper is as follows. In Sec. II we
discuss the formal properties of scale and conformal
transforrnations. We prove that conformal invariance is
a consequence of scale invariance in many Lagrangian
theories. Section III is devoted to a derivation of the
low-energy theorem for the emission of gravitons (or
the energy-momentum tensor). In Sec. IV we use this
low-energy theorem to derive the equations which the.S' matrix should satisfy at high energies. These equa-

"J.D. Bjorken, Phys. Rev. 1'?9, 1547 (1969).
4 E. D. Bloom er, at. , presented at the Fourteenth Internatio»al

Conference on High-Energy Physics, Vienna, 1968 (unpublished);
VV. K. Panofsky, in Proceedings Of the EONrfeenth InIernctiona)
Conference on High-L&'nergy Physics, Vienna, D'68' (CERN,
Geneva, 1968).
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tions are derived for all processes involving scalar,
spin--,', and spin-1 particles. In the Appendix we show
the equivalence of these equations to those derived
from the transformation properties of the fields. Section
V is devoted to applications of our equations. The first
case considered is scalar-scalar scattering. We show
that conformal invariance is automatic once the scatter-
ing amplitude is scale invariant, and we discuss the
consequences of the latter. A comparison is made with
the studies of the asymptotic behavior of scalar-scalar
scattering in the literature. Secondly, we consider
spinor-scalar and photon-scalar scattering. Here we
show that conformal invariance requires the helicity-
Qip amplitudes to vanish asymptotically, and that
no restrictions are imposed on the helicity-nonAip
amplitudes.

II. SCALE AND CONFORMAL INVARIANCE IN
LAGRANGIAN FIELD THEORIES

On purely group-theoretical grounds there is no
reason why scale invariance should imply conformal
invariance. The generators of the Poincare group and
of scale transformations form a closed algebra, which is
a subalgebra of the full conformal algebra. '" We shall
show, however, that for a wide class of field theories,
the breaking of conformal invariance is related to the
breaking of scale invariance.

Scale and conformal transformations are generated
by the time components of the currents S„(x) and

C„„(x),respectively. We shall prove that the following
relation exists between the divergences of these currents
for a large class of theories'.

8&C„„(x)= —2x„8&S„(x). (2.1)

The class of theories for which this relation holds will
be specified below; it includes all Lagrangian theories
of scalar, vector, and spin-~~ Gelds without derivative
couplings.

The form of the scale and conformal currents for
special theories has been derived in detail in Ref. 1.
Here we outline the derivation of these currents for an
arbitrary theory. If we perform an infinitesimal scale
transformation,

i.e., P;= (mass) "~:

d, =1, scalar Geld

spinor field

=1, vector Geld. (2.4)

Similarly, when an infinitesimal conformal trans-
formation is performed,

XP ~ XP =XP+QfI,X 2XPCX'X )

the field g, (x) will transform according to'

(2.5)

where hP;(x) =g (x') —P, (x) and Ax„=x„' x„. The-
result is that

S„=O„,x"——,
' P B„y;o I'„, — (2 9)

C„„=8 i,(g "x'—2x~x„)

+P (x„a„@;o g„„y,')+2x,J „—, @,, (2.10)

where O~„„ is the symmetric energy-momentum tensor, ~

P; are the scalar fields in the Lagrangian, and F„ is
defined to be'

(2.11)

y, (x) —& Ifl,' (x') = {L1+2d,nx jy, (x)
+2&~x"g„„'ry,(x)j, (2.6)

where Z„„'& is defined by the transformation properties
of the field p, (x) under Lorentz transformations. If
3E„„arethe generators of Lorentz transformations, then

PM„„,y;(0)]=i Z„„' q, (0) . (2.7)

For scalars, Z„„=O;for spinors, Z„„= ,'io„—„-.
and for vector fields,

= (I~i Ko' g~~gsl )aP (

We now use Noether's theorem to derive the currents
that generate these transformations, i.e.,

/
x~ ~ xg =xi+ox@ )

a field p;(x) will transform according to'

(2.2) We see that the charges, S=J'So(x)d'x and C, =J'Co.
y(x)d'x are essentially given by moments of the

(2.3)

We have defined d; to be the dimension of the field P;,

' For the algebraic structure of the conformal group, see Ref. 1.
'That scale invariance accompanies conformal invariance for

specific models is a fact known to many authors. After completion
of this work our attention was drawn to a recent paper by G. Mack
and A. Salam LAnn. Phys. (N. Y.) 53, 174 (1969)j, in which the
same theorem is derived. These authors, however, claim that
I'„must vanish for the theory to be conformally invariant, whereas
we argue that it is sufhcient for F„ to be curlless.

~ The energy-momentum tensor is not determined uniquely by
the canonical formalism. One can always add additional terms
which are symmetric and conserved. This can be stated in another
fashion. For bosons the symmetric energy-momentum tensor is
defined by O~„„=BR/bgl'" —g„,2. However, if we add to the
Lagrangian a total divergence, it will appear in O~„„. Thus,
equivalent Lagrangians generate different 0„„'s.All the various
0„„'s have the same physical content since they give the same
four-momentum. Our definition of 0„„is the standard one { see,
for example, J. M. Jauch and R. Rohrlich, The Theory of Photon~
and A'lectrons (Addison-Wesley, Reading, Mass. , 1955),pp. 20—22).

We wish to thank C. Callan, S. Coleman, and R. Jackiw for
pointing out that F„can be expressed in this particularly elegant
form.



D. J. GROSS AN D J. MESS

energy-momentum tensor, except, for the terms involv-
ing the scalar 6elds and F„.

If we take the divergences of these currents, wc obtain

k E t-j4' (2.12)

(2.13)

Therefore (2.1) wiH be true whenever I".=0. This will
certainly be the case if there are no derivative couplings
present in the interaction Lagrangian Z;„~. However,
certain combinations of derivatives can appear in the
interaction without contributing to F„.These include
couplings involving a current of the form Q, ,;$,8„&,C;;,
C;;=—C,;, for scalar fields; and couplings involving
the tensor B„A„—B„A„for a vector field 3„.

There is a larger class of theories where F„does not
vanish but is curl free, i.e.,

and so can be written as a total divergence, F„=B„A.
For these theories we can define a slightly diGerent
conforrnal current

(2.14)

for which Eq. (2.1) holds. The interaction

2;„t, 8„$8 QF——(Q)

is an example of such a theory. In this class of theories,
which is the la,rgest for which there exists a relation of
the form (2.1), the divergence of the scale and conformal
currents is proportional to the trace of the energy-
momentum tensor, up to a term which is of the form
Qq, where q is a local operator. This will be of import-
ance for the derivation of the low-energy theorems in
Sec. IV.

Ultimately, we are interested in theories where scale
invariance is broken only by the presence of 6nite
masses, i.e., theories with no dimensional coupling
constants. Such theories we will call "essentially scale
invariant. " If we ignore interaction Lagrangians which
cannot be expanded in power series in the fields then
for aH essentiaHy scale-invariant theories, Eq. (2.1) is
true. Of course, the number of possible interactions of
this type ls qultc limited

q ln fact~ thc most general
essentially scale-invariant interaction Lagrangian is of
the form

& -~ =40(&+oxs)4+~0'
+~"L4'(~vu+&v»u)0+f48 4l
+k(A "xA")(8„A, 8„A„)—

+g(A~xA")(A„xA, ) . (2.15)

This includes all renormalizable interactions except for
. the @' coupling. For all of the above interactions, F„=o.

Couplings of the form A 'p'B„p~ or A„'3 Q&A~"
would seem to provide a counterexample to the claim

The amplitude for the emission of a photon from an
arbitrary process has been determined up to terms linear
in the photon momenta by Low. ' The derivation rests
upon the gauge invariance of the electromagnetic
current. It is therefore not surprising that a similar
tllcorcln CRn bc dellvcd fol thc emission of a grRvlton
from an arbitrary process, since the graviton couples to
a conserved tensor, i.e., the energy-momentum tensor
OH p&

Consider the matrix element

~""=(o
I
0""(o)I&). (3.1)

The amplitude for graviton emission in the process
n ~ P+graviton is given by c„„(k,X)M"", where c„„(k,X)
is the polarization tensor of the graviton whose momen-
tum ls k=p~ pp.

%e shall now prove that 3fI""can be determined up to
terms quadratic in k. The reason that the linear terms
in k are also determined is that 0+&" is symmetric and
conserved in both indices. In this sense, our result is
similar to the case of graviton elastic scattering OG

matter, for which one of us (D.G.) and jackiw have
derived a low-energy theorem valid up to fourth-order
terms in the graviton energy, '0 as compared to the

9 I'. K. I.ow, Phys. Rev. 96, j.428 (1954).'" D. J. Gross and R. Jackie, Phys. Rev. 166, 1287 (1968).

just made, since they are scale invariant and yet do not
yield R vanishing F„.However, these couplings are not
really essentially scale invariant. In fact, if we were to
set the vector-meson mass equal to zero they would lead
to inconsistent field equa. tions, since A„ is not coupled
to a conserved current. In other words, there is no
consistent zero-mass limit to this interaction. In fact,
if we make the usual decomposition of A„, i.e., A„=V„—(1/m)8„&, where 8„VI'=0, we see that these interac-
tions CBectively involve dimensional coupling constants.
When A„ is coupled to a conserved current, as in (2.13),
the resulting interaction is indeed conformally invariant
and F„vanishes.

One can derive the transformation properties of
Green's functions and scattering amplitudes directly
from the transformation properties of the fields. This
we do in the Appendix. However, we prefer to proceed
in a somewhat indirect fa.shion and derive the equations
that express the conformal and scale invariance of a
scattering amplitude from the low-energy theorem for
the emission of the trace of the energy-momentum
tensor. One advantage of this method is that we can
work solely in terms of the energy-momentum tensor,
without introducing fields or Lagrangians. In that case,
we simply define an essentially scale-invariant theory
to be one in which the matrix elements of 0~„1'+Qg,
where q is some local operator, vanish when all Inasses
approRch zero.
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low-energy theorem for Compton scattering which is
only valid to second order in the photon momentum. "

We first write M„„as a sum of two terms: 3f„„», the
sum of the pole terms where the graviton couples to
one of the external particles, and R„„,which consists of
the remainder of the amplitude where the graviton
couples to internal particles. 3f„„»contains the infrared
singularities as k„~0, and is completely determined
by the form factors of the external particles and the
amplitude for the process o. —+P. R„„is nonsingular in
this limit:

I9

M„.=ork kP —M pr+0(k').
8k~ Bk"

(3.10)

We then evaluate k&A„„ from Eq. (3.6):
k 6 = —-'(k~R '+k~R ')+k~R '+k~R '

+k~k R„„.'+0(k') = k~M—„„r+O(k'). (3.9)

We therefore have found the appropriate 6„„.If we
carry out the differentiations in Eq. (3.6), we can cast
the low-energy theorem into an extremely compact
form, namely "

(3.2)M„„=M„„»+R„„.
To derive the low-energy theorem for graviton emission
from an arbitrary process, one merely has to calculate
iV„„, which is determined by the gravitational form
factors of the external particles, and insert in (3.10).

The gravitational form factors are almost completely
determined by the mass and the spin of the appropriate
particle. Consider first scalar particles, with the states
chosen with the normalization

The low-energy theorem is derived by ending a
function h„„(k), symmetric in p and i, which is non-
singular in the limit k„—+ 0, and which has the property
that

k"(M„,r+6„,)=0(k'). (3.3)

One then notes that R„„—6„„=M„„—M„„—6„„ is
nonsingular in the limit k„~O a,nd satisfies (since
kI'M„„=0) (p I p )= 2pp(2w)V(p —p ) . (3.11)

The most general form for the graviton scalar vertex is
(3.4)k"(R„„—6„.) =0 (k') .

Therefore, R„„—6„„is of order k' and
(p lo..(o)lp)=lF.F.F (k')

+ (k'g„„—k„k„)Fg(k'), (3.1.2)

pl+P2 1 k pl p2) pl p2

(3 3)M„,(k) = M„,r (k)+6„,(k)+0 (k') .
We now proceed to determine A„,„explicitly in terms

of M„„». We claim that A„„can be chosen to be equal
to Since

1 8 8
A„„(k)=— — Lk kPM pr(k)$

2 Bk~ Bk

8 8
M r(k)) LkPM pr(k)) (3.6)

Bk" Bk"

&Pil &I P2) =2Po'(2~)'&'(p —p') = &pil d'»M(x)
I Pm)

=2Po'(2~)'&'(p —p')F i(o)

we must have
Fi(0)= 1. (3.13)

R„,(k)=R„o+k R„„, '+0(k'), (3.7)

where R„„' and R„„, ' are independent of k and sym-
metric in p and v. Therefore,

kI'M„„r= k„R„o kl'k R„„,'+—0(k'). — (3.&)

"G. Mack, Nucl. Phys. B5, 499 (1968), has given a procedure
for calculating the matrix elements of 8&S„up to first order in the
momentum associated with the current. As (2 ~ 12) shows, this is
equivalent to a low-energy theorem for 0„&up to terms linear in
the graviton momenta.

To prove this we establish the following.

(1) 6„„is symmetric in p and o. This follows trivially
from the fact that 3f„„»is a symmetric tensor.

(2) 6„„is nonsingular in the limit k„—+0. This is
true because kl"M„„=—kI'R„„. Since R„„is nonsingular
in the limit k„—& 0, therefore k&3f„„» must be nonsin-
gular in this limit. Since 6„„is expressed in terms of
kI'3E„„, it is also nonsingular in this limit.

(3) k"(M„„r+6„„)=0(k').To prove this, we once
again use the fact that k&M„„»=—k&R„„(k). Since
R„„(k) is nonsingular as k„-+0 it has the following
expansion:

The second form factor F2(k2) is unrestricted. "
If one considers spin--,' particles, then there exist

three gravitational form factors

(P I o"(o) IP )= (P )(l(v.F.+v.F.)G (k')
+-,' P„F„G,(k')+ (g„„k' k„k„)G3(—k') )N(p2o 2), (3.14)

where our choice of spinors is such that

u(po)y"u(po) = p&. (3.15)

The requirement that O~o„(x) be the momentum density,
and that x„O~o„(x)—x„O~o„(x) be the angular momentum

~ The analogous low-energy theorem for photon emission,
Ref. 1, can be also put in this simple form:

M'„= —k ((9/Bk )3f I+0(k).
"In fact, different choices of „„, as described in Ref. 5, lead

to different F2 form factors. However, the value of F2 is totally
irrelevant insofar as symmetry transformations are concerned
(this is obvious for Poincare transformations since g„„k —k„k„
vanishes as k' when k„~0), including, as we shall show, scale and
conformal transformations. Moreover, the coupling of gravitons
does not involve F&. The only way F2 would acquire physical
content would be if there existed spin-zero particles coupled to the
trace of 0„„.
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density, restricts the values of Gq(0) and G2(0) to

Gg (0)= 1, Gg (0)=0, (3.16)

+-,'k k~—— A(p, . . .)+O(k') . (3.18)
Bp Bp~

Since «&M„„r does not depend on F2(«2), it follows

whereas Gq(k ), as in the scalar case, is unrestricted.
One of the useful properties of the low-energy

theorem, as it appears in Eq. (3.10), is that we can
treat each external particle separately. This is because
M„„~is a sum of terms, each of which corresponds to the
graviton coupling to a distinct external particle.

Consider the contribution to III„„~of a scalar particle,
of mass ~, with momentum p:
3f'. '=(p

I O" I P~«)L(p~«)' —~') '
&&A (pa«, . . .), (3.17)

where A(p&k, . . .) is the amplitude, olf shell, for
the process a —+P, and the sign in (3.17) is+ (—) if the
scalar particle is outgoing (incoming). Therefore,

(~)
M„,r = —p(2P&k)„(2pak), F (k')

k(2pa«)

+(g„„k'—k„k,)F2(k')) A(p, . . .)ak—A(p, . . .)
Bp

from (3.4) that A~„gets no cont 1lbutlon f1oB1 F2, which
therefore contributes a term

~L«(2p~«))- (g„„« —«„«„)F,(0
&&A (p, . . .)+0(k') (3.19)

to the amplitude. The contribution of the term involving
F& is calculated by inserting (3.18) into (3.10); it is

-(2P+k)„(2pak)„
a-,'Fg(k') . —-- —wg„„

k(2P& «)

8 8
y 1+I -—+-'k —h-

~p ~p ~p

— + —I&k—

8 8
+k p -- —A(p . . .)+O(k'). (3.20)

Bp" Bp"

Contrary to what one might expect, there is no
off-mass-sheH dependence in (3.20). Indeed, if A (p, . . .)
has terms of the form (p' —M')A (p, . . .), their contri-
bution to (3.20), as can be easily checked, vanishes when
'= 3P.
The contribution to M„„~ of an outgoing spin--.,'

pnrticle of momenta p and mass M is

~"'=~(p,~)hhP(2P+«) +7 (2P+k)PG~(«'))+L(2P+k). (2P+k)P)(1/23')G~(«')

(p+fr+cV)
+I g„„k'—k„k„)G3(k')j A (p+k, . . .), (3.21)

k(2p+k)

where N(p, o)A (p, . . .) is the amplitude for the process n —+ P. As in the scalar case A„„gets no contribution from
G3(k'), which contributes to M„, a term

I k(2P+k)) '(g„„k'—k„k,)G3(0)Mn(p, o)A (p, . . .)+O(k') .

The contribution of the other term is easily calculated by inserting (3.21) into (3.10). We get the foHowing con-
tribution:

1 (2p+k)„(2p+k)„- 8 8 8 8 8 8
u(p, ~)G (k'r) —— — - —g„„1+k—y-', k.—k ——p„-yp„- — 1+k—

2 k (2p+k) Bp Bp Bp Bp& Bp" Bp

8 8 (2P+k)„I 1'r, y„)+(2p+k)„Lk,7„) 8 8
+k p— + 1+4 —+-,'I k,y„)—

Qpp QpP 8« (2p+k) Bp Bp"

ppp"
+s'Lk, y„)—A (p, . . )+u(p, o)G2(k'). A (p, . . .)+O(k') . (3.23)

8 " k (2p+k)

Once again one can check that the oB-mass-shell
dependence of A (p, . . . ) Li.e., A (p) (p—M)A'(p, . . .))
does not appear in (3.23) when p'=M'. A similar
contribution, with a change of sign for p„, arises from
incoming fermion '.

The Anal form of the low-energy theorem for the
emission of a soft graviton from an arbitrary process
involving scalar and fermion particles is arrived at by
collecting the terms in (3.21) and (3.20) for each
fermloIl.
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One can explicitly check that the sum of all these
terms is gauge invariant up to order O'. In fact, the term
of order (k') vanishes due to momentum conservation,
the term of order (k)' vanishes due to angular momen-
tum conservation, and the term of order (k)2 vanishes
identically.

One can derive similar low-energy theorems for
processes involving higher-spin particles, the only
complication being due to the increased number of
gravitational form factors.

Finally, we note that if one is actually interested in
the amplitude for graviton emission, i.e., ~'"(k,X)M„„,
then the unknown form factors F2(k') and G~(k') do
not contribute, since e&" (k,X)k„= e""(k,X)k„=0.

IV. SCALE AND CONFORMAL EQUATIONS

With the aid of the low-energy theorem, derived in
Sec. III, we can now deduce the constraints placed on
the high-energy form of on-mass-shell amplitudes. We
use the fact that the trace of the energy-momentum
tensor is intimately related to the divergence of the
currents that generate scale and conformal transforma-
tions for essentially scale-invariant theories, as proved
in Sec. II.

First we consider the low-energy theorem for the
trace of O~„„. From (3.19) and (3.20) it follows that a
scalar particle of momentum p and mass M contributes
a term

2M'Fr(k')
[1&k 8+-', (k 8)']

k(2pak)

k'[6F2(0) —Pg(0)]
— A(p, )

2k(2p~k)

+Fj(k')i(1+p B)~(k Bp 8 ', k PB 8))——

XA(p, . . .)yO(k'). (4.1)

The contribution of an outgoing fermion of momen-
tum p and mass 3f to the low-energy theorem is equal
to the trace of (3.22) and (3.23):

2M'Gg(k')+4M'G2(k')
[1+k 8+-', (k 8)']

k(2pak)

3k'Ga(0) M
A(P . ) —G~(k')[(8+P ~)

k(2pak)

&(k Bp 8 ', k PB 8+—-y„B&k)]

XA(p, . . .)+O(k') . (4.2)

In both equations we have abbreviated 8/Bp&=8„. In
Eq. (4.2) the derivatives do not operate on the external
spinor wave functions.

We have shown in Sec. II that for a wide class of

These can be determined by the knowledge of the
one-particle matrix element of q, which is known since
Uq= —O~„&. For a massless scalar particle, we have

&p~l ~lp)= —&p~IH. " p~)
= -,'k'Fg(k') —3k'F2(k'), (4.4)

whereas for a massless fermion we have that

&Pr ~l ~ P2 ~)= —
&Pi ~led" lp~ ~)=O(k') (45)

[Note that with our normalization, u(po)u(po) = 0 for
massless fermions. )

The q contributes to the low-energy theorem a
term

k'[Fg(0) —
6F 2(0)]——A(p, . . .)+0(k')

2k(2pak)
(4.6)

for each scalar particle of momentum p, and contributes
nothing for fermions.

When (4.6) is combined with (4.1) and (4.2), we

finally obtain for scale-invariant theories

Q [(d~+p,"8,)+|(d,k 8,+P,B,k 8;——',k p,8,8,)]A

outgoing
fermions

i(r„„B;&k'A— Q A;8 k"0.„„, (4.7)
incoming
fermions

where the first sum runs over all particles, and

di= ~)
=3

2 )

scalars

fermions

outgoing

incoming.

(4.8)

The S matrix for the process n~P is equal to the
matrix A taken between the appropriate spinors for
the external fermions.

theories, the divergence of the scale and conformal
currents is essentially proportional to 0~„&, i.e.,

8 C~"= —2x"d„S~=—2x"(0 ~+ q)

where g is a local operator. For these theories, we can
derive the equations expressing conformal invariance
independently of the details of the interaction. We
consider the low-energy theorem for emission of the
operator 0+„&+ q which must vanish for scale-invariant
theories. Since we have already determined the low-

energy theorem for „&, it remains only to add the
contribution of q. The matrix elements of Qq vanish
like k' as k„~0, i.e.,

~ I
l3) = (P-—P~)'&~ le IP) = k'&~ ln I&), (4.3)

and thus the only contribution of p to the low-energy
theorem comes from the infrared terms where
couples to the external particles and

n&l pig) 1/k.
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We can now equate to zero the coefficients in (4.7) of
(b")' and of k&. The coefficient of (bl')' is just the
equation expressing scale invariance. We define the
operator

+i=di+ p' ai (4.9)

as the scale operator for scalars and for fermions (as in
Sec. II, d;= 1 for scalars and d;=s3for fermions). The
scale-invariant amplitude satisfies

That these equations do not involve derivatives with
respect to the masses results from the following equa-
tions, which can easily be derived:

X)'p'=N(p )n 't'p = e~(p )n 'p'=0 (417)
6;op 2=u(p, )6,'&'p, = e&(p,)6„,'p 2=0, (4.18)

when p;2=0. Furthermore, the scale and conformal
transformations for massless vector mesons preserve
gauge invariance; i.e., if p; A, (p;, . . .) =0, then

(4.10)
p,'6;„,'A"(p, , . . . )=0. (4.19)

6„A=+ 6;„A=0, (4.12)

where for outgoing (incoming) fermions the conformal
operator acts to the left (right) of A.

Vector particles can be treated in an identical fashion.
The result is obvious, namely, that Eqs. (4.9) and (4.11)
define the scale and conformal operators for vector
particles, if d;=1 and Z„„'=—Z„„~~=(g „ge„—g „g»).
Thus, the contribution of an outgoing vector particle
with momentum p; to the conformal equation is

e (P')(6'.)-eAe(p', )- "(P')E(a'+P'"a a: 2P' a'"a 3r-e- '

+{g.„a,'—g»a. ') jA (p, , . . .), (4.13)

where the 5 matrix is e (p;)A (p;, . . .).
The amplitude A contains a momentum conservation

8 function

(4.14)

Using momentum and angular momentum conservation,
and scale invariance of A, one can commute the scale
and conformal operators with this 5 function to obtain

=b«~(p 1-;p;)L—4+ ajar(p, ) =o, (4.1s)

6.b«'(ZC' ')P~( ')P

=b~'&(P l.;P,)6„on(P,) =o. (4.16)

In a similar fashion, we define the conformal operator
for a particle of momentum p;, dimension d;, to be

6;„=f,'~[d;a„'+p'"a„;a„' -p—„'a,"a„']—z„„'a,". (4.11)

The spin operator Z„„; is defined as in (2.10), so that
for a scalar, Z»&0)=0; for a fermion, Z
alld

g;8;=8;, outgoing fermion

incoming fermion.

The conformal equations are then

The above equations hold for theories which are
essentially scale invariant and in which all masses
have been set equal to zero. In what sense are they
valid for finite masses' From (4.1) and (4.2) it is seen
that finite-mass corrections to the low-energy theorems
are all of the order (M'/p')A, where p is some momen-
tum variable. This must be compared to the terms which
generate the scale and conformal equations, which are
of order A. Therefore, these corrections can be neglected

if all energy variables are large compared to the external
masses. In addition, when the masses are finite, the
amplitude for the emission of 0"„& does not vanish.
We therefore must assume that this amplitude (which
vanishes when all masses are zero) is small compared to
A at large energies. For essentially scale-invariant
Lagrangian theories, 0&„& is explicitly proportional to
the masses of the particles that appear in the Lagrang-
ian. We would therefore expect that its matrix elements,
to any finite order of perturbation theory, are of
order (M/p)A for large energies. This estimate is,
however, not strictly correct, owing to the infrared
divergences that would appear if all masses were set
equal to zero. These divergences invalidate the dimen-
sional argument given above. For finite masses and
asymptotic energies this problem manifests itself in
the appearance of logarithmic terms of the form
ln(p/M), which violate the scale and conf ormal
invariance of the amplitude. To any finite order in
perturbation theory there will only appear finite powers
of such logarithms. Furthermore, the ratio of the matrix
elements of 0&„& to A will approach zero logarithmically
at large energies. We therefore make the further
assumption that when one works to all orders in pertur-
bation theory, these logarithms in the amplitude do
not build up to give power behavior. More precisely, we
assume that O~„&/A (or DA/A and 6„A/A) tends to
zero logarithmically as all energies become large com-
pared to the masses. In that case the solution of the
scale and conformal equations given above will represent
the asymptotic behavior of the amplitudes when all
energies are large, up to logarthmic terms.

As stated in the Introduction we hope to apply these
equations to the study of the asymptotic behavior of
model field theories where our assumptions stand a good
chance of being true. Quantum electrodynamics, of
course, is an essentially scale-invariant theory and thus
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falls into this class. The strong interactions, however,
do not seem to be scale invariant. This can be explained
simply if the basic strong interactions involve dimen-
sional couplings. However, there seems to be another
way of understanding the non-scale-invariant (Regge)
asymptotic behavior of strong amplitudes which is
more appealing to us. The mass spectrum of hadrons
includes states with very large masses, and in fact there
is much speculation that there exist narrow resonances,
on Regge trajectories, that increase linearly to infinity.
If this is the case then, of course, energies are never
large compared to all masses, i.e., there exists no scale-
invariant region. It is interesting to note in this connec-
tion the strong relation, implied by the idea of duality, '
and exemplified by the Veneziano model, " between
infinitely increasing masses (and spins) and Regge
behavior. In any case, we do not believe that one can
fruitfully apply scale invariance to the study of strong-
interaction amplitudes. " For this very reason we are
skeptical whether the usual renormalizable field theories
can serve as a useful guide for high-energy hadronic
amplitudes. The only renormalizable field theory which
is not essentially scale invariant is the p' interaction,
which also happens to be the only interaction for which
it has been shown that Regge poles dominate the
asymptotic behavior of the scattering amplitude.

As noted in the Introduction, high-energy inelastic
electroproduction at large momentum transfers seems
to yield scale-invariant amplitudes. In this case, the
above reasoning against scale invariance for strong
amplitudes is inapplicable, since the contributions of
the massive discrete states are strongly damped by the
rapidly falling electromagnetic form factors. We hope,
in a forthcoming publication, to return to this problem
and apply conformal invariance to these amplitudes.

V. APPLICATIONS

In this section we will consider the constraints placed
upon two-body scattering amplitudes by scale and
conformal invariance. The solution to the equations of
scale invariance is simply, namely that the amplitude
5R(Pl,P2 ) has the property

5K(pl, p2 ) = X "BIZ(P,pl)Xp2 ), (5.1)

where d is the dimension of DR, 5E=(mass)". The
conformal equations, divided in Sec. IV, seem, at first
glance, to be quite complicated. In particular, they
appear to be second-order differential equations. How-
ever, we shall show that in the case of four-point

'4R. Dolen, D. Horn, and C. Schmid, Phys. Rev. 166, 1768
(1968)."G. Veneziano, Xuovo Cimento 57A, 190 (1968)."One could, of course, consider 0+„& as an interpolating field for
scalar particles (say the o. meson) and use the low-energy theorem
derived in Sec. III to relate the amplitudes for o. emission, at
small four-momenta, to the breaking of scale and conformal
invariance. However, if scalar mesons exist they are probably too
massive to justify the extrapolation which is necessary to make
contact with experiment.

where T;(p;) are a complete set of tensor amplitudes and
5K; are the invariant amplitudes. The amplitudes 5R;
are scalar functions of, say, the energy variables
s= pl p2 and t= pl. p3 and have a dimension D; so that

4 8 8
D,M =Q p*' 01Z, =2 s—+r 5R—, . (5.3)

Bp, Bs Bt

We shall now prove that when the conformal operator
is applied to BR, the resulting equation will only involve
first-order derivatives of the invariant amplitudes 3R;.
The only place that second-order derivatives appear is in
the spin-independent part of the conformal operator

f 4Ld4~p +P4 ~v ~p' 2Plv'~4 ~v']
p

and only when these operators act on 5R;. We therefore
consider the expression

4

Q [d;8„'+p;"8„'8„' 23 p„'4l,"B„*jOR)(S—,t—) .

Expressing the derivatives in terms of s and t, we obtain

(EP'(~.+~ )+P'~ +P,'~~](»*+~~~)+P,'Dd2 1)~, —
+ (d —1)4l,]+P„2L(d,—1)4l,]+p„3(d,—1)B,}OR,(s,l),

and using Eq. (5.3), we have

(PP'L(d2+ 2DJ—1)~*+(~3+ 2Dv —1)~4]
+ (P„28,+P„38,) (dl+ ,'D,—1)}OR,(s,t). (5.4-)

In other words, scale invariance eliminates all second-
order derivatives, and the resulting differential equa-
tions for the invariant amplitudes will be linear.

A. Scalar-Scalar Scattering

Consider the scattering amplitude for four particles
of spin zero, 5R (s= pl p2, t= pl p3). Since OR is dimen-
sionless with our normalization, scale invariance
implies that

(s8,+t8,)KL(s,i) = 0. (5.5)

Conformal invariance places no additional restrictions
on the amplitude. This follows from Eq. (5.4) if we
remember that d;=1 and that the dimension of BR is
zero. Thus we have the rather surprising result that
once scale invariance is satisfied, the scattering ampli-
tude for four scalar particles is automatically conformal
invariant. This is not generally the case. We shall show
below that conf ormal invariance places nontrivial
restrictions on the scattering of spinning particles.

functions, the conformal equations can always be
reduced to first-order differential equations.

Consider the scattering amplitude for an arbitrary
set of four particles, with momenta p;, i=1,. . . , 4
(Pl+P2+P3+P4=0). It can be decomposed as follows:

~(plyp2)p3yp4) Q 23'(p4)~jLpl' p2)pl p3] v (5 2)
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Pg P) Pg
~X/M

~"' j l

XJXJ v

Pg Pp
— Pg

(a) (b)
FIG. 1. (a) Born term for @' coupling; (b) Born

term for gd„@At" coupling,

Pp

where
+O(M"/s, M' 't, M-'/u) (5.6)

u=P M,' s t, 3II—'=—max(mP).

Insof ar as conf ormal invariance is concerned spin is an
essential complication.

Equation (5.5), which implies that BK is a funct. ion
of the dimensionless variable sit, is to be interpreted,
for essentially scale-invariant theories, as the statement
that

lf

(a) (b)

FIG. 3. (a) Ladder diagram for scalars with&' coupling. (b) Ladder
diagram for scalars with @d„@At' coupling.

=OR(s) = const. The infrared problem spoils this;
however, we note that the logarithmic terrors do not blild
up to give power behavior and the predictious of asymptotic
scale invariaece are true up to logarithmic teress. '

More interesting are the sums of ladder diagrams,
Fig. 3, where, in analogy with the @' theory, we might
expect to And Regge asymptotic behavior. On the
other hand, scale invariance leads us to believe that
asymptotic behavior will not be controlled by Regge
poles. In the case of zero masses, with an infrared
cutoff, this is clearly implied by (5.6); for if we write SZ
as a function of z, = 1+2s/t, then

We have allowed for logarithmic terms that spoil
exact asymptotic scale invariance in the function F,
which, however, is restricted not to build up power
behavior, i.e.,

InF/1ns: O. (5.7)

When we calculate radiative corrections, we will
encounter logarithmic (infrared) breaking of scale
invariance. For example, consider the chain of iterated
bubbles in the s channel, Fig. 2. The eth-order term
yields, for s)&Mz, a contribution p" ln" '(s/M'). When
these are summed, we obtain

OR(s, t) =t $1—t 1n(s/3P) $ '= Pln(s/M') j '.
Since the chain has no t dependence, and 5K is dimen-
sionless, exact scale invariance would iinply that OR(s, t)

FIG. 2. Iterated bubbles in the s channel.

We now inquire whether perturbation theory, for
essentially scale-invariant scalar theories, does in fact
yield scale-invariant amplitudes.

We consider the couplings ap' and Pp,gBA', where
P(A') is a scalar (vector) field. The Born terms (see
Fig 1) are. clearly scale invariant. For @' coupling,
OR = const, and for the vector coupling

(p, —p, )(p, —p, ) s—
OR =const

(p p)2 M2 t»&v 2

OR(z„t) =OR(z, )F(ln(s/X), ln(t/X), 1n(u/X)),
where X is the infrared cutoff. If our assumption that the
logarithmic terms do not build up to powers is correct,
i.e., Eq. (5.7), then the massless theory cannot exhibit
Regge behavior. Instead the asymptotic behavior will
be that corresponding to fixed singularities in the
angular momentum plane. For finite masses, one
cannot strictly rule out Regge poles, since Eq. (5.6) will
be satisfied as long as the Regge trajectory n(t)
approaches a constant value for large t in the following
way:

a(t) = c onts+ Mzt/.—t&& M2

The asymptotic behavior of the sum of the ladder

diagrams for both g' and Pcj„&A t' coupling has been
discussed by many a,uthors. "" Sawyer" found, by
summing the most singular term in each ladder dia-
gram, that the amplitude behaved for large s as follows:

mt(z„t) = (z,) Dn(z, )]—'",
where

n =g'/16" for

=g/2"+8 for @(3,(pA"

This agrees with our expectation that the asymptotic
behavior is governed by fixed cuts. Other authors, "'
"This example, however, may be misleading since we are

summing the perturbation series in a region where it clearly
diverges t P ln (s/Ply))) 1). This point has been discussed byX. X. Bogoliubov and D. V. Shirkov, Theory of Quonlised Fields
(Interscience, New York, 1959), pp. 528, 529.' R. Sawyer, Phys. Rev. 131, 1384 (1963).

'9 M. Baker and I. J. Muzinich, Phys. Rev. 132, 2291 (1963);
M. K. Banerjee, M. Kugler, C. Levinson, and I. J. Muzinich,
ibid. 137, B1280 (1965).

'0 J. D. Bjorken and T. T. Wu, Phys. Rev. 130, 2566 (1963).
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using different methods, have confirmed that 6xed
cuts are indeed the leading singularities for these scale-
invariant theories" (of particular interest is Ref. 19
in which the connection between scale invariance and
fixed singularities in angular momentum is emphasized).

s s t I
B(s,N) = —B —P ln—,ln, ln—

(sN) '" u M' M' cV'

A (s,N) = (sN) '"f(s/I),
B(s,n) = (su) 'i' f'(s/I).

(5.10)

We now apply the conformal operators. Using the
results established previously, we can eliminate all
second-order derivatives. The result is that 8 com-
pletely decouples and is unrestricted by conformal
invariance. However, A must satisfy the equation

ii(P2) fp&~(8,+B.)+q&~8, +q&~8.
—(qi~.—q2~ )v"]»(Pi) =0, (5 11)

which clearly implies that B,A =8~ =0, or that A
must vanish.

In the massless case, A (B) is proportional to the
s-channel helicity-flip (-nonflip) amplitude. Thus, our
result is that for spin-zero —spin--, scattering in an
essentially scale-invariant theory, the spin-Rip ampli-
tude vanishes and the spin-nonQip amplitude is an
arbitrary scale-invariant function. In the massive case
this is translated to lll1ply that

B. Scalar-Spinor Scattering

Consider the amplitude for the scattering of a
massless scalar off a massless fermion

0(qi)+k(pi) ~ 0(q2)+k(P2)

(the labels refer to the spins of the particles and
p1+ql+P2+q2=0). The amplitude can be written as

u (pg) l
A (s=piqi, I=p iq2) +(qi+ q..)

XB(s=p& qi, I=pi qg)gu(pi). (5.8)

The dimension of A (B) is —1 (—2), so that scale
invariance implies that

(—-,'+sB.+u8 )A (s,u)
= (—1+st,+ua )B(s,m) =0. (5.9)

Therefore,

The corrections here are of order 3f/Qs owing to the
presence of fermions.

The Born terms for all the essentially scale-invariant
couplings in (2.15) agree with Kqs. (5.12) and (5.13).
We also have verified that these equations are satisfied
in second-order perturbation theory for these couplings.
As far as summations of an infinite number of perturba-
tion-theory diagrams is concerned, we refer once more
to the calculations in the literature where it has been
argued" that the asymptotic behavior of pion-nucleon
scattering, with scalar or vector exchange, is governed
by fixed cuts in angular momentum.

C. Scalar-Photon Scattering

We have worked out the restrictions placed on the
Compton scattering of massless scalar particles by
scale and conf orrnal invariance. The procedure is
straightforward and the result is that the helicity-
non8ip amplitude is automatically conformal invariant
once scale invariance is satisfied, and that the helicity-
Qip amplitude is forced, by conformal invariance, to
vanish.

The result of the three cases discussed above can
easily be summarized. When one considers the elastic
scattering of scalar and spinning particles, the only
additional constraints placed by conformal invariance
are that helicity-Rip amplitudes vanish. It would
probably be much simpler to derive this result if we had
formulated the conformal equations directly in terms of
helicity amplitudes. Preliminary investigation indicates
that the constraints imposed by conformal invariance
on amplitudes not involving scalar particles are more
severe. We intend, in a forthcoming publication, to
develop the helicity formulation of conformal invar-
iance, and apply it to spinor-spinor and spinor-vector
scattering.

&&F ln—,ln, ln (5.12)
Af' 3f' JI/I'

~'An alternative heuristic argument for the presence of fixed
cuts in angular momentum in scale-invariant theories is the
potential theory analog. The only scale-invariant potential is
g/r' t which scales as the kinetic energy (1/235) hj, and, as is well
known, leads to a 6xed cut at 1=—~~(A, ——,')'". However, there
is one counterexample to this phenomena of 6xed cuts governing
the asymptotic behavior of essentially scale-invariant theories.
This is the Reggeization of the electron in massive quantum
electrodynamics, at least to sixth order, as shown by M. Gell-
Mann, M. L. Goldberger, F. E.Low, K. Marx, and F. Zachariasen,

APPENDIX

The restrictions placed by scale and conformal
invariance on Green's functions can be derived from
the transformation law of the fields if we assume the
vacuum to be invariant. Invariance then leads to the
following equation:

{oI2'(0i'(&i) @-'(z-)}10)=(0l T(4i(») .y.(z.)}I0)
=G(*i x.) . (A1)

Phys. Rev. 133, 3145 (1964); H. Cheng and T. T. %u, gbjd.
14O, i465 (&96S)."G. Cosenza, L. Sertorio, and M. Toiler, Xuovo Cimento 31,
1086 (1964).
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For scale invariance,
8

tf, '(x) = ft,( x) e—d,tf;(x)+xt' P,(x), (A2)
Bx"

01
n 8

d~+x, G(xg, . . ., x ) =0.
~&i

(A3)

2dtn. xt+2nvx t'Z

8—(n~x, 2 —2x,'n. x;) G(x„.. . , x„)=0. (AS)
Bx;"

Note that these differential operators commute with
the time ordering.

For the Fourier transform of the Green's function,

G(xt, . . . , x.) = dp, dp„e-*'" * G(p„. . . , p„),

Eqs. (A3) and (AS) become

8
G(pt, . . . , p„)=0, (A6)

n

(4 d*)+p'. —
s~] tIIIP

z

n 82
n.p,

ftP, 2

8 8 8—2p, n — +2(d —4)n.
tlPi ~Pt ~Pi

8
+2n~ Z~" G(p„. . .) =0. (A7)

i

To see what restrictions these equations imply for
the 5 matrix, we have to remove the propagators. We
consider, for example, the case of scalar and spinor
particles, and define, with an obvious identification of
particles

1 1 1 1
~ ~ ~ ~ ~ ~ ~ ~ ~

pl prtil Ifs pl pt

Commuting the operators in Eqs. (A3) and (AS)
through the propagators (no double poles appear when

For conformal invariance,

y, '(x) =4,(x)+(2d;n xS;,+2n"x~Z„.'t)@;(x)

8
(n—~x' 2x—~n x) y—;(x), (A4)

8$
or

this is done), we finally obtain for A the Eq. (4.7)
derived in Sec. IV from the low-energy theorem. "
For strictly conformal-invariant theories these equa-
tions would impose very severe restrictions, leaving
only trivial solutions. As a consequence of scale invar-
iance along the propagator of a fermion 6eld would have
to be of the form C/y. p, where C is a constant. For C
finite, we would be left with a free-Geld propagator.
Thus a strictly scale-invariant theory must yield a
trivial 5 matrix. Clearly this is not what we expect to
happen (when masses are set equal to zero in an
essentially scale-invariant theory). The resolution of
this apparent contradiction is that our assumption of
an invariant vacuum is by no means justified. Owing
to the fact that scale invariance forces us to deal with
massless particles, ' we will encounter infrared diver-
gences which exclude solutions with an invariant
vacuum.

Alternatively, we will have to introduce an infrared
cuto6 which can serve as a scale. In perturbation theory
this cutoB will enter logarithmically as is the case in
massless quantum electrodynamics. '4 Of course, there
is always the possibility that such logarithmic terms
give rise to a power behavior when the perturbation
series is summed. (This is the case in the Thirring
model. ) Our assumption is that this does not take
place for on-mass-shell amplitudes.

The purpose of this paper, however, is not to discuss
strictly conformal-invariant theories. We are rather
interested in what we have called essentially scale-
invariant theories, i.e., theories for which scale and
conformal invariance might be an approximate sym-
metry when all the energies are big compared to the
masses in the theory. Then we expect that the equa-
tions, derived from scale and conformal invariance will

be satisfied up to logarithmic terms. This will at least
be true for any Gnite order of perturbation theory,
allowing us to make predictions for the leading terms at
high energies. Hopefully, it may be valid to all orders in.

perturbation theory, as indeed the comparison of our
predictions with perturbation theory (see Sec. V)
indicates.

2'In the derivation of the low-energy theorem for graviton
emission, the di were the dimensions of the asymptotic fields,
and were fixed by normalization conditions. Here the d; are the
dimensions of the interpolating fields and we have implicitly
assumed that they are identical to the dimensions of the asymp-
totic fields. This assumption might very well be incorrect; in
fact, it fails for the Thirring model. In this case the dimension of
the interacting spinor field is diGerent from the free-held dimen-
sion and depends on the coupling constant. See K. Johnson,
Xuovo Cimento 20, 773 (1961).

'4 M. Gell-Mann and F. Low, Phys. Rev. 95, 1300 (1954).


