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(3) We regard this theory as a tentative step in the
right direction rather than a final result. In particular, it
would be nice to introduce CI' violation. It would also
be nice not to have to require dynamical suppression of
the non-octet parts of the nonleptonic interaction.
Perhaps this could be achieved if strong interactions
were taken into account at the outset.

(4) Since our interaction contains some more terms
than the usual one, their presence may be tested with

the help of other theoretical models or in several hard
to observe reactions. We shall postpone detailed dis-
cussion of these points.
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~~, ~g, and EE single- and multiple-term Veneziano amplitudes are studied as a coupled system. Adler
and Adler-%'eisberger conditions are imposed, and it is found that the single-term system cannot satisfy
all of the PCAC (partial conservation of axial-vector current) and charge-algebra constraints. The multiple-
term system, constructed to satisfy these constraints, results in much improved width predictions. These
jmproved amplitudes are used to study chiral symmetry breaking by investigating the Z terms. It is found
that a single (3,3*)6 (3*,3) representation is not sufhcient to explain the symmetry breaking, whereas a
mixture of (3,3*)8(3*,3) and (1,8) 6 (8,1) is sufhcient (but not necessary). The admixture of (1,8) Q (8,1)
is considerable.

I. INTRODUCTION

1
~QNSIDKRABI. K interest has been focused on the~ elegant amplitude construction of Veneziano. '

Work. has proceeded in many directions, including two
in which wc shall be most interested, namely, the corn-

parison of Veneziano forms with (1) experimental data
and (2) current-algebra oR-mass-shell predictions. ' For
thc latter, thc I ovelacc conjccturc has often
taken as a working hypothesis, that is, that the Vene-
ziano amplitude with constant coe%cients is the correct
off-mass-shell extrapolator.

Much of this CGort, however, has had somewhat of a
patchwork quality with emphasis on a single amplitude
at a time (say, mm elastic scattering), ignoring other

systems (such as ICE and Xm elastic scattering) which
share common trajectories and are jointly constrained

~ Work supported in part by the U. S. Atomic Energy Com-
mission.' G. Veneziano, Nuovo Cimento SPA, 190 (1968).

' Review talks containing extensive lists of references on these
and other aspects of the Veneziano model are M. Jacob, in
Proceedings of the Lund Conference, 1969 (unpublished); C.
Lovelace, in Proceedings of the Irvine Conference on Regge Poles,
1969 (unpublished).

3 C. Lovelace, Phys. Letters 283, 265 (1968).
4 For a variety of reasons satellite modifications to mm and/or

mE leading-term Veneziano amplitudes have been considered
by Dennis Corrigan, Phys. Rev. 188, 2465 (1969); Kashyap
Vasavada, Phys. Rev. D 1, 88 (1970); Kyungsik Kang, Brown
University report (unpublished); N. G. Antoniou, A. Bartl, and
F. %idder, Tubingen University report (unpublished).

by factorization and current-algebra requirements. In
this study we shall consider the Veneziano amplitudes
for xm, xE, and EE ' elastic scattering as a coupled
system and attempt simultaneously and consistently to
satisfy these constraints. (We have not included gg,

and gE in ouI system because of the mixing
problem. ')

Initially, we investigate the single-term Veneziano
forms (STV) constructed. according to the duality
diagram rules of Harari and Rosner. ' These amplitudes
have been constructed by Kawarabayashi, Kitakado,
and Yabuki. ' The 7rx and mE system have been studied
from the point of view of low-energy theorems and chiral
symmetry breaking by several authors. ' We find that
we cannot consistently satisfy the Adler' and Alder-
Weisberger' theorems with this single-term set of

5 K. Kawarabayashi, S. Kitakado, and H. Kabuki, Phys.
Letters 283, 432 (1969).

60. %. Greenberg, in Proceedings of the Lund Conference,
1969 (unpubhshed) .

7 II. Qarari, Phys. Rev. Letters 22, 562 (1969); J. L. Rosner,
ibid, 22, 689 (1969).

8 J. A. Cronin and K. Kang, Phys. Rev. Letters 23, 1004 (1969};
Hugh Osbern, Nucl. Phys. BD, 141 (1970); Riazuddin and
Fayyazuddin, Phys. Rev. D 1, 282 (1970}.

9 S. L. Adler, Phys. Rev. 139, 31638 (1965).I S. L. Adler, Phys. Rev, Letters 14, 1051 (1965); W. I. Weis-
berger, ibid. 14, 1047 (1965); S. L. Adler, Phys. Rev. 140, 3763
(1965); %. I. %eisberger, ibid. 143, 1302 (1966).
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Vcnczlano amplitudes. Tllus thc LovclRcc conjccturc
loses support in this extended STV system. Kc comment
brieQy on some other problems including a fundamental
difiiculty with the XE system in which the (p,~d)

trajectory decouples in one of the channels.
We then consider a set of multiple-term Veneziano

forms (MTV) which are constructed to satisfy consis-
tently the current-algebra and PCAC constraints.
As a by-product, certain width predictions improve.
We then use this set as a model for OR-mass-shell ex-
trapolations to test a scheme of chiral symmetry break-
ing in which a smoothness approximation is combined
with the assumption of a single (3,3~)g(3~,3) chiral
SU(3) representation, closely related to, although
slightly more general than, the approximation scheme of
Gell-Mann, Oakes, and Renner. " The results of this
test are negative, but the ambiguities of the smoothness
approximation preclude any clear-cut conclusions. In
an .attempt to avoid these ambiguities we apply a
current-algebra theorem in which three of the four
scattering particles are OH mass shell and evaluate this
amplitude using the MTV forms as the extrapolating
function. We find that a single (3,3*)(P(3*,3) represen-
tation will not sufhce, in agreement with the result of
Cronin and Kang. ' If a (1,8)ii)(8,1) representation is
included. , the admixture is considerable.

In Secs. II and III the STV and MTV amplitudes are
constructed and compared with experimental and
current-algebra off-mass-shell results. In Sec. IV the
MTV amplitudes are compared with models for chiral
symmetry breaking. Results are discussed and sum-
IliRrlzcd II1 Scc.V. An Appcndlx contains R dcrivRtlon of
the O6-mass-shell theorem used in Sec. IV.

II. SINGLE-TERM VENEZIANO AMPLITUDES

In this section we wish to establish that the require-
ments of the commutation relation [F4+;P, F4;~'j
= Q' + I' are not consistently met in the leading-term
Veneziano model for the xw, m.E, and EE scattering
amplitudes. "

Let us first briefly review the construction of ampli-
tudes in this model and list some of its prominent suc-
cesses and failures. For our discussion, the ~ x+,
m. E+, E—X', and X E+ amplitudes will be sufhcient.
These may be written as'

respectively. The constraints applied in determining
these forms are summarized in the duality diagrams of
Harari and Rosner, each Veneziano term correspond-
ing to an allowed diagram. The extremely restrictive
nature of these rules is apparent in the E Eo amplitude,
where the (p,cd) trajectory is entirely absent in the f

channel. The requirement that the pion and kaon
PCAC consistency conditions be satisfied for these
amplitudes, which is possible only if the arguments of
the denominator gamma functions vanish, ' yields with
the exchange-degeneracy condition the following con-
straint on the leading trajectories':

.(s)= -(s) (s)- '(s)= *(s)- .(s)

neglecting the pion mass-squared terms compared. to
mp' and m~'. In terms of the vector-meson masses, this
relation reads

5$y 5$++ —OS+a 8$p

—2F.'—T +(s,t,u) =+2F 2n'vrX =2 (7)

which is the SU(3) mass-squared relation with a mixing
angle tan'8= -', . The relations (m, ' —m ') = (mrr*' —mx')
= 1/2a' also follow from the PCAC constraints. All of
these relations are well satisfied experimentally. Ke are
therefore encouraged by the consistency between the
STV amplitude and PCAC for pions and kaons.

Applying pion PCAC twice, we can use the Adler-
Weisberger (AW) theorems for the ~ir and n.X ampli-
tudes. These relations, which utilize the commutator
PF +',F -'1=2Is, yield"

—2F ' T"+(s,t,u)—
ds

"This difhculty is pointed out by H. Osborn (Ref. 8), who
chooses to take the mm and 7fE AW relations seriously and abandon
the EE; case. Our viewpoint is to consider gtl of the soft-E
theorems to be bad (inconsistent) and to consider the consequence
of demanding consistency.

"M. Gell-Mann„R. J. Oakes, and B.Renner, Phys. Rev. Q'5,
2195 (1968).

where ii' is the (universal) trajectory slope and F is the
pion decay constant. By identifying the normalization
constants with the residues at the p and E* poles, we

» D. W. McKay and W. W. Wada, Phys. Rev. Letters 23, 619
I'1969).
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have"

)i~~= 2fpyre = 2mp /7rF~ = 2Xxz= 2fpzz fp~~ = 2fz+zgp

evaluated. "These theorems read

2F—z' Tz—z'(s, t,n)
dS

or

f"-=f.zz=fz"z-=m. /(V'~)F' (1o)

The following relations are obtained by normalizing the
EE amplitudes to the p, co, and p poles:

~Kz= fpzz = fuzz = 2fyzz

and

—2Fz 2 —(s,k, m)
d$

= 2 && (1.06)Fz'n' f,zz' ——1 (13)

=2X(3 o7)F.z'n'f zz'=2, (14)

pone also finds that forcing factorization at the p pole
ensures that the &r pole (daughter of p) also factorizes
in the coupled ~n., 7rIC, and XZ STV amplitudes. j
Taken together, these equations are the vector-meson
nonet coupling relations with the mixing angle tan'8= ~,
consistent with the mass relations, Eq. (6). Similar
relations hold. for the tensor-meson nonet. The compari-
son of the widths determined by these couplings with
the experimental widths is unsatisfactory, as indicated
by Table I. Nevertheless, we can still pursue the ques-
tion of the chiral symmetry content of the single-term
Veneziano model.

The soft-kaon counterpart of Eq. (8), the 7rE AW
relation, yields (in terms of the digamma function P)
the equation

—2Fz'—T z'(s, &)

d$

I'(1 —n, (0))F(1—n*(m. '))
=+2Fz'n'& z

I'(2 —n, (0) n" (m—'))

1'(1—n, (0))I'(1 —n*(m. '))+-
r(1—n, (0) —n*(m. ))

~B(1—n*(m. '))—4(2 —n*(m. ') —n, (o))j =1 (12)

for the normalization constant l~ z. IThe charge com-
mutator PFz+', Fz ')=Q' +I' has-been used in ob-
taining Eq. (12).I Combining Eqs. (8) and (12), we
find" (Fz/F„) '= 1.55 consistent with experimental
estimates.

Turning now to the ICE amplitudes, a contradiction
is evident when the two independent AW relations are

'40ur definitions of couplings relevant to normalization and
factorization are as follows:

I =fpmz'Pp'~X ~p7f'+&fpKKPfl, 'E- g T~+'42 faiKKMp+ JIVE
E-+

+&if@KK@pEt ++&fK'X PC t-7EB .X —EtB m". -gE
+ga'7m&~''11'+goK'K&E ++gfiKK~'+ TEs,

where 8 is the isovector scalar meson {daughter of ~) and tildes
denote isovectors."Y.Oyanagi and ¹ Tokuda, Progr. Theoret. Phys. {Kyoto)
42, 430 {1969);H. Osborn, Ref. 8."¹Srene, M. Roos„and A. Sirlin, Nucl. Phys. 86, 255 (1968).

which are inconsistent with each other and with the
results of the AW relation for mE scattering with soft
kaons LEq. (12)j.

Because no internal contradictions are encountered
until the commutation rule (Fz+',Fz 'j=Q' +-F is
invoked, we believe that the single-term Veneziano
model with constant coefFicients is one in which the
SU(2) SU(2) algebra of charges is consistently satis-
fied, but the full SU(3)SU(3) algebra is not. There-
fore, the study of the breaking of the SU(3)3SU(3)
symmetry generated by the vector and axial-vector
charges has little meaning in the single-term Veneziano
model for the xx, ~E, and EE amplitudes.

I.et us emphasize that, in the light of the many other
difficulties of the Veneziano model, the charge algebra
itself is not challenged but only the application of the
leading-term Veneziano model to the study of the
breaking of the chiral $ymnsetry when the model is
already inconsistent with the complete algebra. One way
of studying chiral symmetry breaking in the framework
of the Veneziano representation is to add secondary
terms to the amplitudes, still keeping the basic rules of
the duality diagrams and adjusting coeScients so that
al/ of the low-energy theorems implied by SU(3)g SU(3)
charge algebra can be consistently satished. We take
up this problem in Sec. III.

III. MODIFIED VENEZIANO AMPLITUDES

There are two obvious troubles with STV amplitudes
which we have already pointed out. One is the absence
of (p, co) in the t channel of IC EOscattering, and the'

other is the conflict among the three independent soft-
kaon AW relations. (Within the leading-term Veneziano
framework, the only way to resolve both of these
difficulties at once is to set re = mE. , which implies that
the I=0, EE amplitude vanishes identically, a problem
in itself, and that n„= n& ——n =nz~. ) We shall remove the
convict among the three A%' relations by taking the
leading-term Veneziano amplitudes with physical
masses for x and E as the 6rst approximation to the
scattering amplitude and adding satellite terms as
corrections. We maintain the PCAC consistency con-
dition and demand consistency among all of the soft-
pion and -kaon A% relations. %e do not pursue the
question of possible overrestrictiveness of the Harari-
Rosner duality diagram prescription.
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TABLE I. Width predictions of the single-term Veneziano (STV) and our multiple-term Veneziano (MTV) models and the corre-
sponding experimental widths gas compiled by the I article Data Group, Rev. Mod. Phys. 42, 87 (1970)j. The last column gives the
relative sizes of the coefficients of nonleading terms to the leading terms in MTV (Sec. III).There are no free parameters, and all widths
are determined in terms of F ' and m„ taken as F '=0.47m ' and 765 MeV, respectively.

Amplitude

Tx K+

T'K Ko and TK K+

Width

I(p )
I (f~~~)
r (a ~ 7r7I.)

r(E*(890)~ E~)
r(E*(1420)~ E~)

I'Q ~ EX)
I'(f'~ EE )

STV width
prediction

(MeV)

83
69

450

25
26

1.9
21

MTV width
prediction

(MeV)

110
165
300

33
42

2.67
29

Experimental
width (MeV)

125 %20
151 %25

» i00

50
47 g+'

3.1& 0.5
53 23+28

Ratio of satellite co-
efBcients to leading term

U 12/U ll 0 16
U22/U» P64

U2»/UI» =P.13
U221/UI» =0.06
U222/ Ul» = —0.37

U,»/U, » =—p p75
Upl/U, »=0.175

I.et us erst discuss the modifications of the EE scat-
tering amplitudes in some detail, and then turn more

briefly to the mE and xw cases. For s-channel EX
scattering, the isospin-one and -zero amplitudes are
t-I symmetric and antisymmetric, respectively. In
addition to the leading terms, we shall add two ad-

ditional terms to T(') to ensure that the soft-kaon
Adler consistency condition is satisfied, and corre-

sponding terms to T(') to guarantee that the p trajectory
and its daughter are pure I=O. This will also maintain

the restriction of the duality diagrams. Including all of

the secondary terms which contain the p, co, or p poles
is just sufFicient for these purposes, so we write

channel, we have

T««'(u, t s) =2LT&'&(s, t,u)+T"&(s,t,u) j
='A««&i&V "(n (u) n (t))

+&««"' V2"(n (u),np(t))

1 ng(m«—')
V2"(n, (u), n~(t))

1 —a, (m«')

T«" (u, t,s)=T&'&(s,t,u).

(18)

T&'&(s, t,u)
&«'&«[V,"( (tn),p(un))+ Vi"(n~(t), np(u)) j

+X««&" VL2( n(&t), ~n( )u)+V~"(n&, (u),n~(t))]
+~«« ' LV "(,(t), ~(u))+V "(,(u), e(t))j (15)

and

We note that the (t&,co) pole is absent
I, channel, consistent with the duality
scription. Finally, applying the AW
T««'(u, t,s) and T««+(u, t,s), we find.

conditions:

1 = 2F«'n'(X««&'& —10.5X««&'&)

in the T~ ~'
diagram pre-

theorem to
the following

= —2F«'—T" «'(u, t,s)
dl

T"&(s,t,u)
= X««&'&LVi"(n (u) nc (t)) —Ui"((np(t), n~(u))7
+)&««LV2 (ap(u) ny(t)) V2 (ap(t) ac'(u)) j
+l& &3&LV 21(n (u) a (t)) V22i(n (t) n~(u)) 1 (16) 2 =2F«'n'(3. 08K««&" —6.45K««&'&)

zc=mK~; t=o
(20)

In these expressions, the shorthand 2F«' T««'(u, —t,s)—
dQ

(21)

I'(i —n.(x))I'(j—n&, (y))
V."(n.(~),n ~(y)) =—

I'(k —n, (x) —
n&, (y))

has been used. Applying the Adler consistency condition

to T~'), we obtain

&&««&'&[1 n&(m«') j—+X««&'&[1 n, (m«')]=0—. (17)

This condition reduces the number of parameters to
two, chosen as P~~(" and X~~ ". Crossing to the I,

zc=mK; t=o

Consistency between these two relations requires
X~~(') = —13.4X~~( ) We can now write T ~' in
terms of one parameter P ~~(", and we have

T« '(s t,u) =X««&'& V "(n (s) n~(t))

( 1 —np(m«')—0.075~~ V,"—— V,") &22&
1—a, (m«')
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and similarly for T~ ~~+. Hy identifying the residues at
the p, P, and cv poles )ignoring the absence of (p, &v) in
the t channel for Tx+x'g, we find the relations

4cxi'i/1 0g= f xz =f zx =(1/2 54)frizx {23)

for the vector-meson —kaon couplings. The OEE coupling
is found to be

g,xx' 0 3——3f,.xx'm„',

a relation which will be useful later when factorization
of the 0 pole is demanded in ~x, mE, and EE scattering.
We notice that if we use the relations f„'=mp'/xF, '
and f,xx'= f, ', obtained from the soft-pion AW
theorems applied to the single-term Veneziano forms for
xx and. xX, then Eq. (20), the AW relation for EE,
yields (Fx/F )'=1.61, compared with (Fx/F )'=1.55
from the leading term of the xE amplitude.

The near consistency between EE and xE AK rela-
tions is encouraging, and one is tempted to stop here,
retaining the STV forms for mm. and xE'; however, by
modifying T~~ we have destroyed the factorization at
the 0- pole. In addition the p and E*widths determined
by the AW relations and leading Veneziano amplitudes
for ~~ and ~E are not very satisfactory. For these
reasons, we must consider modi6cations to the xE and
arm amplitudes as well, similar to the modifications just
discussed for the EE case. It is sufhcient to discuss the
A% relations in terms of the m E+ and m m+ elastic
scattering amplitudes, so we shall restrict ourselves to
these. (There is only one independent t-channel anti-
symmetric amplitude for each of these processes. )

In the case of xE, the soft-7r and soft-E PCAC con-
sistency conditions require that three secondary terms
be added, or one more than is available from just those
terms with a p or E~ pole. '~ Ke choose to add the term
V2"(n, (t),n*(s)) in addition to those with the leading
poles. '8 Enforcing the PCAC consistency condition for
soft w and E, we have

2' z+(s, t,N) =X x&'&Vi"(n*{s)n (t))

1—n, (mx')
+X.x"' V2 "(n*(s),n, (t))+

1—n*(m. ')

&« "(*{),.(t))——,—V "(*{),.(t)) .
1 —n*(m. ')

(25)

The Adler-Weisberger relations for soft x's and E's read

1=2F 'n'xP. .x&'& —X.xi")

1=2' 'n'(~ i'i —X &'&)

&& {V,"(n*(m.'),n, (0))y V,"(n*(m.'),n, (0))

XL&(1--*(-.))-S(2--*( .)--.(0)n»

gF 2 7'w K+(s t ii)
ds

(-'7)

np(mz) fpxxfpew g~wwgazz
~.z "'= — —— —.(29)

1 n" (m ')— 2 m„'

Finally, let us consider the corrections to the w z+
scattering amplitude which will permit us to simul-
taneously satisfy p and 0 factolizatlon in tile coupled
xE system. To achieve this, we need to introduce one
additional parameter for the m m+ amplitude. We
choose the form's

2' +(s,t,l) =X.."&Vi"(n, (s),np(t))

+~-"'LV2"(n.(s),n. (t))+ V2"(n.(s) n. (t))
—4V2"(np(s), np(t)) j, (3o)

where PCAC consistency has been enforced. The AW
relation imposes the condition

2=2F.'n'{ .."&—X.,&'&)~

2F ~T +(s,t,u)— . (31)
dS ~ t=o;s-2' '

respectively. The V's are defined as before and. the f is
the digamma function. Equations (26) and {27) differ
from the corresponding STV expressions (8) and {12)
only in the replacement X ~ —+ X ~&') —P „~(').The ratio
(Fx/F, )' determined from (26) and (27) is therefore
the same as the STV model. In fact, any combination of
the first live Vg"(n*(s),n, (t)), 0= 1,2 and i,j&0, which
satisfies the soft-pion PCAC consistency condition
clothe, has the feature that the STV value of (Fz/F ) ' is
repl oduced.

The normalization constants X ~, '*' determined in
terms of fz*z 2 and fp fpxz, are

1 —n„(mx')
fp~rfpxx —~mz + ~ x

1—n"(m, ')

fx'x '=& x"'+&.x"'.
In addition, g ~~g, „satisfies the equation

(26) The identif'ications of the residues at the p and o poles
yield

"D. Corrigan, Ref. 4."If one adds V2" instead of V222, the amplitude reduces to the
STV form after soft-pion and -kaon PCAC constraints are applied.
The MTV amplitude could have equivalently been written
T" +=X~V1"+X'Vp"+X'V22' for m.vr.

i'&+X "&=2fp

'9The degree of generaHty of the insensitivity of the value
of Ii~/Ii to the addition of nonleading terms has not been
determined.
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P, ."'=- -';fp, ,' —2j;. '/m, ',
(32) scheme of Gell-Mann, Oakes, and Renner" we have

respectively.
YVe note that there are 6ve normalization constants

and 6ve independent equations, three A% relations,
and the factorization conditions for p and o.. The soft-
kaon AW relation determines (Fir/F„)', so that all
normalizations can be expressed in terms of m, ' and
5&', ~. There are two solutions to this system of equations,
one of which yields a negative E*width and will not
be considered further. The other solution leads to the
width predictions given in Table I.A consequence of this
solution is the modified KSRF20 relation

fp
' 2m''——/1.52vrF '.

The p, P, f, f', and X*(1420)widths are much improved
compared to the predictions of STY and are now in
agreement within experimental limits. The width of the
o. has decreased substantially from the STY value of
450 MeV. The X"width is still too small (about —,

' the
experimental value). "

In general, we find that imposing the AW relations
for soft E and enforcing factorization for p and 0 has
led to an improved representation of the low-energy
region of the 7tx, xE, and EE systems. Having enforced
the consequences of charge algebra for the coupled
system, we are in a position to look into the question of
symmetry breaking, and we take up this problem in
Sec. IV.

IV. CHIRAL SYMMETRY BREAKING AND
MODIFIED VENEZIANO ZORMS

Our modified amplitudes LEqs. (22), (25), and (30)]
now satisfy the Adler consistency condition (that is, the
restriction of PCAC) and the Adler-Weisberger relations
(that is, the restriction of charge algebra). This has been
achieved. at the expense of adding satellite terms. Ke
now investigate the chiral-symmetry-breaking content
of these modi6ed amplitudes.

Consider the forward elastic scattering of soft
pseudoscalar mesons I'; on the pseudoscalar meson
target P;, where i and j are SU(3) octet indices. By
standard PCAC and reduction methods, we obtain"

lim 9'*(P')»(p) I2'IF'(P')F (P)&

=(/F*')&F (P)IIF" ~~"]1»(p)) (34)

The Z-term commutator can be evaluated in theories
which specify the chiral symmetry breaking, In the

~ K. Kawarabayashi and M. Suzuki, Phys. Rev. I.etters 16,
255 (1966); Riazuddin and Fayyazuddin, Phys. Rev. 147, 1071
(1966).

'~ The relationship between the E~E~ and pm-x couplings is still
nearly that predicted by SV(3}.

S. L. Adler, Phys. Rev. 140, 8736 (1965); 143, 1144 (1966);
W. I. Weisberger, ibid. 143, 1302 (1966); K. Kawarabayashi and
W. W. Wada, ibid. 146, 1209 (1966).

—$„,,5(x)=—BP (x) =i''(x), F,5(xo)],
BXp,

(35)

ItFg~,uz]= —td, zyvp & PF;,5~]=zd,zpui.

In terms of these scalar densities, we have

&F'(P')F (P) I2'IF'(P')»(P)&
o

= (l/F'') &»(P) I
LF"",I:F",uo+~u8]] l»(P))

=(l/F'') 2 d" L(V's)+« *')(»(P) l»IF (P)& (37)

Thus for soft pions we have

&~*(0)»(p) I
2'I ~'(0)»(p)&

v2+c—&F (P) lv2uo+»IF (P)) (»)
3J" 2

and for soft kaons

&A*(0)»(p) I
2'I A'(0)»(p) &

M —-,*c
=—(»(p) I

%2uo+-', qua —,'u8
I I;). (39)

3~x'

As a 6rst approximation, let us evaluate the right-
hand side of Eq. (37) using the smoothness assumption
suggested in Ref. 12:

&»(P) lu IF~(p))=P"(0) lu IF~(p))

«Il' IF.(p)& «I ~ IF.(0)&

=d;;i@~-, (40)
J".+'I

where we have used PCAC twice. In this strictest of
all forms of momentum independence, at most a vacuum
expectation value of No is allowed, since the same
assumptions imply

9''(P) lu IF~(p)&=&»(p) lu IF~(0)&

&»(P)ls~lO& &F'(0)l~~l 0)
=d~'I & ~j Ir,i

J"a ~k

(ofu Io)=d,~Ha . (4l)

where X'(x), the piece of Hamiltonian density which is
not chiral symmetric, is given by 3!'(x)= —uo(x)
—cus(x), where the scalar densities uo and us belong to
a (single) (3,3~) Q3 (3",3) representation and hence
transfoi. m like
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Equating (40) and (41), we can easily show that
(0 I

u,
I 0)=0 for i&0. Thus we have

&P*(p) I
«'IP~(p))=de~(v'l-)(ol »I»/F'*F, (42)

consistent with results of Ref. 12. [We have not,
however, made the assumption of SV(3) vertex sym-
metry and are not forced to take Fx ——-F .] For the
calculation of the meson-meson terms we need only
diagonal elements of (P,(p) I u, l Pi(p)), so we need not
assume all of the smoothness inherent in the equating
of (40) and (41).In particular, the off-diagonal elements
in this equality, which imply (0[Is[0)=0, need not be
imposed; this is tantamount to allowing a f&: meson to
spoil the smoothness approximation by contributing
momentum dependence to matrix elements such as
(It

I uol ~). This allows a vacuum expectation value for
us, (0[»l 0)Wo, which in fact is necessary to support ~

domination of the strangeness-changing (PCVC)
vector current; that is,

m„'F„= (0[ BP4[ K4&= i(0[ i[A', F4] [I|:4)
= ic&0[ [us,F4] [a4) = cf4s5&0[»[~4)

=-,'c(0[ u
I 0)/F. , (43)

where we have used partial conservation of vector
current (PCVC) and made a smoothness approximation
in the last step. "

Thus our approxisnation for. the diagonal scalar
density-matrix elements is

&P'(p) I IP'(p)) =(1/F")
x [(g-;)d...&ol~. [0&yd...d...&0l ~,

l o&].

In this approximation we are also constrained by the
mass formula

lim (P;(p) I

—u, —cu, IP;(p'))
y-+P

=m'=&0[[FP, [F,', —uo —c»]][0)/FP
= [(v'3)+«'*s]

&& [(&s)(0I
No I 0)+ &0 I » I 0&d"8]/F ', (45)

where we have used PCAC, smoothness, and the evalu-

ation (40).
Inserting (44) into (37), we have

[(&l)+«"]
&P;(0)P,(p) I TIP,(o)P, (p)&= —' "

p d;,~[(v'-'. )d;~;&0[~o[0&+d ~ d s&ol»lo&]

1 [-'+(Q-)cd" ]
Q (d;;gd, g, )— [(0 [No I 0)+(V'2) dials&0 I » I 0&]

-&o IN, I 0)+(&-;)d,;,&0 I» I
0&-

P (d;,(d;, &)m,
'—,(46)

F 2 t -&OI»IO&+(v'Sd'*8&0[»lo&-

where in the last step we have used Eq. (45). Thus we

have
&~'(0)~~(p) IT[~'(0)~,(p)&=~-'/F-, (47)

(~'(0)& (p) IT[~'(0)&~(p)&

1 ~-' &ol»lo) —&ol»lo&/2~2
(48)

&olgolo)+i&0[ g lo)

«'(0)~ (p) I
T Ilt'(0)~ (p)&

1 mx' &0[I,[o)+5&0[»IO&
(49)

2 F.' &olgol» —&ol»lo)/2v2'

&E,(0)E,(p) I Tilt;(0)K, (p))=mx'/F»', (50)

&+4 "(0)+6,&(p) I &I «, 5(0)&6 i(p)&=k~rr'/Fir' (51)

Note that in the limit &0[»[0)=0 the Z terms are
proportional to the projectile mass squared and the
target decay constant and have no explicit dependence
on c or &0[»l 0). Even with &0[ u8[0&40 they have no
explicit dependence on the symmetry-breaking parame-
ter, this dependence having been replaced, through the

use of the mass formula, by the dependence on the
projectile mass. Thus this crude approximation scheme
does not allow us to add to the many determinations"
of c (which is essentially fixed by the mass formula)
but does enable us to test the consistency of (3*,3)
g3(3,3") breaking and the smoothness assumptions
with the Veneziano multiple term forms.

The. results of this test are summarized in Table II.
Single-term Veneziano forms are also tabulated, but
one must be cautious in comparing them with the
(3*,3)g(3,3*) evaluation since they do not all, as we
have shown in the previous sections, consistently satisfy
the AW relations. We have written the MTV results
in terms of F„and Frr, but the ratio (Fir/F )' is fixed

by the analysis of the previous section.
It is interesting to note that the STV amplitude for x7t-

scattering agrees to within terms of order m '/m~2 with

~ This is the same as the result of the pole saturation version
of PCVC, as in P. R. Auvil and N. G. Deshpande, Phys. Rev.
183, 1463 (1969).

'4 A list of references is contained in B.Renner and A. Sudberry,
Nucl. Phys. 813, 27 (1960).Two recent papers not included there
are N. H. I uchs and T. K. Kuo, Nuovo Cimento 64A, 382 (1969);
Y. Y. Lee, i'. 64A, 474 (1969).
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TABLE II. Comparison of STV and MTV "Z-term" amplitudes with evaluation of the corresponding matrix elements
by (3~,3)O+ (3,3*) and the smoothness approximation of Eq. (40).

"Z-term" amplitude

(w E+
)
T

~

zz K+), zz soft

(zzE+j T(.x K+), E soft

(E K+~ T~E E+)

(K Kz~ T~K K')

(3,3*)Q+ (3*,3) with smoothness
approximation (Eq, 40)

77z~' 0.019

F2 F2
zzz z (0 lzzol0)

2Pzz' (0 INz i
0)+-', (0 [Uzi 0)

I» (0Izzz)0)+z(0[gzI0)

2F ' (0
i
zz,

i 0) (0 [
—Nz

i
0)/2v2

)ging 0.24

FK' FK'

77zK' 0.12

2FK2 FK2

STV {single-
term Veneziano);

(FK/F )'=1.55

0.154

0.378

0.215

MTV (multiple-
term Veneziano);

(FK/F )'=1.55

0.016

F 2

0.0107

F2
0.159

FK'

0.46

0.234

FK'

results of the (3,3*)(l)(3*,3) and smoothness approxi-
mation model. " [This amplitude, however, is not
sensitive to an admixture of (1,8)(8, 1).7 The MTV
amplitude for x+x scattering is somewhat lower than
the single-term form and the agreement is somewhat
poorer ( 20%).

The MTV amplitude for 7' scattering with soft m.

can be fitted with the (3,3*)6)(3*,3) form, but since
&P~ one must invoke considerable admixture of

Io):

(OIsz, IQ) —(OIN Io)/2v'2 F
=1.1 = 1.7, (52)

(oIu, Io)y-,'(0 IN, Io)

which implies (0 I
zzs

I 0)/(0 I
us

I 0)= —0.6. With this
admixture of (OINsIQ) we are able to calculate the
smoothness (3,3*)$(3*,3) model prediction for zr X+
scattering with E soft, with the result

1 m~' 1 0.109
(~ @+IrI~ K+)»-,.„=- -=—,(53)

2 I-' 1-7 Pz' '

which differs from the MTV amplitude by 60%. T»s
disagreement becomes progressively worse and is

especially acute in the EE amplitudes, which are
independent of the (OIusIQ) admixture, and which
differ from the (3,3*)(l)(3*,3) smoothness model by
100%. )The EE+amplitu'de 'is, in fact, in this model
independent of (1,8)(i) (8,1) admixture, that is, still
given by m»'/F»' even when (1,8)(l) (8,1) is taken into
account because the mass formula changes in a compen-

sating way. 7
Thus the results of this test of the consistency between

the MTV amplitude Z terms and the (3,3*)B(3*,3) and
smoothness approximation scheme of Eq. (44) are

negative. We can as yet, however, draw no clear-cut
conclusion because of all the smoothness assumptions
which went into Eq. (44).

In order to avoid these ambiguities, let us restrict
ourselves to the mE amplitude and sidestep the smooth-

ness approximation by invoking a divergence-charge-

algebra theorem in which three mesons are o6 mass shell

(but only two are soft). This theorem is derived in the

Appendix. (We s,re forced to restrict oursleves to the

xE amplitude because it is necessary that target and

projectile mass be distinct in order that the theorem

go through. ) The results of this theorem are

(zr (—m» )K+(0)
I TI zr (0)X+(—m»'))F 'F»m '/(m ' m»s)—

—= T~ »+( m»' 0, 0, —m»'—m»' m»' 0)F 'Fzrm, '/(m ' m»')=(OI —[F~"(0)zLF»"(0),&&~-'(0)77I&+) (54)

and

(zr (0)E+(—m ')
I
2'I zr ( m')X+(—0))F F»'m»'/( m'+m»')—

2' »'(o —m ' —m ' o—;m ' m. "-, 0)F F 'm»'/( —m-'+m»')=«IIF»-'LF. -'»»"77I~ ) (55)

where Z commutators are assumed to carry no exotic
quantum numbers and we have used the notation

»+(P ',P»+', P' ',P'»+', s-,t,u)-
Assuming a single (3,3*) (3*,3) symmetry-breaking

'~ H. Osborn, Ref. 8, 5$~ —mrf.„

V2+c (QIs4 swsIX+)—
(56)2' V2

term, we can evaluate the double commutators:

T~ »+( —m ' Q Q, —m»' m»' m»', 0)F 'F»
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T «+(0, —m.', —m ', 0; m. ', m. ', 0)F.F«'

X——m~ +m~

v2 ——,'c (0I v,+i vglv-&
(57)

2%3 v2

From the definitions of the PCAC constants and the
form of the divergences in terms of the pseudoscalar
densities we have

(58)

K2 —-,'c (olv, iv, IZ—+&
. (59)

V3 v2

Thus we can write

Ke eliminate c by taking the product of these two
equations:

T «'(m. ',m ',0)T «'(m«', m«', 0)
= —(m«' —m~') '/4F, 'F«'. (62)

Evaluating the off-mass-shell amplitudes with the
MTV forms we have

T «"(m«', m«', 0)T «+(m ',m ',0)

=(—0.4)( ) ( ) . (63)

Equating (62) and (63) we have F«'/F„'=0. 78, which
is inconsistent with our previous determination (from
the AW relations) of F«'/F„2= 1.55. This result is
similar to that of Cronin and Kang, ' " although it is

~' It has been pointed out by Qsborn {Ref. 8) and by F. Csikor
t Phys. Letters 313, 141 (1970)] that certain multiplicative oR-
shell extrapolation factors which contain poles at all of the 0
daughters of the 7i- or E (exchange degenerate} trajectories can
be introduced to remove the contradiction, noted by Cronin and
Kang (Ref. 8) between the 7fE Veneziano amplitude and the
consequences of a single (3,3*)O+ (3*,3) representation breaking.
Osborn remarks that the asymptotic behavior of the simplest
such extrapolation factor, which is essentially a form factor as
discussed by H. Suura LPhys. Rev. Letters 23, 551 (1969)j, would
be "appalling. " In fact, the well-behaved form suggested by
Suura as reasonable for off-shell pion extrapolation, along with
the corresponding kaon factor, does ot remove the contradiction
with (3,3~)(3~, 3) breaking. We have not explored possible
multiplicative PCAC modi6cations of this kind because they would
not remove the lack of consistency among the soft-kaon AW

E 'm, '
T «+( m«', 0, 0, ——m«', m«', m«', 0)

mx2+m 2

K2+c
=-,'m«'-, (60)

V2 ——,'c
J ~2m~2

T~ «+(0) —m. ', —m. ', 0; m ' m.', 0)
m~ —m~

K2 —-', c
=-'m. ' . (61)

W2+c

derived from a different off-mass-shell theorem, as
discussed in the Appendix.

Thus it is clear that the single (3,3~)g (3*,3) repre-
sentation model of chiral symmetry breaking is incon-
sistent with the MTV Enarnpl. itude (assuming, of
course, that the Veneziano form is the correct off-mass-
shell extrapolator). This conclusion is stronger than our
previous (also negative) results because it is independent
of any smoothness assumption for the matrix elements
of uo and Ns ITh.e single-term Veneziano amplitude for
Ex scattering, we remark for completeness, fares no
better in satisfying (62); using it as the extrapolating
function yields (F«/F ) '= 0.8, which is nearly the same
result as for MTV Ex and again inconsistent with
determina, tion from the AW relations. )

We can, however, satisfy Eqs. (60) and (61) if we
assume either an additional, linearly independent,
(3,3*) (3*,3) representation or an admixture of

(1,8)$(8,1) (X=K,r uo —cgs—g&)
—For. example, if

we assume the latter, Eqs. (60) and (61) reduce to two
equations in the unknowns c, &Ol(hr+ih&)/V2I7r )=
and (0I(h4 ih5)/v—2IK+&= q« I—f on.e makes the ap-
proximation g. =g~, then one 6nds c= —0.88&2 with

&ol(7r+v7 )/~2I~ &/&01(v+vv)/~2l«&
= (v./m. 'F-)L(v'l)+c/v3) = 0 75

a measure of (1,8)63 (8,1) admixture, which is consider-
able. The stability of c (= —V2) is perhaps not surprising
considering the voluminous literature'4 devoted to
showing (c+v2) =0.

V. SUMMARY AND CONCLUSIONS

We have considered the mm, mE, and EE Veneziano
amplitudes as a coupled system. Imposing the Adler
conditions on the STV amplitudes results, it is well

known, in trajectory constraints which imply mass
relations which are experimentally well satisfied. The
soft-pion AW relations and the requirement that the

p pole factorizes normalize the amplitudes and yield
coupling-constant relations identical to SU(3) predic-
tions (which are not entirely satisfactory). The set of
amplitudes considered as a whole, however, does not
consistently satisfy the soft-kaon AW relations.

This set of leading-term amplitudes was then modified

by adding secondary terms but leaving the trajectories
unchanged (thus retaining the good mass relations) and
enforcing all of the soft-pion and soft-kaon Adler and
Adler-Weisberger relations. Coupling-constant relations
improved, but the problem of the E*/p width ratio
remained. I A ratio close to the SU(3) value is predicted
by the MTV amplitudes, whereas the experimental
value is too large by roughly the ratio (3:2) of the "old"
width to the presently accepted width. ) This is a funda-

relations and because all of the low-energy theorems which we
employ are of the fixed-point variety, where extrapolations of the
order of pion or kaon masses are involved. For such applications
Adler and Adler-Weisberger relations indicate that PCAC for
pions and kaons is good to within 15/0 (see Ref. '.LO).
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4 . —iysxsXs
(oI s, ,.b(x,),Ls., (x,),as,'(x;)]1 &i

d'x; f' a(t —t;)5(t;—t;)-

+ hm
ui~o »~o

4 . —i@i',XsXs e . 4 —ip, x;+i»*Sd4x, d xA, e
—'

~

(0I T([so,,'(~;),ass'(*~)li;=is as'(x )) IFi)

0

~ in terms of the 5 matrix asThe T matrix is define in er

(A3)i i &&f~N) &

scattering ampm lltude with

i, ;;— — (2—m)'T(s, t,u) = (i)'(p;2+m )(p 2+m; i, u'-»'(p'+p—; p~ pi) t—2~ —~, , — ' ' ' ';+~;

= —( —pi)'. We define the

—i—pg)(2ir) T(p, p

' t= —(;—pi)', and I= —p; —iiitl and s= —(pi+pal') ) f= iwhere states are no
t ree meson sons o6 mass s e in
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Equation (A2)
The result is

'.F m 2m2
2 2 m2»~0hm (2 )'a'(p; p, p„)F;F,F„,—';—

X

b t tuting the de6nitio
'
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s»*Ie '&' ' d XA, eXs e

Fi . (AS)«ILF"(0),LF,'(0),»"(0)jjI ).i' &"i»*') I
Fi)+(2~) (p&&(0I T(LF (~.),»"(*.

e n — h develop a pole in Kq.e ri ht-hand side eac evee and the first term on the ngd '= k, the left-hand side an eIn the case i= ( and g=
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(AS) when p~ —+ 0. Requiring cancellation of these singular parts, we obtain

mPF;F, 'T""'(0, m—P 0 —m' m' 0 m')

= —liiii 2p~ p'(2x) "6"'(/~I,)
Pl «0

f« -""'-"'&01 CF", '(0),»,"(0)7I0)«l d~.'(0}
I
1''&

d pe+(2~)',~'(p~ —p.+p~)
E„(2s)'

-"+ -o'+' & (0I a~,5IF,&(P, I
CP;',av;'7IP;& (A6)

P.'T"'( ",0 ")='&F'I CF (0),»P(0)71F;&-'&01CP,',»,'(0)7I0»'(0),
which is the usual Z-term theorem with the feature that
the vacuum-expectation-value part is explicitly removed
on the right-hand side.

We also wish to consider the case of Eq. (AS) for
which m;/mE, m;/mt„which is relevant to vrE scat-
tering. Because PPWmP and because there are no
allowed intermediate states which lead to divergences in
the pre ~ 0 limit, the theorem (AS) simply reads

Ii;F;Il I,mT""'( m(', 0, 0,——mP; mP, mP, O)—
(—m('+mp)

= — d"&0I T(CP (r),»"(*)7»"(0))IF &

+&0ICP.'(0),CP, '(0&,»; (0)77IF & (A»

The m E+ case is particularly interesting, since either
or E+ can be left on shell and the fj.rst term on the

right-hand side of Eq. (A'I) does not contribute if
exotic (I= s3, Y= 1) content of the Z terms is ruled out.
The theorems for this situation then read

m 'F 'F~
T x+(—mrs', 0, 0, mx', mrs', m—x', 0) —mx'+m. '

=(oICP-"(0),CP:(0),»--'(0)77l&') (AS)

for E. on mass shell and
mx'J'" J"x'

T (0, —m ', —m ', 0; m ', m ', 0)-
mls, mar

=(oICP -'(0),CF--'(0),» "(0)77I -) (A9)

for m. on mass shell. Since the dificult term containing
the time-ordered product has been eliminated from
Eqs. (AS) and (A9) by our assumption that no exotic
content is allowed in the Z commutators, we have two
relations which are useful for the exploration of conse-
quences of particular models for the commutators
CP,z', »rr, '7 which satisfy this requirement. For
example, it is shown in Sec. IV that Eqs. (AS) and (A9)
are badly inconsistent if the (3~,3)EB (3,3*) breaking is
assumed.

This result that standard PCAC and the Veneziano
model with constant coeKcients are inconsistent with
implications of (3*,3)Q (3,3*) breaking is comple-
mentary to the conclusions of Cronin and Kang. '26
Our argument relies on a more conventional application
of PCAC and charge algebra in that low-energy theo-

rems are used. which hold at. individual kinematical
points which are a distance m ' or m~' o6 mass shell
in one or more variables. In addition, we see that the
smaD value of (Fx/F„)'=7r/4=0. S which Cronin and
Kang obtain is a consequence of extensions off the
energy shell of their theorems relating the matrix ele-
ments of Z commutators to the off-mass-shell scattering
ampHtude. It is not te be blamed on the distance of
extrapolations involved. "More precisely, Eqs. (7) and
(S) of Cronin and Kang read, in our notation,

«ICP. — (0),»-"(0)7I=«)~ (~»

,1'(k) 1'(1-~*(~))
=F PIrn'h xmx2 — (A10)

1'(2 —~"(~))

(0ICP "(0),»--'(0)7l -(v)A'(~)&

f'(1 —n, (mrs')) I'(1—a*(s))
=F.F ~'X.xm.', (A11)

1'(5—~.(~))

respectively. One cannot extend these equations to ones
in which three particles are off mass shell by simply
ignoring the implied over-all energy-momentum con-
servation and reducing a pion in (A10) and a kaon in
(A11) and replacing 5 by mx' and m ', respectively.
The consequences of these manipulations, when com-
bined with the assumption that the Z terms carry
no exotic quantum numbers, lead to (Prr/Pw)
= cosCa*(0) (mx' —m ')7 =0.S. This contradicts the
result of the AW relations (Prr/F )'=1.6, which relies
on essentially the same assumptions with the exception
of the off-energy-shell extension. This latter assumption,
which means that Eqs. (A10) and (A11) extend the
use of Veneziano to the description of form factors and
their off-shell continuations, is too strong. In fact,
even if the 8'(P; —P,„t) factor is retained, the theorems
which apply for three o6-shell particles cannot be ob-
tained from expressions like (A10) and (A11) but must
be derived from the start from forms in which three
particles are ofF-shell and the appropriate limits are
taken at the end. Otherwise, one does not pick up all of
the relevant equal-time commutators.

2s That the "long" extrapolation might be the source of di6i-
culty has been suggested by, for example, J. Cronin and K. Kang,
Ref. 8, and by F. Hussain and M. S. K. Razmi, University of
Islamabad report (unpublished).


