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A unified theory of the weak and electromagnetic interactions of leptons and hadrons is constructed.
The underlying symmetry group is taken to be the SU(2) generated by the weak lepton currents and the
hadronic Cabibbo currents. This symmetry is destroyed by the spontaneous breakdown mechanism. In
our theory, the weak coupling constant is the same as the electromagnetic coupling constant, and the mass

of the charged intermediate boson is 37.4 GeV.

I. INTRODUCTION

HE similarity of the weak and electromagnetic
interactions has attracted much attention since
Fermi® proposed his 8-decay Hamiltonian based on this
similarity. Later on, of course, the most straightforward
extension of Fermi’s model to include parity violation
was found? to explain the experimental data.

Here we shall be concerned with a model of the type
proposed by Glashow? and improved by Weinberg.* In
this model, an SU (2) triplet of vector mesons, as well as
a vector-meson singlet, is introduced to explain the
interactions of the leptons. The photon corresponds to a
mixture of the singlet field with the neutral member of
the triplet, and the two charged triplet members are to
be identified as charged intermediate vector bosons.
There is also a neutral intermediate vector boson which
arises from an orthogonal mixture of the singlet and the
neutral triplet member.

Since the photon has zero mass and the intermediate
bosons must be very massive, it is clear that the
symmetry associated with the gauge groups of these
four vector mesons must be badly broken. Glashow
introduced the symmetry breaking directly, but Wein-
berg assumed it to come from a spontaneous breakdown
mechanism. We shall adopt this latter approach. It
involves introducing a complex doublet of auxiliary
scalar mesons. The over-all Lagrangian has the gauge
symmetries which are then broken for the physical
states of the system by requiring one of the scalar mesons
to have nonzero vacuum expectation value. Ordinarily,
this would imply that the other three scalar mesons be
zero-mass (Goldstone) particles, but, as has been
pointed out by several authors,® in a theory with gauge
particles the zero-mass scalar bosons effectively disap pear

* Work supported by the U. S. Atomic Energy Commission.
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by combining with the originally zero-mass vector
bosons of the corresponding symmetry gauges to be-
come 7massive vector bosons

The previous work®* only attempted to unify the
weak and electromagnetic behavior of the leptons. In
this paper, we attempt to give a more complete theory
by including the hadrons. Our basic result is that such a
unification can be achieved in a theory with spontaneous
breakdown of the original symmetry. The difficulties
involved in this extension are (i) finding a method of
formulation, (ii) arranging for unwanted semileptonic
decays to be suppressed, and (iii) arranging for un-
wanted nonleptonic decays to be suppressed.

Problem (i) is solved by using the quark model to
summarize hadron dynamics and noting that the
SU(2) gauge group of the leptons is exactly the one that
prompted the successful Cabibbo theory® of semi-
leptonic decays.

Problem (ii) is solved by introducing another singlet
intermediate vector boson field with opposite couplings
to hadrons and leptons. For consistency, it is also
necessary to take a remarkable limit of the original
leptonic theory in which the additional neutral boson
initially introduced effectively disappears from the
theory by acquiring an infinite mass. As a residue, it
leaves a contact interaction. In this limit, the original
theory contains a triplet of two charged vector bosons
and the photon, the electrical coupling constant is equal
to the weak coupling constant, and the mass of the
charged intermediate vector boson is 37.4 GeV.

Problem (iii) is circumvented by postulating dy-
namical suppression of non-octet components of the
effective nonleptonic Hamiltonian. This is exactly the
same postulate that is normally made in the attempt to
use the Cabibbo semileptonic decay theory to also
explain nonleptonic decays. We note that this postulate
entails the suppression of both |A7|=% and |AS|=2
transitions.

We shall not say much about the problem of CP
violation in this paper.

Our plan of presentation is first to introduce a com-
pact and symmetrical notation for the “matter” (lepton
and spin-3 fermion) currents (Sec. IT) and then to
formulate and discuss the part of the Lagrangian which

¢N. Cabibbo, Phys. Rev. Letters 10, 531 (1963); see also
M. Gell-Mann, Physics 1, 63 (1964).
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involves the matter currents coupling to vector bosons
(Secs. II-VI). This is the experimentally interesting
part and can be discussed without a detailed considera-
tion of the spontancous-breakdown part of the theory.
Finally, the spontaneous-breakdown part of the La-
grangian will be discussed (Sec. VII).

II. LEPTON AND HADRON CURRENTS

We shall take the point of view that weak and
electromagnetic processes are generated by the lepton
and hadron currents interacting with vector gauge
fields. The most familiar lepton current is the electro-
magnetic (EM) one:

1,"M= —iey,e—ifyuu, 1)

where e and u denote the electron and muon fields,
respectively. For discussing weak interactions, the
relevant currents are associated with a group we shall
denote as the universal left-handed SU(2). Define

laub=i\z b7p(1+‘yﬁ)'//u+ (e - “) ’

where Y1=», and y¥s=e. Then we define positive,
neutral, and negative left-handed leptonic currents as

l#(+) = 11#2 ) ln((» = %(llul—l%ﬁ) ) l,‘(_) = 12;41 . (2)

The integrated fourth components of these currents,
namely,

K(i)=%i/d3x 1,®), K(°)=%i/d3x 1,

are the generators of an SU(2) group.” The commuta-
tion relations are

[KD,KO]=2KO, [K® KO]=FK®D,

Now let us turn to the hadrons. Their structure can be
conveniently represented by imagining that all hadrons
are made out of three quarks g1, ¢, and ¢; having
electrical charges %2, —3%, and —3%, respectively. The

hadron electromagnetic current is

M= 2iqryun— 302y ug2— %iq—fYﬂqa . 3)

For discussing weak interactions, it is better to
introduce a notation corresponding to quarks ‘‘rotated”
through the Cabibbo angle:

Q1=q1,
Q2=¢q5 cosf+-g; sind, 4)

Q3= —q> sinf+-qs cosb ,
where sinf~1%.
In terms of the combinations,

haw?=1Q vy, (1+75)Qa,

we define positive, neutral, and negative hadronic

7 The significance of this group has been stressed by M. Gell-
Mann, Ref. 6.
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currents as

h#(+) = hl;u2 ) hu(o) = %(klul_ h2u2) ) hu(—) =h,t. (5)

The assumption is now made that the currents of (5)
have the same transformation properties as the currents
of (2) with respect to the universal left-handed SU (2)
group. This assumption is the one that led to the
Cabibbo theory and is the basic one for the discussion
that follows.

For each of the four types of currents just introduced,
the total current may be written as

Jﬂ(i)zlu(i)‘i'hu(i); (6)

where ¢ stands for 4+, 0, —, or EM.
Then the usual electromagnetic interaction is

LM =[¢|],May, (7

a, being the photon field while |e|2/4r~1/137.
Finally, the usual phenomenological weak interaction
is
&Y= (G/NDJ T, 8)
where |G|=~1.03X1075/M ;2.
Our goal is to find a unified interaction scheme that
gives the same experimental results as (7) and (8).

III. INVARIANT UNIFIED INTERACTION

Let A, be the gauge field corresponding to the uni-
versal left-handed SU(2). Furthermore, let B, be a
singlet vector field corresponding to a U (1) gauge group.
In order to construct invariant Yang-Mills-type inter-
actions,® we must specify the transformation properties
of the matter fields with respect to these groups. A left-
handed SU(2) doublet is

Ve
z=ya+("), ©)
e
while an SU(2) singlet is
R=3(1—vs)e. (10)

If the quantum number associated with the U(1)
gauge group is designated weak hypercharge, it turns
out to be necessary to assign to R twice as weak a
hypercharge as L. Then the invariant lepton Lagrangian
density* is

- R’Yn(au_'ig,Bu)R

—Lyu(0u—3ige-Au—}ig' B L+ (e —p), (11)

where g and g’ are some coupling constants.

The choice of interactions and couplings in Eq. (11)
is the unique invariant one that will give rise to the
usual electromagnetic interaction when the photon field
is identified with the particular mixture of B, and the
third component of A, that comes from the spontaneous-
breakdown mechanism to be discussed later [see Egs.

8 C. N. Yang and F. Mills, Phys. Rev. 96, 191 (1954).



738 J.

(16) and (39)]. Introduction of the B, field and its
corresponding gauge group is in the first place required
because, without it, we would have vector bosons
coupling only to the left-handed (vector plus axial-
vector) lepton currents. By adding a boson which
couples to the right-handed (vector minus axial-vector)
lepton current, we permit the existence of a linear
combination which is a pure vector current. This can
then be identified with the electromagnetic current.
In the hadron case, we define

Qar=3(1475)Qa,
QaRz%(l_‘/s)Qa-

A doublet with respect to the universal left-handed
SU(2) is
" /01
¢L=< ’
Qor

while the following quantities will be taken by analogy
with the lepton case to be singlets®:
QsL, Qm, QzR, and Q3R-
The possible invariant terms which we can use to
construct the Lagrangian are
Vrvwe- Awn, YrvabrBu,  QuviQsiBy,
QIR'Y#QIRB# ’ Q2R'YuQ2RB;4 ) Q3R7#Q3RB# ’
(Q2r74Qsr+Qsrv,Q2r) By

However, the unigue invariant hadronic Lagrangian
density that reproduces the correct electromagnetic
interaction turns out to he'®

(12)

(13)

3 - -
- Z (QaL'YuaMQaL‘*“QaR'YuaMQaR) +ig[%¢l/y”' 'Au‘pL
a=1

—% tang Yoy WrB,—3 tang QiryuQirBy
+3 tangd(QoryuQor+Qsrv,Qsr+Qs1v,0s)B,], (14)

where tang is a constant to be identified shortly.
Equation (14) is seen to be the most straightforward

generalization of (11).

IV. SPONTANEOUS BREAKDOWN

The spontaneous breakdown mechanism will be im-
plemented by introducing a complex doublet of aux-
iliary scalar mesons which are also coupled through the
Yang-Mills mechanism to the gauge fields A, and B,.
The details will be discussed later. For the present, it is

9 If, for example, Qir and Q;r are assigned to a doublet, a
consistent theory cannot be constructed.

10 Equation (14) is derived by substituting - (16) into the most
general linear combination of invariant terms and requiring the
resultant photon matter coupling to be the usual one. The equality
of lepton and hadron electric charges accounts for the fact that

the same g is used in (14) as in (11).
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only necessary to note that the charged fields

W = IV2(A,1FiA ,2) (15)

acquire mass M w and that the photon e, and a heavy
neutral vector meson Z, emerge in the mixture:
B,=cos¢ a,+sing Z,,,
A= —sing a,+cos¢ 7,

(16)

where
tang=g'/¢. (17)
Furthermore, the mass of Z,, M, is related to the mass
of W, by
Mw/M z=cosé. (18)
To see what our interaction looks like after the
spontaneous breakdown, we simply substitute (15)-(18)
into (11) and (14). The interaction part of the result can
be compactly written as

Lint= —g sing J,FMa,
+ (g/2V2) (J L OW D+ T DWW )
+e(Mz/Mw)Z (57 ,©—sin% J M) | (19)

where the total currents J, are defined in (6). The first
term of (19) is the same as the usual electromagnetic
interaction (7) if we identify

—g sing= |e] . (20)
The second term of (19) gives rise by exchange of W,
to the usual weak interaction (8) when we identify

G/V2=g?/8M w*. (21)

The M w* in the denominator of (21) comes, of course,
from the propagator for a heavy W, &),

The third term in (19) gives rise through exchange of
a heavy Z, particle to the effective interaction

3 (8%/Mw?) (37,0 —sin’g J,FM)2, (22)
Note that Mw? rather than M % appears in the de-
nominator. Equation (22) contains some semileptonic
and nonleptonic terms that require suppression but,
before discussing this, let us consider the limit of the
theory as it stands when Mz — .

In this limit," according to (18), cosp — 0, so that
(20) predicts
or equality of the weak and electromagnetic coupling
constants. From (21), the mass of the charged vector
boson is calculated to be

Mw~37.4 GeV. (24)

1Tt is important to distinguish our limit from the case where
there is no mixing and no sgontaneous breakdown of symmetry.
In both cases sing=1, so (17) and (18) give gM z=g'Mw. In our
limit, g and Mw remain finite while g’ and Mz — . In the other
limit, g and ¢’ remain finite while Mz and My are zero.
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Furthermore, (16) shows that the neutral component
A% of the intermediate boson triplet is just —a, in this
limit.

Finally, the term (22) becomes

B(lel/Mwt) (37,0 — T B2,

Thus, if the limit Mz — is taken so that the Z,
particle essentially disappears from the theory, we are
left with two charged massive bosons and one massless
photon forming a (broken) SU(2) triplet and coupling
with the same strength to matter. The only remnant to
second order of the Z, particle is the appearance of the
contact term (25). [In a theory of leptons by them-
selves, (25) would have no presently objectionable
features. ] We shall give a reason for taking the limiting
case in the next section.

(25)

V. SUPPRESSION OF UNWANTED
SEMILEPTONIC DECAYS

Equation (22) gives the following contribution to the
effective semileptonic interaction:

(/M ) (41,0 —sinp ) (31,9 —sin’p L,m) . (26)

In terms of the usual quarks, %, may be written as

7O =%51Gryu(1475)q1— 34 €080 Gy (1475)g2
— 31 sin%0 @3y, (1+75)qs— 31 sinf
X 08 [Goy,(1+75)gs+Gsvu(1+75)g2 ]

Since the last term of 4, above gives |AS|=1 for
hadronic transitions, we see that (26) gives rise to
decays like

K—eé, K — meé,

Zt — pee,

etc.

27)

K—mvp,

(Note that the decay K — v is prevented by angular
momentum conservation.)

There is no experimental evidence for any of the
decays of (27), so it is desirable to suppress them in our
theory. This can be done by introducing a new U(1)
gauge field C, that distinguishes between hadrons and
leptons by coupling to their currents with opposite sign.
Then (26) can be canceled exactly. It is crucial for our
theory to make sense that C, be a singlet with respect to
the universal left-handed SU(2). The most general
invariant Cy-lepton coupling is

iﬁ]_l-/y“LC,‘—i‘ l,BgR’Y,,RC,“}‘ (e — M) ,

where 8; and S, are arbitrary constants. To cancel (26),
it is necessary that this be proportional to

(300 —sin’¢ 1,EM)C,.

(28)

(29)
Equations (28) and (29) can only be proportional if
B2=2B:=b, sin¥p=1. (30)
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This corresponds® to the remarkable limiting case
previously discussed.

The unique SU(2)-invariant C,-hadron coupling
which will enable us to cancel (26) completely is

- %idcu[‘i/L'Yu‘l/f"l'LLQlR'Y #Q 1R _
—2(Q2rVuQ2r+QsrvuQsr+Qsr7,051) ]
= (ZC“ (%h“(o) ___h“EM) ,

where ¢ is a constant to be determined.

Actually, (31) is more specific than is required® to
cancel just the decays of (27). However, it is the cou-
pling that is most analogous to the lepton coupling
above which 4s required to suppress the unwanted
semileptonic modes.

With (28), (30), and (31), the part of the effective
Lagrangian responsible for unwanted semileptonic de-
cays is

(1)

e? bd
(ﬁ‘“z U ) (4 — I, ) (31,0 —LEW) | (32)
w C

where M ¢ is the mass of the C, field. (We assume that
C, acquires a mass by the same type of spontaneous
breakdown mechanism as the other gauge fields.)

The cancellation of (32) evidently gives the condition

&/ My?=—bd/M . (33)

The most symmetrical choice of coupling constants is
the one which assigns opposite “C charge” to hadrons
and leptons, namely,

b=—d. (34)

Although the additional interactions (28) and (31)
with the condition (33) make no contribution to semi-
leptonic processes, they do give additional weak cor-
rections to hadron-hadron and lepton-lepton processes.
The ev scattering reaction is conceivably measurable.
Its effective Lagrangian, including the contribution
from (19), is

Lett(ev) = (—€/16M w)pev,(1+75)ve
X ey {[5+3(0Mw/eMc)*]
—+ [1— (wa/eM0)2]75}e . (35)
If the symmetrical choice of coupling constants (34)

is made, there are no unknown parameters and we have,
noting (33),

cBeff(eV) =— 2\/2G173')/“(1+75)Veé’)’"6 )

where G is the ordinary Fermi constant.

(36)

12 The same conclusion holds if the field C, is allowed to mix with
B, and 4,3 corresponding to a generalization of (16).
13 The most general invariant C,-hadron interaction is

Cu'[dxshw\h+sz11e’y,.Qm-}:dsQ2R'y,.Qm+_dAQaR‘Yme_
+d5Qs17vuQs1+ds (Qsrvu Q22+ Q2rvuQsr) ],
where the di, ..., ds are some constants. The suppression of (27)

only requires d¢=0 and ds=d,. Thus a certain amount of freedom
to modify the theory is available.
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Equations (35) and (36) are, of course, different in
general from what would be obtained from (19) by
itself.

VI. SUPPRESSION OF UNWANTED
NONLEPTONIC TRANSITIONS

Our final result for the spontaneously broken SU(2)
invariant interaction that contains no unwanted semi-

leptonic pieces is
Lint=+ || 7,"Ma,—(|e] /2V2) (J,OW D+ T ,OW )
—(lel/Mw)(M2Z,) GT.O—T)+ (le| /Mw)
X (McCu)[5 O —hy@)— (LN — kM) ], (37)

where for simplicity we have assumed (34) to hold.
Note that Z, appears multiplied by Mz, so that the
dependence of any tree-type diagram containing Z, as
an internal line on Mz drops out [see (22), for example ]
in the M z — o limit. Furthermore, Z, will not appear as
an external line since it is infinitely heavy. The only
unknown parameter in (37) is M¢, but even this will
not appear in processes involving C, exchange.

The contribution of (37) to the effective Lagrangian
density for nonleptonic transitions is :

e’ o2
1610 2[hu(+):hn ]+ ]g“;(%}l"(o) —h,EM)2, (38)
L4 w

In (38) the symmetrization of the currents required for
CP invariance has been indicated explicitly.

Now each current appearing in (38) is a member of an
octet with respect to the ordinary (strong) SU(3). The
symmetrical products in (38), therefore, belong to some
mixture of the {1}, {8}, {8}, {10}, {10}, and {27}
representations of SU(3). The statement!® of “octet
dominance” is that when matrix elements of the cur-
rent-current product are taken between hadron states,
the {10}, {10}, and {27} parts give negligible contribu-
tion. There is some support of this statement from
calculations' which try to estimate the current-current
matrix elements by the saturation method using experi-
mentally known form factors. There is also some sup-
port from dispersion theory calculations.®

Since the {10}, {10}, and {27} representations are the
only ones of those appearing which contain A/ =$% and
AS =2 transitions, the postulate of octet dominance will
guarantee that our Lagrangian (37) will not give rise to
unobserved nonleptonic transitions. We remind the
reader that there is no unambiguous evidence for any
intrinsic AI=% nonleptonic decay (K*+— wta® may

14 See, e.g., R. Dashen, S. Frautschi, M. Gell-Mann, and Y. Hara,

in The Eightfold Way, edited by M. Gell-Mann and Y. Ne’eman
(Benjamin, New York, 1964).

1Y, T. Chiu, J. Schechter, and Y. Ueda, Phys. Rev. 150,
1201 (1966); S. Biswas, A. Kumar, and R. Saxena, Phys. Rev.
Letters 17, 268 (1966); Y. Hara, Progr. Theoret. Phys. (Kyoto)
37, 710 (1967); W. Simmons, Phys. Rev. 164, 1956 (1967);
S. Nussinov and G. Preparata, 7bid. 175, 2180 (1968).

16 See, e.g., R. Dashen and S. Frautschi, Phys. Rev. 140,

B698 (1965).
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result from electromagnetic breaking of the A7 =1 rule),
while the evidence against AS=2 transitions [ to second
order in (37)] comes from the small value of the K 1-K g
mass difference.

Previous treatments!” of intermediate vector bosons
have introduced a number of them in such a way as to
eliminate AS=2 and AI=4% transitions without as-
suming octet dominance. Our procedure is in this respect
less aesthetic but, on the other hand, arises from a more
unified theory and is in any case no different from the
assumption of octet dominance that is necessary when
we take the Cabibbo theory seriously for nonleptonic
decays.

VII. REMAINING TERMS IN LAGRANGIAN

Here we give the kinematic terms for the A, B,, and
C, gauge fields, the terms involving the auxiliary scalar
fields, and some additional coupling of the scalar fields to
the “‘matter” for the purpose of generating matter field

mass terms.
The auxiliary scalar fields consist of a complex

doublet*
P )
b= (.;1)(0) > , B=(IPW)

and a complex singlet X. The remaining part of the
invariant Lagrangian density is then

L£=—5(0,A,—0,A,+gA,XA,)*~3(8,B,~9,B,)*
—£(3.C,—9,C,)?
_%(aﬂé_}_ %iga;'v 'A#'_ %ig,&)Bu)
X (92— yigr-Aud+3ig B,P)
—3(8,X"—ig " X1C,) (8, X +1ig""C,.X)— V (9,X)
~[G.(I&R+RBL)+ (e — p)]
+ (f1¥ .8Qor+ [ 1803z
+ fsQs1Q2r+ f1Qs1Qsr+Hoc.).  (39)

In (39), V(®,X) is an invariant function of  and X.
The spontaneous breakdown of symmetry comes about
because V (®,X) is chosen so that its minimum does not
occur at = X=0. We choose the minimum at

0
a=( ), x-v,
A

where A and N\ are two real C numbers. The second
derivatives of V' (®,X) with respect to & and X, evalu-
ated at the minimum, determine the masses of the
auxiliary mesons which remain in the theory. We shall
assume that these masses are so high that the auxiliary
particles should not yet have been observed.

A shorthand prescription for finding the Lagrangian
after spontaneous breakdown (if we are not interested

(40)

1T, D. Lee and C. N. Yang, Phys. Rev. 119, 1410 (1960);
B. D’Espagnat, Phys. Letters 7, 209 (1963); S. Okubo, #bid. 8,
362 (1964).
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in the ® and X couplings) is simply to replace ® and X
in (39) by (40). Doing this lets us make the identifica-
tions that result in (16)-(18), as well as

MW:%g)‘ ) MC:g"}‘/;

(41)
Mme=Ge\, mu=G,\,

where m, is the electron mass and m, is the muon mass.
Note that G, and G, are fixed since

)\=2Mw/|el.

The mixing given in (16) was necessary so that the
vector-meson mass terms resulting from the fourth
term of (39) be diagonal.

In (39) we have also written some invariant weak and
electromagnetic contributions to quark-mass-type terms.
There are four unknown constants fi- - - fs, so we cannot
really say too much. Nevertheless, expansion of the
quark terms in (39) shows that no term like gigx
~appears, so that the mass of g; cannot come from the
above mechanism.

The shorthand prescription mentioned above can be
formally justified and a more complete discussion given
by using the approach® of Higgs and of Kibble. A brief
treatment of this kind follows. Introduce the ‘“polar
decompositions” of the scalar fields:

0

<I>=exp(i®-c)< ) X=eitr, (42)

P

where the fields @ and ¢ will disappear from the theory
while the neutral fields

p=p—N\, F=r—N\ (43)
will remain. From (42) we identify
P2=§<IJ7
|®]
O.= _.(cp<+)._q>(—))__’
24 psin|@®|
lo|
0y =1(dH)+&))—
psin|@®|
T l®] (44
Oz= —(O—PO)—— |
24 psin| @]
and
I /PO FPEN2 /P P2
el - o (=) ()
V2 V2 V21
$©) — 0 21/2
()]
V2i

The polar decomposition which would make sense in a
C-number theory must be interpreted in terms of
power-series expansions for the quantized case. Note
that division by p, for example, is meaningless unless

741
{p)o%0. The physical (primed) vector-meson fields are
defined as
M) =U"M,U-(2/ig)U0,U,
Cll/= Cut (1/8”)3#5 P

where we have set U=exp(i®-«) and introduced the
matrices

(45)

M,=<-A,, M/==x-A/.

We note that the transformations of (42) and (45)
have the same form as gauge transformations under
which £ is, by construction, invariant. Thus we expect
that the fields ® and & which appear formally as gauge
parameters will drop out. Explicitly, (39) becomes

L= — I P W — 3 (00—} (Z ) (Co o
— MW W & —IM2(Z,)2— 1M 2(C))?
—5(0up)?—3(8,7)2—mo&'e’ —m,i'u'—V (p,r)
+g2[a,/ W, D )W, —a,a, W, DWW, ]
— Zig[d,,,,/W“(+)'Wy(_)’+ W”p(+),ay,W”\_)/
+W 0 a,/ W, "]
—[MwW DWW, D'+ 5MAZ) 2, I (25+N57)
—3MPC/CY (1/N)[274 (1/N) P ]— (me/N)E €'p
— (mu/N)@'w'p+ (quark mass terms), (46)
where
au’=98,a,’—9,a, , etc.
and

Ve
L’=%(1+75)( ’)= U-1L, etc.
e

From (46) it is seen that the W,, C,, and Z, fields
have become massive and that some interaction terms
involving 5 and 7 have appeared. The ® and £ fields
have dropped out. Note that (46) also contains the
electromagnetic interaction of the W meson.

Finally, in order to demonstrate the invariance of the
interactions (11), (14), (28), and (31) under the trans-
formations (42) and (45), we must redefine all the
physical matter fields to be the ones that have been
suitably gauge transformed with gauge parameters ®
and £. The previous results hold but the fields appearing
in them should be taken to be the transformed ones.

VIII. CONCLUDING REMARKS

(1) We have demonstrated that a unified weak
electromagnetic theory for leptonic and hadronic pro-
cesses case be constructed using the left-handed SU(2)
connected with the weak currents as well as two more
U (1) gauge groups. This is the main conclusion since it
was not clear at the beginning that such a scheme is
possible.

(2) The limiting case where Mz— can also be
applied in a theory of leptons by themselves. In this
case, it is not required but does give the theory a greater
degree of elegance. The behavior of non-tree-type
diagrams in this limit seems to be worth investigating.
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(3) We regard this theory as a tentative step in the
right direction rather than a final result. In particular, it
would be nice to introduce CP violation. It would also
be nice not to have to require dynamical suppression of
the non-octet parts of the nonleptonic interaction.
Perhaps this could be achieved if strong interactions
were taken into account at the outset.

(4) Since our interaction contains some more terms
than the usual one, their presence may be tested with

SCHECHTER AND Y. UEDA 2

the help of other theoretical models or in several hard
to observe reactions. We shall postpone detailed dis-
cussion of these points.
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am, 7K, and KK single- and multiple-term Veneziano amplitudes are studied as a coupled system. Adler
and Adler-Weisberger conditions are imposed, and it is found that the single-term system cannot satisfy
all of the PCAC (partial conservation of axial-vector current) and charge-algebra constraints. The multiple-
term system, constructed to satisfy these constraints, results in much improved width predictions. These
improved amplitudes are used to study chiral symmetry breaking by investigating the = terms. It is found
that a single (3,3*) @ (3*,3) representation is not sufficient to explain the symmetry breaking, whereas a
mixture of (3,3*) ® (3*,3) and (1,8) © (8,1) is sufficient (but not necessary). The admixture of (1,8) @ (8,1)

is considerable.

I. INTRODUCTION

ONSIDERABLE interest has been focused on the
elegant amplitude construction of Veneziano.!
Work has proceeded in many directions, including two
in which we shall be most interested, namely, the com-
parison of Veneziano forms with (1) experimental data
and (2) current-algebra off-mass-shell predictions.? For
the latter, the Lovelace conjecture® has often been
taken as a working hypothesis, that is, that the Vene-
ziano amplitude with constant coefficients is the correct
off-mass-shell extrapolator.

Much of this effort, however, has had somewhat of a
patchwork quality with emphasis on a single amplitude
at a time? (say, = elastic scattering), ignoring other
systems (such as KK and Kr elastic scattering) which
share common trajectories and are jointly constrained

* Work supported in part by the U. S. Atomic Energy Com-
mission.
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