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A Laplace transform is developed for the crossed-channel partial-wave analysis of Bethe-Salpeter-like
equations for the absorptive part of scattering matrix elements. The transform requires no assumption
about rotating contours to a Euclidian region and allows from the outset power growth in energy of the
transformed absorptive part. This eliminates the need for any analytic continuation after the transforma-
tion. The diagonalization of the forward and nonforward equations with arbitrary irreducible kernels is

explicitly carried out.

I. INTRODUCTION

HE partial-wave analysis of S-matrix elements as
a concise expression of the underlying symmetry
of the physical problem has reached a remarkable level
of sophistication since the fundamental work of Jacob
and Wick a decade ago.!? Of particular interest of late
has been the technique of crossed-channel partial-wave
expansions which directly reflect the properties asso-
ciated with the little group of the four-momentum
transfer vector. Since the little groups associated with
lightlike, spacelike, and null momenta are noncompact,
the conventional partial-wave expansions are restricted
to scattering functions which are square integrable over
the group manifold. This is indeed an unfortunate
circumstance, since one of the physical goals behind
making the expansions is that one will end up with a
formalism in which the high-energy behavior of the
collision phenomenon of interest will be expressible in
simple terms (usually meromorphy) in the partial-wave
plane. Restriction to square-integrable functions leads
to an elegant expression of the so-called background
integral, but misses the leading Regge-pole or -cut
behavior. It has become standard form to have a
footnote recognizing this fact which concludes with the
hope that some kind of analytic continuation in the
I-plane can subsequently be made.

In a study of the Bethe-Salpeter equation for the
absorptive part of the scattering amplitude,? we have
found an integral transform which makes the usual
partial diagonalization of the relevant integral equation
and yet allows power growth of the absorptive part.
It is in essence a Laplace transform on the little group
of the momentum transfer and is in a natural way the
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1 M. Jacob and G. C. Wick, Ann. Phys. (N. Y.) 7, 404 (1959).

2 A complete exposition of the techniques used and a full
bibliography of past work is given in lectures delivered by P.
Winternitz at the Dublin Summer School, 1969 (unpublished);
Rutherford Laboratory Report No. RPP/T/3 (unpublished).

3The set of review lectures ‘Multiperipheral Dynamics”
given by M. L. Goldberger at the 1969 Erice Summer School,
Princeton University report (unpublished), gives a lucid develop-
ment of the basic equation and an extensive discussion of its
properties.

alteration of the usual harmonic or Fourier analysis
described in Ref. 2 for the treatment of non-square-
integrable functions over the group. After stating the
basic idea in a precise manner, we will demonstrate the
usefulness of the transform we introduce by explicitly
diagonalizing the absorptive-part equation. We carry
out our analysis for spinless particles only, but this is
primarily a pedagogical device since the Laplace
transform has obvious extensions to spinning particles
and is likely to find its most fruitful applications in
multiperipheral or multi-Regge analyses. We must
confess that we have not been able to state our pro-
cedure in a “proper” group-theoretic context, but we
content ourselves with the straightforward analysis
given below.

II. LAPLACE TRANSFORM

We discuss in this section the idea of the Laplace
transform, which we use below to diagonalize the
forward (null momentum transfer) and nonforward
(spacelike momentum transfer) absorptive-part equa-
tions. Recall that one arrives at the usual Laplace
transform by taking the representation functions for
the unitary representations of the translation group,
namely sinkx, and splitting them up into ‘“functions of
the second kind” by sinkx=(1/27)(e?**—e~*=), Then
one of these functions of the second kind, say e?=, is
continued in %2 away from the real line to reach non-
unitary representations. This gives a nonunitary
harmonic which allows, because of the nice decrease of
the function of the second kind in a certain half-plane,
the Laplace analysis of fuctions which are not square
integrable on the line.

All this is completely elementary, but is precisely
the idea one needs to perform the same analysis on the
little groups of the Lorentz group. In particular, let
us begin with the little group for null momentum
transfer, SO(1,3). The harmonics of this group have
been thoroughly discussed in any number of the papers
listed in Ref. 2. We use here the material from the
review papers by Bander and Itzykson.* The lowest

4 M. Bander and C. Itzykson, Rev. Mod. Phys. 38, 330 (1966);
38, 346 (1966).

2 711



712 H. D. I.

harmonic on SO(1,3) corresponding to the principal
series of unitary representations is well known to be

Zx(6) =sinN6/N sinh@, (1)

with &V real and positive and 6 the hyperbolic angle on
the timelike 143 hyperboloid. We divide this into two
functions Sy () of the second kind:

Zy(0)=[Sx(0)+S-x(0)1/2i, @
SO
Sy (6)=¢iN/N sinh, 3)

and carry out the (trivial) continuation in N away
from the positive real N axis. This gives us the Laplace
harmonic (dropping an irrelevant V)

Ly(6)=¢""%/sinh6 4)

on SO(1,3).

Now a scattering amplitude A(s) is conveniently
parametrized by cosh@«s and the transform with (4)
of such an amplitude will be

AN=/D° d0(sinh0)2LN(0)A (9) s (5)

where the measure appropriate to the hyperboloid has
been introduced.’ The inversion formula is almost too
well known to be recorded, but for completeness

cti0
sinhfA4 (6) = — dN eNoAy. 6)

27|'i c—ix

Now we wish to contemplate the growth of 4 (8) as s*
or (cosh@)?, so the contour in (6) should be taken to the
right of a1 in the N plane.

For spacelike momentum transfers, the lowest
harmonic functions on the little group SO(1,2) are
Legendre functions P,(y) with /=—%+4iN, N real,
and y=cosh6, where 6 is the hyperbolic angle on the
142 timelike hyperboloid. The functions of the second
kind are the old favorites Q;(y), related to P;i(y) by the
familiar

TP i(y)/tanml=Qu(y) —Q-1-1(y). (N
A scattering amplitude A (s,#) will again have s pro-

portional to coshd, and the Laplace transform

A1) = / : d6 sinh8Q;(coshd) A (6,t)
0

- / dy Qi3 A (3,) ®

5 It should be noted at this point that S. Nussinov and J.
Rosner [ J. Math. Phys. 7, 1670 (1966)] have also introduced this
Laplace transform to diagonalize the forward absorptive-part
equation.
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is suggested.® For an amplitude with power growth no
greater than y%, 4,(¢) is analytic in the half / plane to
the right of Re/=a. The inversion formula to recover
A (y,t) from (8) is found with the aid of the integral’

&y Pu(y)Qu(y) = 9)
[ wroo= s
valid for Re/’—Rel/>0 and Re(/’+1)> —1, and is
ct-i%0 dl
o= [ —@roreo
c—10 2mi

with ¢ to the right of a.

We will not treat the lightlike case below, although
there is no reason in principle not to do so, but only
mention that the argument above leads one immediately
to the transforms of Meijer® on Bessel functions of
imaginary argument. The relevance of this to the little
group of lightlike vectors, E(2), is clear from Ref. 2.

Before turning to the diagonalization of the ab-
sorptive-part equations, we note that since in the
large-s limit, s=¢’ in both examples discussed, the
Laplace transform becomes essentially the Mellin
transform which is conventionally employed in the
discussion of these equations.®

III. DIAGONALIZATION OF ABSORPTIVE-PART
EQUATION

A. Forward Scattering

This case has been discussed by Nussinov and
Rosner,’ using the transform in (5). We repeat it here
since it sets our notation and kinematics and, further,
it forms a significant part of the work involved in the
nonforward problem. The equation we have in mind
is given graphically in Fig. 1 when Q is set equal to
zero. That is,

4P’ 1(P,P")A(P',K)

A(P,K =IP,K+2/ , (11)
(PR=ICR+2 [ =,

where A is the absorptive part of the scattering ampli-
tude in the s channel with ¢ fixed. The “potential” 7
is the sum of all two-line irreducible contributions to
A, and the propagators of the horizontal lines have been

assigned a mass .

The first step in the analysis is to change to invariant
variables which we choose at this point to be
s=(P+K)%, u=P, v=K? s'=(P'+K)? u'=P" and

6 M. Toller, in his paper on the SO(1,2) harmonic analysis of a
scattering amplitude [Nuovo Cimento 37, 631 (1965)] discusses
a “Laplace Transform” on the group. The relation between that
notion and the one discussed here is obscure to the present authors.
In the end he requires his amplitudes to fall as s71/2 anyway.

7 Higher Transcendental Functions, edited by A. Erdélyi et al.
(McGraw-Hill, New York, 1953), Vol. 1.

8 Reference 7, Vol. II.

9 One can trace the literature on this from Ref. 3 where the
technique is extensively employed.
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-9 Q Q Q
P-3 K+3 P-3 K+3
I16. 1. The kinematics of the Bethe-
Salpeter equation for the s-channel 2
absorptive part of a scattering ampli- {= Q% —» = +
tude. All particles are spinless. In the
text the forward (Q=0) and non-
forward (Q2<0) cases are considered.
Q Q Q -Q
P+-é- * K -2 P+ 2 K 2
S
so=(P'—P)% The Jacobian of this transformation is Wwith
discussed in many places®:® and we record the result: (—1)
c—u—y= s'—u'—v)(so—u' —u
» e L )(so— )
A(su,w) =1(su,0)+ ———— :
Y (o 16m3AY2(s,1,0) HAVAs ' ) A2 (so,0 ) ] (17)
(s1/2—L)2 (s1/2—591/2)2 ug! At this point we take a clue from the group-theoretical
X / dso / s’ / du’ treatment of forward scattering and define the variables
L? L? u—'
coshf= (s—u—1v)/2(uv)/? 18)
I(so,u,u')A(s',u’,v) ( / ( ’ (
Xy 2 coshfo= (so—u—u)/20)",  (19)
and
The limits on the integration come from physical cosh’ = (s'— ' —v) /2 (u'v)!"2, (20)

requirements on the absorptive part and from the
imposition of a lower limit, called L? here, on contri-
butions in the invariant energies s, so, and s’. The
limits on the internal mass %’ are

(s+u—2v)(s+so—s")

uy =sot+u—
2s
AI/Z(S,M,U)A1/2(S,S )sl)
N EE)
2s
and the usual triangle function
A(a,b,c) =a*+b*+c2—2(ab+ac+bc) (14)

has been introduced. When # and v are taken negative,
#4+<0, and the equation is defined in the region
— o0 < (masses)?<0.

We wish to define now an integral transform of Eq.
(12) and, as a trial, use

Ai(u,) =/w ds fu(s,u,0) A (s,u,0) . (15)
L2

One may perform the indicated changes of integration
limits to cast the transformed equation into the form

E;(u,v) =f;(u,'u)

1 0 0 0 0
+— / du’ / dso f ds’ / ds
1673 —00 L? L? 2

fa(sy2,0) I (so,u,1") A ("1’ )

AY2 (s u.0) (m2—u")?

,» (16)

which casts the lower limit of the s integration into the
neat form 0,in=00+6". Since AY2(s,u,9) =2 (uv)"/2 sinhd,
choosing f;(s,u,v) =~ D¢ allows us to carry out the
6 integration in an elementary manner and results in

1 0
Ai(u,w)=1(u, —_— du’
) =)+ s /_ K
(=)L) A o' 0)
X , @)
(m2_u’)2

where the transform suggested in the previous section
has been introduced, and

e (+1)6

i) = /0 . d()(sinh())z( )A (4,0, cosh6).  (22)

sinhé

The lower limit in (22) is really set by 6 functions
involving the minimum mass we have called L2, i.e.,
A (s,u,9) =0 for s <I2

Equation (21) is the central result for =0. One may
quickly check that when one restricts himself to the
ladder model in which

I (so,u,0) =g (so—m¢?) , (23)
the results of Amati el al.° as recorded in Ref. 3 are
reproduced.

B. Nonforward Scattering

Now we treat the kinematically more challenging
case of the Bethe-Salpeter absorptive-part equation
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for t=02<0. Again we refer to Fig. 1 for definitions
and write

A (P,K,Q) =I(P,K,Q)
" f d*P' I(P,P",Q)A(P",K,Q)
Q@u)[m?— (P +30)?Im* — (P —30)%]

Since the choice of variables is crucial in making the
diagonalization, we proceed in the following manner.
Choose now as independent variables s=(P+K)?
u=P, a=P-Q, so=(P—P, w=P? d=P"Q,
s'=(P'+K)?, v=K?, a=K-Q, and, of course, t=Q"
This change of variables turns the integral equation

(24)
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into

A(s,u,a,0,0,0) =1 (s,u,0,0,0,t)+0(s —4.L2%) /32

(s1/2—L)2 (s1/2—591/2)2 wt!
X/ dso/ ds’/ du'/da’
L? L? -

I(soyu,a,0' 0" D) A(s" ' 0’ v,0,1)0(—D)
[(m?—u'—%1)?—a'*](—D)V/?

with the limits on the s and s’ integrations set as
before; .’ have the same structure as (13) with the
recognition that #, #, and v are no longer the invariant
masses of the legs. The limits on the o’ integration are
set by the @ function which requires the Jacobian

, (25)

¢ a a a
~ ld u —L(so—u—u') 3(s'—u'—v)
D=1, —%(so—u—un') u 3 (s—u—v) (26)
a 3 —u'—v) i(s—u—n) v
to be negative. in addition,?
Since thf: variables ¢, v, a,r.ld a play a purely passive z=a/ (tu) 2= P-Q/ (PO, (29)
role, we will suppress them in the argument to follow. i e PN
Also note at this point that the correspondence between g'=a'/ ()P =P"-Q/(PQ)'?, (30)
the =0 equation, (12), and the first three integrations and
§=a/(0)'P=K-Q/(K*Q")'"". (1)

in (25) suggests that we restrict ourselves to # and v
negative. Then the range of % integration will be over
negative #’ only and the equation will be defined over a
restricted domain. The question of continuing the
answer A to regions of positive # and v is certainly not
a severe one.!!

As in the forward scattering case, we now make the
transform of the equation with a function f,(s,u,a) by
defining

Ai(u0)= / T i e AGua). (1)

The various integration limits may now be interchanged
simply by reference to the /=0 equation, and we find

‘Il(u7a) = jl(u)a‘)

1 0 0 0 0
/ du’ / dso / ds’ / ds / da’
327t —» L? L? 4

I(so,u,a,u’ 0" )A(s' ' ,a")0( —D) fu(s,u,a)
[(m*—u'—}t)2—a”](=D)*

The structure of the determinant is now quite clearly

exhibited if we scale out the momentum transfer ¢ and

the masslike variables #, #/, and v. This leads us to

introduce 8, 8y, and 6’ just as we did in (18)-(20) and,
10D, Amati et al., Nuovo Cimento 26, 896 (1962).

11 We make this statement aware of its lack of proof, but the
work reported in Ref. 3 makes us confident of its validity.

_|_

(28)

This enables us to remove a factor tuu'v from the
determinant and write D = (tus'v) D, where

—1 4 b4 ¢
K4 —1 —coshf, coshé’
D= z  —cosh6, -1 coshf (32)
¢ coshé’ cosh#d —1

The limits on the 2’ integration are set by the vanishing
of D. When we interchange the 8 and the 3’ integrations
(which replaced s and a’), it is useful to note that the
absolute upper and lower limits on 2z’ are =1, coming
from the vanishing of the 2)X2 minor which is the
coefficient of (cosh6)? in D. The 2’ integration may thus
be put to the end, allowing us to write the integral
equation as

~ - 2(uv) '
A l(u,z) =Iz(’l/t,z)+

8wt

0 1 0
X / du'(—u') | d7’ [ d(coshfy)
00 -1

X/w d(coshﬁ’)'/eo d(cosh#)

0( — D)I(BO:u;z:”I)Z/)A (0',%',z’)fz(0,u,z)

, (33)
(=D)Y[(m*—u'—3t)?—tu's'"]

12§, Pinsky and W. I. Weisberger (unpublished) have also
introduced these variables in their study of the nonforward
multiperipheral equation.
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with the lower limit on the coshf integration deter-
mined by the vanishing of D.

To determine the appropriate choice of variables for
the carrying out of the 6 integration (our argument
from the previous section tells us that f; will be a Q;
of the variable), we recall the salient feature of the
group-theoretical discussion. In that approach, one
sits in the Lorentz frame where Q=(0,0,0,(—¢)"/2) and
notes that the little group of this vector is SO(1,2).
This suggests that the other vectors of the problem,
P, P, and K, be decomposed into a part along Q and
a part orthogonal to Q. The variables of integration
then adopted are the projection on Q, the length of the
three-vector orthogonal to @, and the two angles
specifying the orientation of the three-vector. For the
vector P, say, this means decompose P, into (P-Q)Q»/
(? and the three-vector (written in four-component

form)
Pr\=P\—Q\P-Q/Q*, (34)

with length

P=pP—(P-Q)/Q*=u(1—2)<0, (35)
which means it is spacelike in our problem. The energy
variables are now chosen to be the hyperbolic angles
between the respective three-vectors P, K, and P/,

P.K coshf-+z¢ 3
T ER Lm0

—p.P coshfo—zz’

Vo= == = ) (3 7)

P AT
and

PR coshd’+2'¢

y (38)

B (PR )12 = [(1—=23)(1—¢2) ]2 ’

At last the reward for our kinematic diligence comes
when we express the Jacobian determinant in the y,
yo, and 9’ variables and rewrite the integral equation
with them:

Ay(u,z) =T (u,2)+(2/87%) (up) 12(1—22) /2(1— )12

1
X (—u’)du’/ dz’ (1—2'2)12

—00 -1

* * * I(yO;uyz’u/:zl)A (y',%',z')
X / dyo / dy’ / dy

1 1 1

[(m2—u' —%10)2—u'tz'%]
QO +yo*+y2—1—2yy0))
Oy +y t—1—2yy0y" )1/

where we have also chosen our transforming function
fi to be Qi(y). The lower limits here on the various y
integrations are in fact greater than 1 and are set by
L2, 1t is possible to carry out the y integration in (39)

, (39)

715
with the following result, as shown in the Appendix:
0(y°+yo*+y"2—1—2yy0)")
Oy’ +yE—1=2yy0y") !/

=) Q:(").

It behooves us to define the integral transform over
the Q:(y) in the obvious fashion,

/ dy Qu(y)

(40)

mwm=/<wgomw%@, (41)

s0 (39) becomes simply (restoring the passive variables)
A l(urza‘v)g‘)t) =IZ(M,Z,7),§_,7)
1 0 1
+— du'(—u")

87"4 —0 —1

&7 (1—z/Hv

Il(M,Z,M,,Z,,[)A l(%,,Z,,'IJ,f,/)

[m?—u' —%t)*—tu's'%]

» (42)

where the range of # and v is over the negative real line
and z and { are taken between 1. From the solution
to this two-dimensional integral equation over one
finite and one infinite range, one recovers the full
absorptive part by the inverse transformation (10).
It is of clear interest to study the I-plane behavior of
this absorptive part since the singularities furthest to
the right determine in the usual manner the leading
asymptotic behavior of 4 (y).

IV. OBSERVATIONS

The Laplace transformation of the absorptive-part
equation has been carried out here for forward and
nonforward scattering of spinless particles. By working
directly on the equation, with judicious hints from the
group-theoretical treatment of the problem, we have
carried out the diagonalization with an arbitrary
“potential” or irreducible kernel without requiring a
continuation of the equation first to a Euclidian region.
Further, by transforming with functions of the second
kind which have good decrease properties in a half-
plane, we are able to allow from the outset for power
growth of the absorptive parts and need not perform
diagonalization.

Amusing as (21) and (42) are, they remain only
kinematic skeletons until some dynamical muscle is
provided in the form of some specific irreducible kernel.
However, it is not unreasonable to imagine that many
general properties of these equations may be extracted
for wide classes of kernels because of their simple
structure. For example, the recent electroproduction

B E. Bloom et al., Phys. Rev. Letters 23, 930 (1969); M.
Breidenbach et al., 7bid. 23, 935 (1969).
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experiments at SLAC® pose the question of the de-
pendence of the Regge residues on the external masses.
The dynamics entailed in this program, as well as the
generalization of the Laplace transform to spinning
particles and Reggeons, will be the subject of further
work.

Note added in manuscript. The works of the following
authors on the diagonalization of absorptive-part
equations using the more standard harmonic analysis
have been brought to our attention: (1) M. Ciafaloni,
C. Detar, and M. N. Misheloff, Phys. Rev. 188, 2252
(1969); (2) A. H. Mueller and I. J. Muzinich, Ann.
Phys. (N. Y.) 57, 500 (1970). Also, using the medium
of Mehler transforms, Regge and his collaborators have
tabulated a number of interesting integrals involving
Legendre functions, one of which is our Eq. (40). See
V. de Alfaro, T. Regge, and C. Rossetti, Nuovo Cimento
26, 1029 (1962).
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APPENDIX

In this appendix, we drive the integral (40) which is
of the nature of an addition theorem on functions of the
second kind. The starting point is the similar integral
on P; functions which is derived from the unitarity
relation by Goldberger and Watson,!* namely,

1 1
—/ dp Pi(w)
1

m™

O(1—p?—p1®—po+2up 1)

(1 =p?—pa® — 2’ +2puape) V/?
=Pi(u1) P 1(us)

valid for u1, ps in the interval —1 to 41. By using the

¥ M. L. Goldberger and K. M. Watson, Collision Theory
(Wiley, New York, 1964), p. 595.
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integral definition of Q,;(z),

1 ds
Que) =~ | ——Pua),
2) 125—4
the basic integral becomes
1 (Zp,x 1 (Z/J,z

—131— M1 J 182 U2

1 1
O Qi) = = / du P o)

™

O(1 —p? —pr® — p2?+2up i)
ne

(1—p2—pa® — po®+2upaps)
The integral

1
I=/d9q ” "
@-h—5)(@-F —=)

can be cast into the two forms

Vodur ' due . .
I= / / / 025(u1—- B)3(us—-¥)
—1M1—231J 1 M2 32

1

1 1
=2/ duyr—— dus
-1 M1—21J -1

0(1 —p? —p1® — po®+2up1pz)

(ua—22) (1 — 2 — pa® — o 2paapn) V2
setting u=£-%/, and!s
©  dz 0(22 2124202 —1—222120)

L (a—w) @ otz —1—2zmzs) V2

I=4r

which observation leads directly to
0(z2 2124292 —1—225125)

(3242124222 — 1 —22212,) /2 ’

Qe Oules) = / 05 0i(2)

the announced result.

15 Reference 14, p. 605. Note the misprint in the quantity
called «.



