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Laplace Transforms and the Diagonalization of Bethe-Salpeter
Equations for Absorptive Parts~
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A Laplace transform is developed for the crossed-channel partial-wave analysis of Bethe-Salpeter —like
equations for the absorptive part of scattering matrix elements. The transform requires no assumption
about rotating contours to a Euclidian region and allows from the outset power growth in energy of the
transformed absorptive part. This eliminates the need for any analytic continuation after the transforma-
tion. The diagonalization of the forward and nonforward equations with arbitrary irreducible kernels is
explicitly carried out.

I. INTRODUCTION alteration of the usual harmonic or I'"ourier analysis
described in Ref. 2 for the treatment of non-square-
integrable functions over the group. After stating the
basic idea in a precise manner, we will demonstrate the
usefulness of the transform we introduce by explicitly
diagonalizing the absorptive-part equation. We carry
out our analysis for spinless particles only, but this is
primarily a pedagogical device since the Laplace
transform has obvious extensions to spinning particles
and is likely to 6nd its most fruitful applications in
multiperipheral or multi-Regge analyses. We must
confess that we have not been able to state our pro-
cedure in a "proper" group-theoretic context, but we
content ourselves with the straightforward analysis
given below.

'HE partial-wave analysis of S-matrix elements as
a concise expression of the underlying symmetry

of the physical problem has reached a remarkable level
of sophistication since the fundamental work of Jacob
and Wick a decade ago. ' ' Of particular interest of late
has been the technique of crossed-channel partial-wave
expansions which directly reAect the properties asso-
ciated with the little group of the four-momentum
transfer vector. Since the little groups associated with
lightlike, spacelike, and null momenta are noncompact,
the conventional partial-wave expansions are restricted
to scattering functions which are square integrable over
the group manifold. This is indeed an unfortunate
circumstance, since one of the physical goals behind
making the expansions is that one will end up with a
formalism in which the high-energy behavior of the
collision phenomenon of interest will be expressible in
simple terms (usually meromorphy) in the partial-wave
plane. Restriction to square-integrable functions leads
to an elegant expression of the so-called background
integral, but misses the leading Regge-pole or -cut
behavior. It has become standard form to have a
footnote recognizing this fact which concludes with the
hope that some kind of analytic continuation in the
l-plane can subsequently be made.

In a study of the Bethe-Salpeter equation for the
absorptive part of the scattering amplitude, ' we have
found an integral transform which makes the usual
partial diagonalization of the relevant integral equation
and yet allows power growth of the absorptive part.
It is in essence a Laplace transform on the little group
of the momentum transfer and is in a natural way the
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~ M. Jacob and G. C. Wick, Ann. Phys. (N. Y.) 7, 404 (1959).
'A complete exposition of the techniques used and a full

bibliography of past work is given in lectures delivered by P.
Winternitz at the Dublin Summer School, 1969 (unpublished);
Rutherford Laboratory Report No. RPP/T/3 (unpublished).' The set of review lectures "Multiperipheral Dynamics"
given by M. L. Goldberger at the 1969 Krice Summer School,
Princeton University report (unpublished), gives a lucid develo a-

ment of the basic equation and an extensive discussion of
properties.

II. LAPLACE TRANSFORM

We discuss in this section the idea, of the Laplace
transform, which we use below to diagonalize the
forward (null momentum transfer) and nonforward
(spacelike momentum transfer) absorptive-part equa-
tions. Recall that one arrives at the usual Laplace
transform by taking the representation functions for
the unitary representations of the translation group,
namely sinkx, and splitting them up into "functions of
the second kind" by sink@=(1/2i)(e'"' e'"*) T—hen.
one of these functions of the second kind, say e'~, is
continued in k away from the real line to reach non-
unitary representations. This gives a nonunitary
harmonic which allows, because of the nice decrease of
the function of the second kind in a certain half-plane,
the Laplace analysis of fuctions which are not square
integrable on the line.

All this is completely elementary, but is precisely
the idea one needs to perform the same analysis on the
little groups of the Lorentz group. In particular, let
us begin with the little group for null momentum
transfer, 50(1,3). The harmonics of this group have
been thoroughly discussed in any number of the papers
listed in Ref. 2. We use here the material from the
review papers by Bander and Itzykson. ' The lowest

I
its 4 M. Bander and C. Itzykson, Rev. Mod. Phys. 38, 330 {1966);

38, 346 {1966).
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harmonic on SO(1,3) corresponding to the principal is suggested. ' For an amplitude with power growth no
series of unitary representations is well known to be greater than y, A~(t) is analytic in the half f plane to

the right of Rcl=o, The inversion formula to recover
Z~(8) =sinlV8/E sinh8, A (y,t) from (g) is found with the aid of the integrai7

with 2V lcRl Rnd posltlve Rnd 8 tlM hyperbolic Rnglc on
the timelike 1+3 hyperboloid. We divide this into two
functions S~(8) of the second kind:

oo

~yP~(y) v )=
(f'—f) ()+/+1)

~~(8) =LS~(8)+S-~(8))/2~ (2) valid for ReP Re—l&0 and Re(P+l)) —1, and is

so

S~(8)=e'~'/E sinh8, (3)

'+' dl
A {y,&) = —.(2i+1)P~(X)~(~)

$QQ 2 rk
(10)

and carry out the (trivial) continuation in E away
from the positive real E axis. This gives us the Laplace
harmonic (dropping an irrelevant Ã)

Lv(8) =e "'/sinh8

on SO(1,3).
Now a scattering amplitude A(s) is conveniently

parametrized by cosh8~ s and the transform with (4)
of such an amplitude will be

d8(sinh8) 'L~(8)A (8),

with c to thc I'lght of o.'.

%c will not treat the lightIike case below, although
there is no reason in principle not to do so, but only
mention that the argument above leads one immediately
to the transforms of Mcijer' on Bessel functions of
imaginary argument. The relevance of this to the little
group of lightlike vectors, E(2), is clear from Ref. 2.

3cfoI'e tul ning to thc dlagonallzatlon of thc ab-
sorptive-part equations, we note that since in the
Iarge-s limit, s~e' in both examples discussed, the
Laplace transform becomes essentiRHy the Mellin
transform which is conventionally employed in the
dlscusslon of thcsc equations.

where the measure appropriate to the hypcrboloid has
been introduced. ' The inversion formula is almost too
well known to be recorded, but for cornpIeteness EQUATION

C+'Ceo

sinh8A (8) = — de e"'A ~.2' ~Joe

Now we wish to contemplate the growth of A (8) as s
or (cosh8), so the contour in (6) should be taken to the
right of a+1 in the X plane.

For spacelike momentum transfers, the lowest
harmonic functions on the little group SO{1,2) are
Legendre functions P~(y) with f= ,'+i%—, —E real,
and y=cosh8, where 8 is the hyperbolic angle on the
j.+2 timelike hypcrboloid. The functions of the second
kind are the old favorites Q~(y), related to P~(y) by the
fRHllllar

~P~b')/«n~l=Q~(y) —Q-~~(X) (&)

A scattering amplitude A(s, t) will again have s pro-
portional to cosh8, and the Laplace transfolTn

A ~(t) = d8 sinh8Q~(cosh8)A (8,&)

~X Q~b)A(y &)

~It shoukl be noted at this point that S. Nussinov and J.
Rosner fJ. Math. Phys. "l, 1670 (1966)j have also introduced this
Laplace transform to diagonalize the foryyarQ absorptive-part
equation.

This CRsc ha s been dlscusscd by Nussinov Rlld

Rosner, ' using the transform in (5). We repeat it here
since it sets our notation and kinematics and, further,
it forms a signi6cant part of the work involved in the
nonforward probLem. The equation we have in mind
is given graphically in Fig. 1 when Q is set equal to
zero. That is,

d4P' I(P,P')A (P',K)
A(P, K) =I(P,K)+2, (»)

(2m)' (ns' —P")'

where A is the absorptive part of the scattering ampli-
tude in the s channd with t 6xed. The "potential" I
is the sum of alj. two-linc irreducible contributions to
2, and the propagators of the horizontal lines have been
Rsslgncd R Tnass fg. ,

The 6rst step in the analysis is to change to invariant
variables which wc choose at this point to be
s= (P+K)', I=P', s=K', s'= {P'+K)2, I'=P", and

f' M. ToHer, in his paper on the 50(j.,2) harmonic analysis of a
scattering amplitude t Nuovo Cimento 3V, 631 (j.965)j discusses
a "Laplace Transform" on the group. The relation between that
notion and the one discussed here is obscure to the present authors.
In the end he requires his amplitudes to fall as s '"anyway.

~ Hi'gher Trcnscendeeta/ J'Nnctiows, edited by A. Erdelyi ef, al.
(McGraw-HiH, New York, 1953), Vol. I.

8 Reference 7, Vol. II.
90ne can trace the literature on this from Ref. 3 where the

technique is extensively employed.
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-P/ =I'/ -Qd'Q/Q', (34)

with the lower limit on the cosh8 integration deter-
mined by the vanishing of D.

To determine the appropriate choice of variables for
the carrying out of the 8 integration (our argument
from the previous section tells us that f/ will be a Q~

of the variable), we recall the salient feature of the
group-theoretical discussion. In that approach, one
sits in the Lorentz frame where Q= (0,0,0, (—t)"') and
notes that the little group of this vector is SO(1,2).
This suggests that the other vectors of the problem,
I', I", and K, be decomposed into a part along Q and
a part orthogonal to Q. The variables of integration
then adopted are the projection on Q, the length of the
three-vector orthogonal to Q, and the two angles
specifying the orientation of the three-vector. For the
vector I', say, this means decompose I'/, in.to (P Q)Q/, /
Q' and the three-vector (written in four-component
form)

with the following result, as shown in the Appendix:

0(y'+yo'+y" —1 —2yy y")
dy Qt(y)

b'+yo'+y" —1—2yyoy')'"

=Q/(yo)Q/(y') (40)

A/(u, z) = dy Q&(y)A(y, u,z),

so (39) becomes simply (restoring the passive variables)

A /(u, z,v, i, t) =I/(u, z, r/, f,t)
0+—

8~4
du'( —u') dz'(1 —z")"'

—1

It behooves us to define the integral transform over
the Q&(y) in the obvious fashion,

with length

I"=P' (I' Q)'/Q'—=u(1 —z') &0, (35)

I/(u, z,u', z', t)A /(u', z', ~,i,t)

[(m' —u' ——,'t) '—tu z"]
which means it is spacelike in our problem. The energy
variables are now chosen to be the hyperbolic angles
between the respective three-vectors P, E', and P',

I' K cosh8+zl
y= =-, (36)

(P2K2) 1/2 [(1 z2) (1 f 2)]1/2

and

—PP cosh00 —ss'

(P2.P&2)1/2 [(l z2)(1 z12)]1/2

I" K cosh''+z'f
y =

(P 2K2)1/2 [(l z 2)(1 t.2)]1/2

(37)

(38)

At last the reward for our kinematic diligence comes
when we express the Jacobian determinant in the y,
yo, and y' variables and rewrite the integral equation
with them:

A )(u,z) =I/(u, z)+(2/gK )(uv) ~ (1 z ) (1 f )

1

(—u') du' dz'(1 —z")"'

dy0 dy'
I(y O,u, z,u', z') A (y', u', z')

[(m' u' ', t) ' u—'tz "—5-—
Q~b) e(y'+yo'+y" —1—2yyoy')

(3'+30'+3"—1—2y3 o3')"'

where we have also chosen our transforming function

f~ to be Q~(y). The lower limits here on the various y
integrations are in fact greater than 1 and are set by
Iz. It is possible to carry out the y integration in (39)

where the range of I and e is over the negative real line
and z and f' are taken between &1.From the solution
to this two-dimensional integral equation over one
6nite and one infinite range, one recovers the full
absorptive part by the inverse transformation (10).
It is of clear interest to study the l-plane behavior of
this absorptive part since the singularities furthest to
the right determine in the usual manner the leading
asymptotic behavior of A (y).

IV. OBSERVATIONS

The Laplace transformation of the absorptive-part
equation has been carried out here for forward and
nonforward scattering of spinless particles. By working
directly on the equation, with judicious hints from the
group-theoretical treatment of the problem, we have
carried out the diagonalization with an arbitrary
"potential" or irreducible kernel without requiring a
continuation of the equation first to a Euclidian region.
Further, by transforming with functions of the second
kind which have good decrease properties in a half-
plane, we are able to allow from the outset for power
growth of the absorptive parts and need not perform
diagonaliz ation.

Amusing as (21) and (42) are, they rema, in only
kinematic skeletons until some dynamical muscle is
provided in the form of some speci6c irreducible kernel.
However, it is not unreasonable to imagine that many
general properties of these equations may be extracted
for wide classes of kernels because of their simple
structure. For example, the recent electroproduction

»E. 3loom et al. , Phys. Rev. Letters 23, 930 (1969); M,
Breidenbach et al. , ibid. 23, 935 (1969).
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