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series therefore converges for. all

"0(x)dx-

mo+S

CONCLUSIONS

It is apparent that the argument for the convergence
of the series making up the proper vertex part goes
through exactly as with the proper self-energy parts
provided E&mo. For E)mo the argument above re-
quires rethinking because of the tendency for cancella-
tion in the denominators. We have not bothered with
this point because of its irrelevance to the basic ques-
tions of existence of a solution and convergence at the
points necessary for renormalization.

It is not surprising that we have found convergence
in the case considered in view of the fact that, for
example, in neutral scalar theory the fields correspond
to a harmonic oscillator with a linear perturbation in
contrast to the anharmonic systems which are qualita-
tively very diferent for large (p).

Finally, we would like to point out that the models
covered by this proof are nontrivial as compared to
such truncated models as the Lee model in which the
series for Z(0,mo) consists of one term.
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All the one-loop graphs of the dual-resonance model are explicitly calculated. These graphs fall into three
categories: planar, nonorientable, and orientable nonplanar. Using the properties of various elliptic functions,
we are able to generalize the renormalization procedure, obtained previously for the planar diagrams, to the
other two categories. The orientable nonplanar diagrams turn out to be particularly interesting. First, their
integration regions have to be reduced from the ones naively obtained in order to avoid multiple counting.
Secondly, they give rise to new singularities (branch points) in channels that are naturally identi6ed as
having vacuum quantum numbers. These singularities are probably related to the Pomeranchukon. The
question of unitarity is explored at the one-loop level, i.e., to the first nontrivial order in the perturbation
series. Although the counting of diagrams is somewhat subtle, a rather simple result emerges: All inequivalent
diagrams (with respect to duality transformations) should be counted with equal weight. Finally, it is
indicated that three of the four primitive renormalized loop operators of the theory can be obtained from
the formulas of this paper.

I. INTRODUCTION

~

~

~ ~

~ ~ ~

~

~

X attractive attitude towards the generalized
Veneziano modeli 2 is that it provides one with

the Born approximation to a theory of hadrons. The
The implementation of this idea is seemingly straight-
forward. One proceeds to factorize the Born term, ' i.e.,
the E-point tree graphs, thereby deducing the level
structure implicit in the model and the Feynman rules
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Research, under Contract No. AF-49(638)-1545.
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of the theory. 4 These rules are then to be utilized in
the construction of a unitary perturbation series.

The one-loop planar diagrams were in fact easily
derived' once it had been demonstrated that the tree
graphs were completely factorizable. ' Further progress
has, however, been impeded by a series of technical
difficulties and by the fundamental problem of re-
normalization. The technical difFiculties relate to the
inclusion of twisted vertices and to the removal of the
spurious states which are found by naive factorization.

The twisted vertices are necessary for the construc-
tion of twisted loop diagrams, some of which correspond
to nonpianar Feynman graphs and some ot which (the

S. Fubini, D. Gordon, and G. Veneziano, Phys. Letters 29B,
679 (1969); Y. Xambu, University of Chicago report, 1969
(unpublished).
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so-called nonorientable graphs) have no corresponding
analog in Feynman theory. Such diagrams are, in
general, required in order to satisfy unitarity. Twists
can be handled with relative ease by defining a twist
operator' 7 which takes one from untwisted vertices to
twisted ones. The spurious states appear in the factor-
ization of the tree graphs due to linear dependences
among the vertices (the so-called Ward identities3).
There exist, therefore, linear combinations of the
states used in the factorization that do not couple to
the external scalar particles and give no contribution
to the full tree amplitudes. It is possible to explicitly
remove them from the model by defining a projection
operator onto the subspace of real states. ' There is a
great advantage to working within this projected sub-

space, since one can then replace any operator in the
theory by another one which has identical matrix ele-
ments in the subspace of real states (these are related
by the so-called gauge transformations).

The planar one-loop amplitudes exhibit an exponen-
tial divergence, which is directly related to the enormous
number of states in the theory. Two of us have shown
how to construct a counter term that cancels this
divergence, while preserving duality, perturbative uni-

tarity, Regge behavior, and factorization. '
In this paper, using the techniques described above,

we consider the complete set of twisted and untwisted
one-loop amplitudes. We carry out the sums over the
intermediate states that appear in the loops and reduce
the general one-loop amplitude to an integral over
elliptic functions. The planar and nonorientable
diagrams are renormalized by constructing appropriate
counter terms. The nonplanar orientable diagrams are
shown to be finite in a certain region of the energy plane
but probably require renormalization, too. These
amplitudes develop branch points in an energy variable
that are unrelated to normal thresholds. We think that
these singularities, which are specific to the vacuum
channel, are related to the Pomeranchukon, but at the
present time we are not sure how to treat them. Finally,
we discuss the question of unitarity at the one-loop
level. More specifically, we determine the set of E-par-
ticle one-loop graphs that is unitary to this order in the
coupling constant. It turns out that a unitary result is
obtained when all graphs that are not related by a
duality transformation are summed with equal weight.

It might appear that the calculation of the one-loop

amplitudes is only the first step in the infinite procedure
of evaluating the sum of all diagrams necessary for
unitarity. This, however, is not the case in a dual
theory. Recently, we have" analyzed the general
X-point diagram for any dual theory and have shown
that there are only the four one-particle irreducible
diagrams shown in Fig. I. Any dual Feynman diagram
can be constructed, once one knows the four operators
which these graphs represent, by attaching appropriate
numbers of such graphs onto a tree diagram. Moreover,
it is possible that the (formal) sum of all the diagrams
required by unitary can be written explicitly in terms of
these four operators. Since three of them are one-loop
operators, they can be derived by factorizing the general
one-loop planar LFig. 1(a)j, nonorientable LFig. 1(b)],
and orientable nonplanar LFig. 1(c)]diagrams. In Ref.
10 this procedure was carried out explicitly for the self-
energy operator related to the planar tadpole LFig.
1(a)). Furthermore, counterterm operators for Figs.
1(a) and 1(b) can easily be derived. '0 The solution of
the one-loop problem contains, therefore, three of the
four operators which are required to construct the full
unitary theory.

Finally, we are considering a model with no internal
degrees of freedom, and with several undesirable
properties (ghosts, negative-intercept trajectories, lack
of fermions, etc.). There are indications"" that more
realistic models can be constructed by suitable altera-
tions of the Horn term. It is unlikely, however, that
these will change in any fundamental way the dynamics
of the loop amplitudes considered in this paper.

In Sec. II we review the algebraic methods necessary
for the calculation of loop diagrams, especially the
methods used for treating twists and spurious state
projections. The sum over intermediate states in the
general loop integral is explicitly carried out. Section III
is devoted to a short review of the planar diagrams, and
their renormalization. Section IV deals with the non-
orientable diagrams. These are calculated and renormal-
ized. In Sec. V we calculate the nonplanar orientable
diagrams. It is shown that naive application of the
Feynman rules involves an in6nite counting, which
can, however, be easily remedied. The new singularities
generated by this diagram are discussed. In Sec. VI we
discuss the unitarity of the E-point one-loop diagrams.
The Appendix contains a discussion of the elliptic
functions that appear in the loop integrals.
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II. PROJECTIONS, TWISTS, AND
DIAGONALIZATION OF TRACES

In this section we review the algebraic methods that
have been developed for calculating the X-point one-

"D.J. Gross, A. Neveu, J. Scherk, and J. H. Schwarz, Phys.
Letters 318, 592 (1970).

'~ M. A. Virasoro, Phys. Rev. D 1, 2933 (1970).
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loop integral with an arbitrary number of twisted lines.
We also show explicitly the algebra required to remove
the contribution of spurious states that do not appear
in the primitive E-point functions. Almost all the
techniques and results of this section can be found in
Refs. 4—8, especially the work of Kaku and Thorn. It
should be helpful, however, to have the salient facts all
collected in one place.

We begin by recalling that the level structure of the
dual-resonance model is described by vectors in a
Hilbert space generated by an infinite number of four-
vector creation operators, u„t~, n=i, 2, ... .4 The
propagator for momentum p is given by the operator

where

1

D(R p) = dx(1 —x)"—'x"
0

(2.1)

and one has linear trajectory functions

~(~) =«+2&.
The vertex operator for coupling an. on-shell scalar
state of momentum k [with n(k'=tv') =07 is

FIG. i. The four primitive graphs of the dual-resonance theory.

by introducing the projection operator'

~=I—(~'—~0)[~(~' —«)7-'~,

which satisfies

(2.5)

These operators are sufhcient to reproduce the standard
E-point functions in any multiperipheral con6guration.

We now introduce the three additional operators
(p'=m' in our metric)

D(»p)I'(P) =&'( P)D(»p)—
P(p+k) V(k) = V(k)Pt( —p) . (2 6)

Lo(p) =R ,'p', —-

L+(P)=P oi'+Z [~( +I)71"' .o~'+&,
n=1

The projected propagator Et(—p)D(»p)P(p) is
Hermitian and contains states which have linearly
independent couplings to external scalar particles.

The twist operator of Caneschi, Schwimmer, and

(2 3) Veneziano' is given by

g —( 1)Re L+ eO 8)r+—( 1—)&g-N+—(2.7)

These three operators generate the algebra SU(1,1)r:

[LO,L~7=&L~, [L+,L 7= —2LO. (2.4)

Next, define
~(p)= ~=L0(P) L (—P), —-

~'( P) =~'=Lo(p) —L+(P)—
At(p) has been constructed in such a way as to create,
when applied to any state in the Hilbert space, "spur-
ious" states that do not couple to any number of
external scalar particles. Therefore, one has the option
of removing such states from the theory. '4 This is done

'4 This is highly desirable since otherwise one must enlarge the
Hilbert space, by introducing additional scalar modes, in order to
achieve factorization of the twisted vertices (see Amati et a1.,
Ref. 7). With the projections one never needs to introduce addi-
tional scalar modes,

where the second form is made possible by the general
rule

prof(L )=f(xL+)x o. (2.g)

This twist is unique only up to a gauge transformation
generated by A. It is shown in Ref. 7 that the choice

O(s) =Q(1—s)"= (1—s) "0, (2.9)

where s is the integration variable of the adjacent
propagator (O~ is brought inside the integral), has the
desirable Hermiticity property

sBQ&(s) Q~t(s)sR (2.10)

The last formula guarantees that the result of a calcula-
tion does not depend on the placement of dots; i.e.„
twisting on both sides of a propagator is equivalent &o

Dot twisting at all.
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+p

+IG. 2. General one-loop diagram in the configuration where the
external lines are attached directly to the loop.

~ (P)Q(P) = —Q(p)~ (P), (2.12)

we may proceed to the calculation of traces. The
problem is to calculate a diagram of the form shown in
Fig. 2 in which an arbitrary number of the internal
lines are twisted. The corresponding integral (aside from
modifications to be discussed in subsequent sections) is

Recording two more useful identities proved by
Thorn, 8

A (p+k) U(k)D(R, p) = V(k)D(R+1, p)A (p), (2.11)

Tr{xi Qp, Vx2"Qp, x~ Qp Vyi V yiv" V}.

The key equation required to simplify the algebra is

e"'= (1+a)"(1+6)"
This relation is proved by first showing

(2.14)

The factor 1~+ is understood, of course, to be brought
inside the propagator integrals. The problem of the
projection is thus completely solved and the next
question is how to calculate the traces.

The trace calculation is completely straightforward,
using the properties of coherent states, when only
vertices and diagonal operators appear. ' When one or
more twists are also present, such a form is not manifest.
Therefore, for the configuration of Fig. 3, we now
show how to reduce the trace to a form which is as
simple as the one without twists. The restriction to
3f ~& 1 adjacent twisted lines is strictly for convenience;
the generalization will be made evident. Dropping the
nonoperator parts of the trace and writing the twist
operators in the second form of Eq. (2.7), we wish to
calculate

F(1+P)= (1+P)~+ ~'=e~+(1+P) ~'e ~+, (2.15)
if'k «{V(pi)&'(k+pi)D(R, k+pi)[1+0(k+pi)7

which is true because both sides have the group property
F(yi)F(y~) =F(yips), and the infinitesimal operators

X.P(—k —pi) V(p, )P (k+p, +p2) V(pz) are easily seen to agree Equat. ion (2.15) is then com-

XFt(k)D(R,k)[1+0(k)7F(—k) }. (1+p)'"'+=s"+"'+(1+p)" (216)
We have introduced a factor 1+0~ for each line. What
we really mean is to choose 1 or 0+ for each line depend-
ing on which lines are to be twisted. The commutation
and projection properties of I' enable one to replace
O~'s by 0's and drop all but one of the projections in
the trace, leaving us with

Tr(V(pi)D(R) k+pi)[1+Q(k+pi)7V(p2) V(pii)
XD(R,k) [1+Q(k)7F(—k)}.

Finally, bringing the A on the right of 1—E around
through the trace gives'

Tr( V(pi)D(R, k+pi) [1+Q(k+pi)7
X V(p2) V(p~)D(R, k) [1+Q(k)7}
—Tr f V(Pi)D(R+1, i+Pi) [1—Q(k+Pi) 7

XV(p2). U(pg)D(R+1, k)[1—Q(k)7}.

Therefore, we conclude that for a particular choice of
3E twists one has

[1—(—1)~~7 Tr{V(pi)D(R, kepi)[1 «Q(k+ pi)7
XV(p~) V(p„)D(R,k)[1 or Q(k)7}, (2.13)

where

(1—P) ' "~& & "'V(k)=V(k)(1 —P) "~&» (2.17)

~
—PL+gR gR~—PL+/x (2.18)

provide all the algebraic tools needed.
Equations (2.7), (2.14), (2.17), and (2.18) may be

Xt

which is a special case of Eq. (2.8), to give Eq. (2.14).
The additional relations

and x; is the integration variable of the ith propagator.

~M+ N

FIG. 3. One-loop diagram having cV adjacent twisted internal
lines and E adjacent untwisted jnternaf 1jnes.
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combined to show that

OVULE" =e~' —»'+( —1)ll(1 —p)'0-.0V(1 —p)
—'o

XxRe e~+~*. (2.19)

This relation is used repeatedly for every twist in the
trace. The p's, which until now were arbitrary, are then
chosen to cancel the I-+'s occurring in the exponentials.
This cancellation requires that

1 2—=1—p2, —=1—pn
X2 X3

PM—l

product of x's and y's,

M N iV N

w=II *'II y, =II u'II vl
j=»

The Jacobian for changing from x and y integra. tions to
I and v integrations is

rV

II d~' II dy, = [1—(—1) wj

3f dmi de
XII

i 1]+=up l'=l 1+Vlvj+I' ' 'v~ul

=1—pM, — —=1—pl.
y»y2' ' 'yNX1 Finally, collecting factors that have been dropped

along the way, we may assemble the formula for the

It then follows that the operator part of the remaining loop integral with M adjacent twists,

trace is

Tr{(—ul)~V( —ul)" (—uM)~

X UVP V vn ~U}, (2.20)

M N

Fnr, M= d'k [II du. u ""&—'][II dv v &'~™——lj

where

Q»=
ylyl' ' 'yn —pew

Pl
N2=—

1 —Pl
(2.21)

X[1—(—1) w]'[(1—uMvlv2 vol)

X II (1 —u'u'+l) II (1—v )3" '

X«{(—ul) V(pl)( —u2) ~ ~ ~ (—unr)

XV(py)vl V(pM+l) .VN V(pM+n)}. (2.25)

yly2 PM-
V2=— ) ~ ~ ~ )

yl —PM

yl —P~Z
v»=

1 PM—
ye PM—
ye l PM——

(2.22)

Eliminating the p's between Eqs. (2.21) and (2.22)
yields

ul(1+u2) u. (1+un)
X»— X2

1+ul 1+u2

XrlII—1—
uM l(1+uM)

1+I~ 1

(2.23)

unr(1+vlv2 ' 'vxul)

&»+V»V2' ' ' VNN»

~+&»V2 ' ' ' &NN»

V2+V2V3
y2=

1+v2vn' ' ''vNul

VN+VNN»
yN=—

1+0»

(2.24)

Note that the product of I's and v's is the same as the

We have now accomplished the goal of rewriting the
loop integral in a form for which the trace calculations
are no worse in twisted configurations than in untwisted
ones. Superficially, at least, the upper limits of the I
and v integrations correspond to the zeros of the factors
that appear to the power o,o

—1. This rule will be
modified in later sections.

The general rule for a one-loop diagram in the
configuration of Fig. 3 with 3f arbitrarily placed twisted
lines is now quite evident. (1) Jacobians and projections
contribute a factor [1—(—1)Mw]' except when M =0,
in which case the factor is just 1—w. (2) Each line gives
a factor u &n" ' (where u is a twisted line of momentum

k) or v &n'~ ' (where v is an untwisted line of momen-

tum k). (3) There is a trace in which the lines and

vertices appear in cyclic order with an untwisted line

giving v", and a twisted line giving (—u)~. (4) The
following factors appear to the power o,o

—1: a factor
(1—v;) for each untwisted line v;, and a factor of the
form (1 ul, vlv&+l —vl+ ul+l), where un and un+i refer
to two successive twisted lines with m+1 intervening
untwisted lines, for each twisted line NA, . In the partic-
ular case of just one twisted line, the last factor becomes
1—uw. (5) Finally, the u's and v's are integrated over

the region in which they are positive and in which the
factors given above are also positive. This rule will be
modified in Sec. V in the case where M is even and

nonzero.
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III. PLANAR DIAGRAMS

In order to ea wid 1 ith the simplest case first, we
consider the N-point loop with no twists. The rules o
Sec. II give for this case

the trace,

K=Tr(xPV(pr)x2~ x~~V(p~))

N oo Pi'P&Cjin
=a"[f(w)j ' II II exp

N

FN= d k gg L Xiy —Xin [d (1— ) '-'x.—&"&—'j(1—w) V',

p i=1

(3 1)

where, using eh, '
the techniques of Amati et a...' to evaluate

f(w) =II (1—w"),
n=1

C, =x;+~x;+g x, (in cyclic order).~s+1+s+2

Thus since C,,=m and C;j=w0 '' for zg

C;,"+(w/C, ;)"- N w"
exp p;p; exp p,'

C;,"+(w/C, ;)"—2w"
=e[f(-)? rr n

~=a"[f(-)? n
n=l

8~
— I=ix ' gwwf()—"II(1 „.-)(1 .'/. )' 2.$ 2.il

we find that

n=1 1 ~& s &g ~& N

'
e roducts as Jacobi 0 functions.ervation. VVe can now recognize the infinite pro uwhere the last step uses momentum conservation. e can

Using

&=a"[f(w)?' II
lnC;; 1nm 1nm)- —&"»

—2m. iC '"og — Hg' 0 —
I

2xi 2mi 2')

=a"[f(w)j ' — (II x*+i "') II
x 2,=2

(3.3)

t variable of the 01 function, a standard notation.
ra ition we do

w ere e e
'

re uired for putting FN in o eThe momentum integration is now requ'
1'd' of the Vhck rotation that is needed.not discuss the va i ity o e

9R= d'k n x„—~""&—'
1

lnx, inx, +g)4m 2
p

r. "(*.~) * (-
ln2m 2 lnm '=1

p,p; ln'C, ;

~ ln2~
(3.4)

To carry out the last step in gthe al ebra of (3.4), it is
1 k that momentum conservation and t e

t e eneral rulemass-shell constraint allow one to prove the gener

(3.3) and (3.4) into (3.1), we obtain

N

F~=4x2g" n [dx, (1—x;)"-'j

=(n~;.„-)( rr
i=1 1 ~& i &j~& N

whei"e

X
ln2m

II [k(C~*)j "' "', (3 5)
1&i &j&N

.—=8 . ~~In using this rule inwhere one defines Bp,j—=
(3.4), the i= eh '=1 t rrns require special care.] Inser ing
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Several properties of iP (x) are discussed in the Appendix.
In particular, we note the property P(x)=f(w/x).
This means that for a particular term with exponent
p,"p; the argument of the P function is the product of
the x variables that appear between the two momenta,
and it does not matter on which side these x's are chosen.
One immediate consequence of this invariance is the
cyclic symmetry of Ii& in the external momenta.

As has already been exhaustively discussed in the
literature, F~ has an exponential divergence as m ~ 1,
which is entirely attributable to the factor Lf(w)] '.
A useful formula fol. dlsplaylng this dlvcrgcIlcc, which ls
a, corollary of the 8-function transformations discussed
in the Appendix, is

fashion, these diagrams give no contribution. Here we
restrict ourselves to a theory of external scalar mesons,
with no internal symmetry, in which case the nonorient-
able diagrams are manifestly nonvanishing. Also, as we
shall see in Sec. VI, these diagrams are required for
unitarity.

The trace calculation and momentum integrations are
performed just as in Sec. III. For concreteness, let us
consider the case of M adjacent twists discussed in
Sec. II. %e then have

(3.7)

where
q= exp(2s'/inw) .

It is shown in the Appendix that

inn m lnx
iP(x) = ——sin

lnzv
(3 g)

differs from f(x) by O(q') as zv —& 1. Therefore, if we
construct Fz by replacing P by P in (3.5), the difference
Ii~—E~ is finite. The duality and analyticity properties
of F~ that allow it to be interpreted as an acceptable
counterterm have been discussed in Ref. 9. The demon-
stration that it can be consistently factorized was given
in Ref. 10. We emphasize that F~ is not unique,
however. For example, it is possible, and perhaps more
natural, to replace f(q') by unity in (3.7), obtaining

The functions |P~ and P~r, which differ from f by some
strategic Ininus signs, are discussed in the Appendix.
The subscript X denotes "nonorientable" and the
subscript T denotes "twisted. " The rule for choosing
the appropriate function is the following: C;; denotes
the product of the zs's and s's appearing between p; and
p;. If there are an even number of e's (twisted lines) use
f~, whereas if there are an odd number use f~r As we.
are considering diagrams with an odd number of twists,
the identityg~(x) =P~r(w/x), proved in the Appendix,
ensures that the result does not depend on which of the
two possible products of u's and ~'s we choose.

It is also shown in the Appendix that the functions

—2 in+ x lnx
—Sln

2 in@
(4.2a)

VVith this definition, the integrand involves elementary
functions only.

rv. momoMEmwaLE Bmoc MS

Diagrams containing loops with an odd number of
twists are called nonorientable. This is because of the
dual diagram surface. "If one draws such a loop in terms
of quark lines, then one 6nds two quarks circulating
around the nonorientable loop in the same direction.
Restricting to mesons, such diagrams have no corre-
spondence with the quark. model. This had led the
authors of Ref. 16 to suggest that when internal
quantum numbers are added to the theory in a suitable

"K. Kikkawa, S. Klein, .8. Sakita, and M. Virasoro, Phys'
Rev. D 1, 3258 (1970).

'6 M. 8. Halpern, S. Klein, a,nd J. Shapiro, Phys. Rev. 188,
2378 (1969).

—2 lnm m lnx
lP» = —cos

2 in+
(4.2b)

d&defer from Ar and 4'xr, as ~ ~ 1, by 0(qx~) where

q~= i exp(s—'/2 lnw).

The term Lf(—w)g 4 diverges near w~ 1 hite q~
—'~'

Therefore, just as in the planar case, we construct a
counterterm F~ ~ that cancels the divergence of Ii~ ~
by replacing P~ and f~r by |t~ and f~r, respectively
This rule is also satisfactory in its duality and analy-
ticity properties. This nonorientable counterterm, just
as the planar one, is nonunique; one can easily add to
it an additional 6nite counterterm.

The nonorientable loop integrals have an additional
interesting property that will prove quite useful in the
discussion of unitarity in Sec. Vf. Namely, there is a
natura, l way to decompose the integration region into
pieces corresponding to different diagrams. We now
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P,

Pp

(A)
P)

I'ro. 4. Eguivalent forms for a particular
nonorientable loop diagram.

Now consider the diagrams labeled con6gurations Bl,
82, and 83 in Fig. 4. The diagram 8; can be obtained
from con6guration. 4 by dualizing the line s;. Therefore,
these diagrams should give the same integrals as A.
To check this property consider 81,

(1+~)'Lf(—~)j '
J»=4+'g' dxdy&dy2

ln'm

X/(1 —y,)(1—y,)(1—zvx) j 0—'

Xf&(yg)» »P~r (x)» »fu'(y, ) » &. '(4.4)—'

It is obvious that the equality of Fz and Faz (as well

as their counterterrns) is demonstrated by the change
of variables

x= 1/s~, yp —slsp y2 sls2. (4.5)

This requires the identity fur(x) =P~r(1/x), proved in
the Appendix. The striking fact is that the integration
region of the full expression,

s), s2, se~&0; SlSg, S.S3, S3Sl& 1,

show how this works for a particular example and then
state the general rule without further proof.

Consider the diagram labeled configuration 3 in Fig.
4. According to the rules we have formulated, the
integral associated with this diagram is

(1+~)'Lf(—~)3 '
I' ~ =41) g dsids2ds3 m

—'—'
in'm

XL(i -sos, )(1-s2s3)(1—s3si)j"-'

Xp~(sisa)
—» &+~r(si)-" "VN(spasm) "'"' (4 3)

can be decomposed into the four pieces

0~&sl, s2, s3~&1,

8;: 0&1/s;, s,s;~g, s,s;~g&1, i=1, 2, 3

which are naturally identi6ed with the four diagrams
of I'ig. 4 in the way indicated. In other words, the full
duality integral can be decomposed into a sum of the
four pieces obtained by taking each of the four diagrams
with its natural integration variables restricted to the
range 0 to 1.

The generalization of the above result to ~V external
lines is as follows: Corresponding to a particular non-
orientable one-loop diagram, there are 2 ' equivalent
configurations obtainable by duality transformations,
provided we only consider diagrams with the external
lines connected directly to the loop, i.e., diagrams of the
general form considered in Sec. II. The integral corre-
sponding to any one of these diagrams is the same, but
can be expressed as a sum of 2N ' terms corresponding
to the various con6gurations with the integrals in each
case restricted to the "unit cube, " i.e., with the integra-
tion for each of the natural variables running from 0
to 1. The advantage of this decomposition is that each
of the "cube-restricted diagrams" only has normal-
threshold cuts in the channels that explicitly display
them. This result is extremely useful when we examine
the unitarity of the loops in Sec. VI.

V. ORIENTABLE NONPLANAR DIAGRAMS

Diagrams with an even number of twists (greater
than zero) have some very startling features. In order
to' study these features we begin, as before, by writing
down the general form of the orientable one-loop
integral in the case of M adjacent twists,

N M

F~,~ 4s'g™ (II dr; II——du, )

,f(~) '
X(1 ~) u' L(1 uur y' ' 's~uy)

ln'z

M—1 N

X II (1—u,u, ,) II (1—s,)j o-'

XII L4(C;;) or P, (C,;)$- ". (5.1)

tP is used when an even number of twisted lines are
included between p; and p, and pr (another function
described in the Appendix) is used for an odd number.
Once again, the symmetries P(x) =P(u/x) and Pr(x)
=Px(w/x) (shown in the Appendix) prevent the
formula from depending on which set of included lines
is chosen.

The new problems associated with these diagrams
can be illustrated by the example shown in Fig. 5(a).
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The corresponding integral is

I:f(w)l '
F =42r2g' d4x(1 —w)'— —w

ln'm

XL(1-*,*.)(1-...,)(1-....)(1-...,)~-—

Xlpr(x2) "' "y(x2x2) "'"yr(xi) "' "4

Xpr(x3) "'"'p(x2x4)-2""'pz(x4) —"'". (5 2)

Pq

Xy )2

Xp

x)

(o)

Xp

The integral F, is invariant under two types of variable
changes:

xi —xiw 1 x2 —x2/w 1 x2 —x3w 1 x4 —x4/w (5.3) Up

P, P2

xi ——1/x» x, =w/x, 1 x3 1/x31 x4 x4/w.
Vg )', ll Y(

The additional symmetry fr(x) =fr(1/x) is shown in
the Appendix. This invariance is important because
these transformations allow one to see that the "naive"
integration region

x;&0, xsxs+g(1, i= 1, 2, 3, 4

can be divided into an infinite number of cells, each of
which contributes equally. (Hence the integrals are
divergent in a rather trivial way. ) The source of this
circumstance can be traced to the fact that a sequence of
duality transformations can be applied to Fig. 3(a) so
as to return it to the original configuration while at the
same time inducing one of the changes of variables of
(5.3). The upshot of this is that the absorptive parts
one might naively have hoped to incorporate in these
integrals are in fact counted over and over again an
infinite number of times. (This has also been noted by
Kaku and Thorn. ') The integral with the correct ab-
sorptive parts can be obtained by restricting the inte-
gration to a single one of the cells.

Consider now the configuration of Fig. 5(b), which
can be obtained from Fig. 5(a) by dualizing the line x2.
The corresponding integral is given by

I:f(w)1 '
p 24 r'g2' d Nd'~(1 —w)'— w—2—'

ln'm

X/(1 —Ni)(1 —N2)(1 —~iu222)(1 —V2Nini)$ o-'

XP ( ) "'"V( ) """4 ( ) "'"'
XQT(&lm2) ~'"g( )N"i'"'Pr(&2) ~ "'

~ (5 4)

Using the relation Pr(x) =fr(1/x), the equality of
(5.2) and (5.4) is made manifest through the change
of variables

x1 Nl~li x2 1/vli x2 &1N21 x4 s2 ~ (5 5)

A similar transformation takes one to the configuration
of Fig. 5(c).Now suppose we restrict the integration for
each of the three diagrams to a unit (four-dimensional)

u)

(b)
P,

(c)

FIG. 5. Equivalent forms for a particular orientable
nonplanar loop diagram.

cube. It is then evident that the three regions so defined
are disjoint when expressed in terms of the x variables.
Furthermore, they remain disjoint even when one
allows for the transformations of (5.3). In fact, taken
together these three regions precisely dehne a cell
which, with its images obtained by repeated application
of (5.3), 611 up the original integration region. The
general rule, identical to the nonorientable case (and
trivially to the planar as well), is to take each of the
different loop configurations (of the form of Fig. 2) that
can be reached by duality transformations of a partic-
ular diagram and restrict the integrations to the cubes
defined by having the "natural" variables go from 0 to 1.
Diagrams related by duality transformations can then
be combined into one with an appropriately enlarged
integration region, which in fact is the basic cell
corresponding to the invariances of the type shown in
(5.3).

We now turn to the question of renormalization. We
recall that in the examples of Secs. III and IV the
integrals contained an exponential divergence for m —+ 1,
which was entirely due to the factor

I f(&w)] '. The
properties of g, i/~, and

fiick

turned out to make
possible the subtraction of an appropriately defined
counterterm so as to obtain a well-defined and physically
sensible result. The orientable nonplanar diagrams
which we are considering now are the only one-loop
diagrams that contain the function Pr. As is shown in
the Appendix, this function differs in a fundamental
way from the other three. Namely, in the limit m —+ 1
it contains an exponentially behaved factor of q

'i'4.

As a result of this the exponential behavior of the
integrand near m = 1 has additional important contribu-
tions. In fact, it is easily seen that the principal behavior
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I= ——', +4m, e=o, 1, 2, . . .. (5.6)

These singularities turn out to be logarithmic branch
points. It is remarkable that their position is independ-
ent of no. If one naively attempts to construct a counter-
term in the same way as in Sec. IV (as one probably
should) one would subtract a term with P replaced by
P and Pr replaced by

This would remove the branch point at I=—4 but
all the higher ones would still survive.

The branch points we have just found are quite
peculiar. They do not correspond to normal thresholds
and they only occur in vacuum quantum numbers.
Furthermore, they have definite angular momentum
properties, lying, in fact, on a new kind of Regge cut.
Since the branch point at u= ——43+4m contains angular
momentum ri, m —2, . . . , 0 (for I even), it would seem
that the J-plane cut trajectory is

n,„i(N)= s+4u. (5.7)

In fact, this result is verified by analyzing the asymp-
totic behavior of these diagrams. Notice that the slope
of this Regge cut (just as in the case for the more

I

I
I

I

I

I

I

I

I

t
T

I

I

I

Fro. 6. (M+X)-point loop diagram whose absorptive part is
examined in the indicated channel.

of the integrand near m= 1 is given by q
'~~"14, where

I is the channel with the double pole in the example of
Fig. 5. More generally, for a diagram of this class the
lines are always composed of two well-defined sets
corresponding to the two windows of the dual surface. "
Or, put in simpler language, when drawn with quark
lines there is one channel that has no quark lines running
across it; i.e., the diagram can be pulled apart without
breaking any quark lines. This serves to single out a
particular channel called N. This channel is naturally
identified as carrying vacuum quantum numbers only.

We have seen that the integrand has leading behavior
near m ~ 1 of the form q

'~' "i' Expanding out the
integrand in powers of q, it also contains less singular
terms q

'i' ~'+" e= 1, 2, . . .. It therefore follows that
any diagram of this class is well-defined (convergent) for
I(—-'„and contains singularities for

familiar ones in the crossed channels) is half of the
slope of the input pole trajectories of the model.
There is a strong temptation to call these cuts the
Pomeranchukon and be very happy. However, at least
to the present order in g', these singularities are un-

acceptable, since they apparently lead to a violation of
unitarity. One might hope to find a procedure that
eliminates these unwanted singularities from the
physical sheet, perhaps at the same time introducing
still another J-plane singularity related to the Pomer-
anchukon. Alternatively, the problem may be resolved
when higher-order loops are included. We consider
this to be an extremely important problem.

We should finally remark that cutting out the
singular portion of the integration with a factor
g(1—w —e) removes the new branch points without
altering the other absorptive parts. This kind of cutoff,
however, in general leads to an unacceptable asymp-
totic behavior for the amplitudes. Nevertheless, as an
interim measure, such a cutoff should be implicitly
understood to be made for this class of diagrams in the
discussions of the next section.

VI. ONE-LOOP UNITARITY

In this section we wish to make a modest beginning
on the important question of unitarity. Clearly all the
labors of the previous sections are of interest only if one
can eventually enumerate an infinite set of diagrams
whose sum is unitary. It should be emphasized that a
priori it is not at all evident that any such selection of
dual Feynman graphs can be made. Indeed, it could
conceivably turn out that any set of dual Feynman
diagrams, having the correct absorptive parts in a
particular chosen channel, is not crossing symmetric
(i.e., unitary in crossed channels as well). We shall
partially answer this question by displaying a selection
of 1V-point one-loop diagrams that is both unitary (in
a perturbative sense) and crossing symmetric. For
simplicity we only deal with connected diagrams. The
connectedness structure of the S matrix is a standard
problem, relevant for unitarity, but probably not the
source of any serious difficulties.

The counting of dual Feynman diagrams with
specific absorptive parts can be a rather tricky business
because of their tendency to contain cuts in channels
that are not manifest when the diagram is drawn in a
particular way. For this reason, it turns out to be very
useful, as an intermediate step in the discussion, to
deal with "maximal-loop diagrams restricted to cubes. "
By "maximal-loop" we mean that the diagrams are
drawn as one large loop with the external scalar states
directly attached, as in Fig. 1. "Restriction to cubes"
means that when the integration variables are intro-
duced in the natural way described in Sec. II, the
integrals are restricted to the region defined by the
unit cube of these variables. This is just the sort of
term we obtained by decomposing diagrams in Secs.
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Pro. 7. Absorptive part of an E-point loop diagram
in a three-body channel.

IV and V. It is important to remember that when an
integration is restricted in this way, a twisted line may
not be dualized.

We now state the rule for obtaining a unitary
expression: For a particular ordering of the E external
momenta, sum the 2 terms obtained by allowing each
of the N internal lines to be either twisted or untwisted.
Then sum all inequivalent permutations of the external
momenta. This gives a total of 2~ '(1V—1)! terms,
each of which is a maximal-loop integral restricted to
a cube. With this rule at hand we proceed to indicate
why, aside from the spurious singularities found in
Sec. V, the only absorptive parts of this sum of terms
are the usual two-particle thresholds, and why the
corresponding discontinuities are the appropriate
products of M+2 and X—M+2 particle trees (see Fig.
6) integrated over two-body phase space.

The advantage of integrals restricted to cubes is that
they only contain cuts in channels that are manifest
as drawn. Therefore, to consider the absorptive part in

a particular channel we may consider the subset of
diagrams having the lines appropriately divided into
two sets. Thus the 3f lines on the right in Fig. 6 may be
arbitrarily permuted and similarly for the E—M lines

on the left. For a particular assignment of twists, we
recall (in rather schematic form) the formula of Sec. II,

natural analog of the Cutkosky prescription. It is
somewhat oversimpli6ed as stated because

~
s) and

~

s')
need not be eigenstates of R (whenever no/1), but the
generalization can he easily made. After carrying out
the indicated substitutions, one is left with a two-
dimensional phase-space integration (of the usual type)
of the product of two tree diagrams, just as desired.

To complete the demonstration that the two-body
discontinuity is correct, we should show that the sum
of all the terms contributing on either side of a particular
discontinuity is, in fact, the appropriate cV-point
function. The delicate point is that when any line is
twisted, the corresponding factor in the discontinuity
is moII an E-point tree. Rather, because of the way in
which the integration regions have been restricted, it
is only part of a tree. Remarkably, all the terms combine
to give precisely the desired sum of trees. Rather than
proving this fact in all generality, we demonstrate it for
a specific example.

Consider a discontinuity of the type shown in Fig. 7.
For simplicity we shall take a and b to be ground states.
Then, when all terms are summed, we expect to get as
one factor the sum of all five-point trees made from
particles g, b, 1., 2, and 3. There are 12 such trees. To
obtain these 12 trees we must combine the 24 terms
arising from the six permutations of particles 1, 2, and 3
and the four possible twist combinations for the two
internal lines between them. The six terms with no
twists are six of the desired trees. The remaining six
trees are obtained by combining the other 18 terms in
appropriate fashion.

To see how the remaining terms are combined,
consider the diagrams shown in Fig. 8. Any one of

&&(lout)2[G(u, ~ u, ~ ~ u~)] 0-

)&Tr( V(aug) ~ V (Mum) ~ V(&u~) ~)

where the signs and G are chosen in accordance with the
rules of Sec. II. To investigate the discontinuity across
the two-body cut for which internal line No. 1 is in the
state

~
s) and internal line No. M+ 1 is in the state

~

s'),
one simply inserts ~s)(s~ and ~s')(s'~ into the ap-
propriate locations of the trace. Also, if these two
states have R~s)=r~s) and R~s')=r'~s'), one replaces
u~s '""& ' by 0(r n(kg)), putting u~= 0—elsewhere and

dropping the Ni integration. Similarly, u~+&~ ~(I'~+&')—'
is replaced by 5(r' —n(ksr~P)). This rule is just the Pre. 8. Three equivalent five-point functions.
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these terms would represent the same tree if the
integration limits were appropriate. However, the
integration limits emerging from factorizing terms
restricted to cubes are only portions of tree diagrams.
In fact, the three terms in Fig. 8 combine to give the
complete tree corresponding to any one of them. In this
way, the 18 terms with twists give the six remaining
trees. I.et us sketch how the algebra works. Correspond-
ing to Fig. 8(a), we obtain

dxdxx " 'x " '(1'x) "'»
)((1+x )-us»(1 —x x ) 0——m»

=g' dx&dx2I(xg, x2) .

On the other hand, Fig. 6(b) gives

1)~ &l&2(~

I(xg, x2)dxrdx2

In similar fashion, the diagram in Fig. 8(c) contributes

2&1,~1~2(&

I(xf)x2) dxldx9

Thus the three terms combine to give the complete
five-point function

dxrdxg8(1 —xrxg) I(xg, x,) .

(A change of variables is still required to obtain the
Bardakci-Ruegg form. ) Not surprisingly, the corre-
sponding algebra can be carried through for the general
case.

As an additional comment, we point out that there are
actually four terms of each type, which differ only in
the twistedness of lines a and b, and thus superficially
appear to contribute equally to the absorptive parts.
Two of these terms are orientable and two are non-
orientable. It is important to include all four terms in
order that the intermediate states producing threshold
branch points all have physical signature.

We have now shown that a certain manifestly cross-
ing-symmetric sum of terms comprises the complete
one-loop contribution to the connected part of the
unitary S matrix. It is important for several reasons to
reassemble these diagrams as dual Feynman diagrams

1

F~=R 4'rdX~X~ "' 3'~ "' (1+7~) ""
0

X(1—y~) " '(1+yiy2) "'".
The change of variables y& ——1/x~, y~ ——x~x2 brings Fq to
the form

with the complete integration regions instead of the
cube restrictions. First of all, this will lead to a simpler
counting of diagrams and allow the dualization of any
line, twisted or not. Secondly, the elimination of
spurious states by means of projections in Sec. II was
carried out for complete diagrams. When the diagrams
are decomposed into cubes the individual terms will
have absorptive parts corresponding to spurious
intermediate states. If these spurious-particle thresholds
are to be absent from the complete answer, it is import-
ant that the sum or diagrams can be expressed as a sum
of complete duality diagrams without any pieces left
over.

The identification of complete dual Feynman dia-
grams from the 2~ '(N —1)! cube-restricted diagrams
is actually quite easy using the rules of Secs. IV and V.
The (Ã—1)!/2 terms without twists give directly the
(IV—1)!/2 inequivalent planar terms. These are related
by duality transformations to the diagrams obtained
by attaching the tadpole of Fig. 1(a) to each of the
possible 1V-point tree diagrams. The 2~ '(lV —1)!terms
with an odd number of twists are readily combined to
give the (IV—1)!/2 inequivalent nonorientable terms.
These are related by duality transformations to the
diagrams obtained by attaching the tadpole of Fig. 1(b)
to each of the E-point tree diagrams. Finally, there are
the terms with an even number of twists. These may
also be combined to give complete duality diagrams.
They may be related to the diagrams obtained by insert-
ing the self-energy of Fig. 1(c) onto some line (external
or internal) of a tree. If this insertion is made so as to
divide the external lines into a set of M lines (containing
a particular one) and 1V—M lines, then, for IV)4,
there are PV —1)!/2(cV—M) inequivalent diagrams of
this type. This completes the classification of one-loop
diagrams. We have found that a unitary answer requires
adding each inequivalent dual Feynman diagram with
equal weight, a remarkably simple result.

VII CONCLUSIONS

We have given the rules for the explicit calculation of
all one-loop dual Feynman diagrams with any number of
twisted lines. These are expressed as integrals involving
elliptic functions. The planar and the nonorientable
diagrams were renormalized. We showed that the
nonplanar orientable diagrams develop new singulari-
ties which are perhaps associated with the Pomeranchuk
trajectory. Finally, we showed that the sum of all
inequivalent dual Feynman diagrams, taken with
equal weights, is unitary to this order of the perturba-
tion series.

I.et us now review the current stage of development of
the theory and the problems that remain to be solved
before a dual unitary theory can be written down. The
analysis of the structure of dual Feynman graphs that
we have given in Ref. 11 showed that all dual graphs
could be constructed with the aid of the operators
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corresponding to the four one-particle irreducible graphs
of the theory (see Fig. 1}.Three of these operators
)Figs. 1(a)—1(c)j are one-loop operators and can
therefore be constructed explicitly by factorizing the
expressions we have given for the E-particle one-loop
diagrams into a product of trees and the appropriate
one-loop operator. "In Ref. 10 we explicitly calculated
the renormalized planar self-energy operator from a
knowledge of the planar one-loop diagrams and their
renormalization. It is not dificult to extract the planar
tadpole operator LFig. 1(a)j, which can then be used in

conjunction with the general vertex operator to con-
struct all multiloop planar diagrams. (The self-energy
operator can also be used directly. ) The formulas of
this paper allow one to construct, by techniques
completely analogous to those of Ref. 10, the operators
corresponding to Figs. 1(b) and 1(c) as weH. In each
case a reasonable counterterm operator is obtained by
replacing the various P functions by the corresponding

P functions. Whether this prescription is vahd for the
self-energy operator of Fig. 1(c) remains to be seen.

The remaining problems in the implementation of the
unitarization program are the following.

(1) One must deal with the new singularities gen-
erated by'the nonplanar orientable graphs and perhaps
relate them to the Pomeranchukon.

(2) The operator corresponding to Fig. 1(d) still needs
to be constructed, Although we can write the operator
expression for this graph, its explicit evaluation is

quite dificult. Note that its renormalization is related
to the renormalization of the nonplanar orientable

graph because it contains this graph as a factor when

two internal lines are cut.
(3}One must study the new divergences that appear

when any of the four primitive renormalized operators
is iterated.

(4) Consistency conditions and other criteria that
may bear on the uniqueness of the procedure used to
construct counterterms require further investigation.

(5) Once the above problems have been resolved,

any given dual Feynman diagram can be constructed

by iteration of the primitive operators. It then remains

to determine the relative weights of the various terms
in the perturbation series such that the resulting sum is

pcrturbatively unitary. It is possible that one could
then exhibit explicit integral equations which sum the
complete set of diagrams. We have found that each
inequivalent one-loop graph should be included with

equal (unit) weight. It is perhaps reasonable to conjec-
ture that a similar rule is also valid for multiloop graphs.
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For this purpose one requires the transformation
formula

v y+br
8g — —= e(n+pr)'~'

u+pr n+pr
in.pv'

Xexp 8g(v [ r), (AS)
~+pr

where ~'=1 and a, p, y, and 8 are integers satisfying
n5 —py= 1.
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APPENDIX

In the text wc were led to introduce the foHowing
four functions:
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is also manifest in (A6).
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Comparing (A9) and (A14) gives the additional
symmetries
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From Fq. (A9) it is clear that
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agrees with P~(x) to O(q~2) for w ~ 1.
Finally, for Pz(x), we use the same transformation
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divers from QN(x) by O(q~') as w ~ 1.The symmetry
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(1 q2n)2

(A18)
P~(x) = —k~(1/x) (A11)

This function has the manifest symmetries

kr(x) =fr(1/x) =fr(w/x). (A19)

Also, it contains the exponential factor q
'i' and differs

from
(A12 f'(x) = —C(inw)/2 lq "'
(A13) by O(q) as w -+ 1.

H, (2 lr)= —e
—"~2"—')H, (z —rlr)

H2(-; —~lr) =H2(~lr)

(A20)

is also evident.
For the third function, p~r(x), one uses the same

transformation formula as for P~(x), together with
additional identities


