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The unrenormalized perturbation series for the charged-scalar static model with finite cutoff is shown
to have a finite radius of convergence. Although only the two-point function is explicitly considered, the

result generalizes to three- and four-point functions.

INTRODUCTION

HE question of convergence of perturbation series

for field-theoretical amplitudes has recently been

discussed for the ¢* theory.! The purpose of this paper

is to establish the convergence of bare perturbation
series for the extended-source static models.

Many of the innovations in field theory have been
prompted by pilot studies with static models.? Recently,
an off-shell approach to the charged-scalar model has
been developed by Freeman, Rubin, and North.? The
computational scheme consists of deriving integral
equations based on bare perturbation theory. The
convergence of the bare perturbation theory establishes
the validity of such derivations provided analytic
continuation of solutions may be done in the g, plane.

We confine ourselves to the charged-scalar-meson
field coupled to a fixed source, but it should be clear
that the proof generalizes to any static model. We also
confine the detailed proof to the study of the proper
self-energy series for the nucleon evaluated at the
physical nucleon mass. However, the proof -easily
generalizes to the case of proper vertex functions and
proper four-point functions. Unfortunately, we can say
nothing about the important case of the point-source or
local-field-theory limit.

BARE PERTURBATION THEORY

The rules of noncovariant perturbation theory are
well known and are illustrated here only for reference.
For charged-scalar theory, the interaction is of the
Yukawa type:

Hr=g, X p(w)[r—axtra’+r_bf+r 0], (1)
k
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We have also

[ak,ak'f:l =0k, [bk;bk'T] = Oxk’

\ a3k \ ® wk ) p
£ 5 () = / )= / ) )

E/ o(w) flw)dw, w=E41)12.

p(wx) 1s usually taken to be such that
p*(w)=1/20(14a%?), (2

where @ may be regarded as the “radius” of the source.
The limit @ — 0 is the point-source or local-field-theory
limit.

As an illustration of the rules for construction of the
integrals, we consider a self-energy or propagator
modification graph, e.g., Fig. 1. The nucleon line is
always drawn as a horizontal line; meson lines are
curved. In this example, there are five propagation
denominators, which may be written
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where E is the external energy, m, is the bare nucleon
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F1e. 1. Feynman graph for a particular contribution to the
third-order (in go%) contribution to the nucleon propagator. For
reference, the number of mesons in each intermediate state is
noted.
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mass, and x, y, and z are the meson energies. Finally,
one must multiply by a factor of go?(w) for each closed
meson loop and perform an integration with respect to
each meson energy. The result for the graph of Fig. 1is

SA(s)(E:mo)=g06/ / / a(x)o(y)a(z)
Lo XD(x,y,5)dxdydz. (4)

Any graph can be constructed from the rules illustrated
by the previous example.

Now consider the modified neutron or proton
propagator S(E). A standard result from field theory is
that

S—I(E) =E——m0—2(E,mo) . (5)

Z(E,mo) consists of only the sum of proper graphs; a
“proper” graph cannot be divided into two parts con-
nected by a single line. The bare mass m, is chosen so
that the modified propagator has a pole at the physical
neutron mass, i.e., E=0. That is, 7, is the root of

mo=—2(0,my). (©)

PROOF OF CONVERGENCE

The theorem we wish to prove is that the series
representing Z(0,m0) converges when gg?=\ is taken
sufficiently small. The result holds only for extended-
source models since the radius of convergence may tend
to zero as the source volume decreases.

The first observation is that all terms in Z(0,m,) con-
tain an odd number of denominators. It follows that
every graph is negative, and so henceforth only the
absolute magnitude of the series will be considered. For
any mth-order (in \) diagram, there are 2m—1 factors
in the denominator of the corresponding integral. Of
these factors, m differ from the preceding factor by the
emission of an intermediate meson, and m—1 corre-
spond to an absorption.

Consider the following modification of the first group
of (emission) factors: All meson energies except that of
the newly emitted meson are set equal to zero. The
resulting integral will be strictly greater than the
integral exactly representing the diagram. Next the
m—1 absorption factors are modified as follows: m; is

|l -2 -3 -2 1
F16. 2. The graph illustrated is similar to that in Fig. 1 in that
the sequence of numbers of mesons in each intermediate state is
the same. These are the only two third-order graphs having this
denominator sequence.
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set equal to zero and all meson energies are replaced by
their lower limits. These terms then factor out of the
integral, giving a term which is the inverse of a product
p of m—1 integers which are equal exactly to the
number of mesons present after each absorption. This
modification of the integral again produces an upper
bound so that our arbitrary mth-order graph is less

than or equal to
N % o (x)dx™
2T
pLJ1 motx

Each mth-order graph is characterized by a sequence
of 2m—1 integers representing the number of mesons
present in each propagator. For example, the sequence
for the graph in Fig. 11is 1-2-3-2-1. We may either
absorb or emit a meson at each vertex subject to the
following conditions: We start with one meson in the
first slot and return to one in the last slot; there may
never be less than one meson present so as to avoid
improper graphs; and the total number never exceeds
m. Therefore, the total number of such sequences

prpe pm Pmirs pomet, ®)
with
pr—prri==£1, ©)
is strictly less than 22,

There may be several graphs corresponding to a given
sequence. These “branches” arise only during absorp-
tion; if a positive meson is absorbed and there are seven
positives in the preceding slot, there will be a total of
seven branches at that slot. For example, the graphs in
Figs. 1 and 2 have the same sequence due to the fact
that there are two positive mesons which may be
absorbed between the third and fourth slots. For the
proton propagator, for example, the absorption of a
negative meson to reach an intermediate state of pi
mesons introduces a multiplicity of 3px+3; pr must be
greater than or equal to 1. The absorption of a positive
meson introduces a multiplicity of 3px+1; $x>2 in
this case, since the last positive meson is never absorbed.
The total number of branches is thus the product of
these factors for the m—1 integers p, which denote a
slot following an absorption.

The total contribution of any sequence of graphs is
bounded by the upper bound for any graph in the
sequence (7) times the number of branches for that
sequence. The ratio of the total number of branches to
p is a product of m—1 factors, each of which is less than
or equal to 1. The total contribution of any sequence is
therefore bounded by (7) with the factor p removed.
Therefore, the total contribution in the mth order is
less than or equal to the upper bound on the number of
sequences times this bound,

|27 (0,m0) | szmxm[ / ) "(x)dx]m,
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which is a term of a geometric series. The perturbation
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series therefore converges for all

i [of 2%

CONCLUSIONS

It is apparent that the argument for the convergence
of the series making up the proper vertex part goes
through exactly as with the proper self-energy parts
provided E<m,. For E>mg the argument above re-
quires rethinking because of the tendency for cancella-
tion in the denominators. We have not bothered with
this point because of its irrelevance to the basic ques-
tions of existence of a solution and convergence at the
points necessary for renormalization.

(11)
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1t is not surprising that we have found convergence
in the case considered in view of the fact that, for
example, in neutral scalar theory the fields correspond
to a harmonic oscillator with a linear perturbation in
contrast to the anharmonic systems which are qualita-
tively very different for large (¢).

Finally, we would like to point out that the models
covered by this proof are nontrivial as compared to
such truncated models as the Lee model in which the
series for Z(0,m,) consists of one term.
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All the one-loop graphs of the dual-resonance model are explicitly calculated. These graphs fall into three
categories: planar, nonorientable, and orientable nonplanar. Using the properties of various elliptic functions,
we are able to generalize the renormalization procedure, obtained previously for the planar diagrams, to the
other two categories. The orientable nonplanar diagrams turn out to be particularly interesting. First, their
integration regions have to be reduced from the ones naively obtained in order to avoid multiple counting.
Secondly, they give rise to new singularities (branch points) in channels that are naturally identified as
having vacuum quantum numbers. These singularities are probably related to the Pomeranchukon. The
question of unitarity is explored at the one-loop level, i.e., to the first nontrivial order in the perturbation
series. Although the counting of diagrams is somewhat subtle, a rather simple result emerges : Allinequivalent
diagrams (with respect to duality transformations) should be counted with equal weight. Finally, it is
indicated that three of the four primitive renormalized loop operators of the theory can be obtained from

the formulas of this paper.

I. INTRODUCTION

N attractive attitude towards the generalized

Veneziano model*? is that it provides one with
the Born approximation to a theory of hadrons. The
The implementation of this idea is seemingly straight-
forward. One proceeds to factorize the Born term,? i.e.,
the N-point tree graphs, thereby deducing the level
structure implicit in the model and the Feynman rules
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of the theory. These rules are then to be utilized in
the construction of a unitary perturbation series.

The one-loop planar diagrams were in fact easily
derived® once it had been demonstrated that the tree
graphs were completely factorizable.® Further progress
has, however, been impeded by a series of technical
difficulties and by the fundamental problem of re-
normalization. The technical difficulties relate to the
inclusion of twisted vertices and to the removal of the
spurious states which are found by naive factorization.

The twisted vertices are necessary for the construc-
tion of twisted loop diagrams, some of which correspond
to nonplanar Feynman graphs and some of which (the
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