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Broken Chiral and Conformal Symmetry in an Effective-Lagrangian Formalism
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The simultaneous breaking of conformal and chiral symmetry is investigated within the framework of
nonlinear realizations and eftective Lagrangians. The explicit introduction of a massless dilaton field, X
enables conformal invariance to be preserved in Lagrangians for massive matter fields. It is shown that the
equation of Callan, Coleman, and Jackiw, B„D„=H», remains valid notwithstanding the introduction of
this particle, and also that it is possible to construct Lagrangians which are simultaneously invariant under
the chiral and conformal groups. If we introduce a term which explicitly violates both symmetries, then
the dilaton acquires a definite (bare) mass which can be expressed in terms of the masses of the chiral bosons—the pion in the case of chiral SU(2) &SU(2), the pion and kaon in the case of chiral SU(3) &SU(3). The
precise form of this mass relation depends upon the type of symmetry-breaking term adopted.

I. INTRODUCTION

~ 'HE well-known techniques of nonlinear-realization
theory have been used extensively in the treat-

rnent of chiral symmetries. These techniques, which are
based upon the concept of group action on homo-
geneous spaces, have a wider relevance in that they
provide a natural vehicle for the description of any
symmetry which is spontaneously broken. In particular,
they can be usefully employed in discussions of con-
formal symmetry. The group of conformal transfor-
mations on space-time certainly cannot be expected to
manifest itself as a symmetry of physical states in that
its unitary representations do not include discrete non-
vanishing masses. However, it is conceivable that this
symmetry may be present at least in the equations of
motion although not in their solutions, i.e., that it is a
spontaneously broken symmetry. This point of view has
been advocated in recent works. ' In the present paper
we consider the problem of setting up effective Lagran-
gians which are simultaneously invariant under the
conformal group and under a chiral group [SU(2)
XSU(2) or SU(3) XSU(3)]. The resulting theory
possesses the following features: (a) physical states
which are classified according to unitary representations
of the direct product of the Poincare group and the
internal-symmetry group [SU(2) or SU(3)j; (b)
Goldstone particles corresponding to the spontaneous
breakdown of the higher symmetries, viz. , a massless
even-parity spin-zero and chiral-invariant "dilaton"
together with an SU(2) triplet [or SU(3) octetj of odd-
parity spin-zero massless "chiral bosons"; and (c) some
remnants of the higher symmetry which are expected to
survive in the tree-graph approximation.

The degenerate vacua which are characteristic of the
Goldstone solution can be avoided by introducing ex-
plicit symmetry-breaking terms into the Lagrangian.
Such terms serve to generate masses for the Goldstone

* On leave of absence from Imperial College, London. , England.
'A. Salam and J. Strathdee, Phys. Rev. 184, 1750 (1969);

184, 1760 (1969); C. J. Isham, A. Salam, and J. Strathdee, Phys.
Lettexs 31B,300 (19/0); Ann, Phys. (N. Y.) (to be published).

2

particles. Moreover, by choosing a symmetry-breaking
term which belongs to an irreducible representation of
the combined conformal and chiral groups, we can
relate the (bare) mass of the dilaton to the (bare)
masses of the chiral bosons. This mass relation depends
strongly on the type of symmetry breaking chosen.
Thus, in the case of chiral SU(2) XSU(2), if we assign
the symmetry breaker to the SU(2) scalar part of a
chiral four-vector, we find

where m~ and m denote the masses of the dilaton and
the pion, respectively. In the case of SU(3) XSU(3), if
we adopt a linear combination of the even-parity SU(2)
singlets in (3,3)$(3,3), then we 6nd

8m~'=3m '+6m''.

On the other hand, if we take the symmetry-breaking
terms from the representation (8,8), we obtain

3m„'=2m '+4m''.

In Sec. II we review the general method for making
any Lorentz-invariant Lagrangian into a conformal-
invariant one through the introduction of the dilaton
field X. The equation of motion satisfied by this held can
be put into the universal form'

X +0„„=B„D„,

provided there are no derivative-containing symmetry-
breaking terms. In this equation, D„denotes the current
of the generator of dilatations and is of course conserved
in a dilatation-invariant theory. The tensor H„„denotes
the usual symmetrized form of the canonical energy-
momentum tensor. It may be noted that the equation of
motion for X can be put into a form advocated recently

A similar result is contained in D. J. Gross and J. Ness,
CERN Report No. Th. 1076 (unpublished). Our scalar 6eld x,
however, is directly identi6able with the dilaton.

3 J. M. Jauch and F. Rohrlich, The Theory of Photons and
Electrons (Addison-Wesley, Reading, Mass. , 1955), p. 22.
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II. LAGRANGIAN FORMALISM

The conformal transformations of space-time consti-
tute a 15-parameter Lie group which is characterized by
the fact that the Jacobian matrix elx„'/elx„ is propor-
tional to a Lorentz transformation. More precisely,

Bx Bx„
g~"= det

Xrx BXP l CIX

(2.1)

where il""=diag(+1, —1, —1, —1) denotes the Min-
kowskian metric tensor. The Poincare group is evidently
included as a ten-parameter subgroup. The property
(2.1) allows one immediately to extend any representa-
tion of the Poincare group to the full conformal group.
Thus, suppose that the set of fields f (x) transforms
under the Poincare group according to

4 (*) 4 '( ') =D (i1)4 (*), (2 2)

where A.„„=Bx„'/Bx.denotes a homogeneous Lorentz
transformation. Since, according to (2.1), for any
conformal transformation we can write

cjX„' DX' "4
= det X(a Lorentz matrix),

~xv

it. follows that the transformation law

4(x) ~ 4"(x')

Bx' 'l'4 BX
= det—D det

BX BX

I/4 gx
P(x) (2.3)

~xv

is well defined, provided l is a Lorentz scalar. The be-

' C. G. Callan, S. Coleman, and R. Jackiw, Ann, Phys. (hl. Y.)
(to be published).

by Callan, Coleman, and Jackiw, 4

tl-=~A,
where e„„and D„are defined by

~pv cps 6 (~p~v gsv )X

D„=D„+B„f si (x—„e7—„x„e7—„)X'+F„„j.
An explicit formula for F„„=—F„„is contained in See.
II. Such redefinitions are permissible in that the added
terms contribute neither to the space integrals of ep„and
Dp„nor to the four-divergences. Ke have not examined
the renormalizability of 0„„.

In Sec. III we discuss the problem of combining
conformal invariance with chiral invariance. The solu-
tion is given in the form of a set of simple rules for
generating a chiral- and conformal-invariant Lagran-
gian from one which is only chiral invariant. The re-
mainder of Sec. III is devoted to the construction of
symmetry-breaking terms and extracting the associated
mass formulas mentioned above.

havior of P under conformal transformations is com-
pletely specified by the action of Lorentz transforma-
tions (2.2) and pure dilatations x„'=Ax„(li)0) for
which (2.3) simplifies to the form

P(x) -+ P'(x') =)~'P(x) . (2 4)

Since the pure dilatations must commute with the
homogeneous Lorentz transformations, we must require
that the matrix 1 commutes with D(h). Lin particular,
if D(A) is irreducible, /will be a pure number. ]

The Lagrangian of a conformal-invariant theory must
be a Lorentz scalar with /= —4, i.e.,

BX
L(4'("))= det, L(4(x)),

cjx
(2.5)

in order that the action be invariant. In the absence of
spontaneous symmetry breakdown the condition (2.5)
can be met only in theories with dimensionless coupl'ing

constants and vanishing masses. However, if we suppose
that there is spontaneous symmetry breaking in the
theory, then we have at our disposal a fundamental
scalar field X(x) with l= —1 and whose vacuum ex-
pectation value is nonvanishing. Our basic hypothesis,
therefore, is that the conformal-invariant Lagrangian6

L,= ', (B„X)'+~X4- (2.6)

where the matrices l and S„„characterize the behavior
of P under infinitesimal dilatations and Lorentz trans-

' The dilaton field g was represented in the form exp( —go) in
Ref. 1. In order to avoid any confusion with the 0 of chiral
SU(2) &&SU(2), which is the isoscalar component of a chiral
four-vector, we are using g to denote the chiral-invariant dilaton.

'By "conformal-invariant" Lagrangian we mean, of course,
.a Lagrangian which yields a conformal-invariant action. Such
,Lagrangians are in fact scalar densities as defined by (2.5).

is capable of yielding a degenerate or Goldstone solution
with (X)WO. In principle, the value of (X) could be de-

termined self-consistently in the manner of Goldstone.
Since l= —1 for this field, the nonvanishing of (X) can
only mean that the vacuum state is not a conformal
invariant and, correspondingly, that the X particle is
massless.

The dilaton field X can be used to generate e6'ective

masses and coupling constants for the other fields f in
the system. That is, any given Lorentz-invariant
Lagrangian density L (P) can be turned into a conformal
density L(P,X) by introducing X and its derivative in the
appropriate places. Two fundamental operations are in-

volved. First, the weight of each term in LQ,X) is

brought to the value /= —4 through multiplying by the
appropriate power —positive or negativ- — of X. Second,
the ordinary derivative 8„$is replaced by the covariant
form

(2.7)
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derivatives and transforms like a Lorentz scalar with
fi& —4, then (2.11) is replaced by

(2.12),' CI x—'+0»»= 8»D» = —(/i+4)Li,

where B„denotes the canonical dilatation current

81.
(2 8) D„= — (x„B,, l)f+— (x„8„+1)x

QX ~
L(p) =&4'r»aA H(4)—,

formations, respectively. Evidently this formulation re-
quires (X)&0, since the field X occurs in the denominator
of (2.7).

We turn now to consider the general form of the
equation of motion for X. The discussion is facilitated by
first putting the Lagrangian L(f) into the canonical
folm

QyX

L(P,X) =4'PrX't+" I'„X**+' B„Pj(lg„„iS„„)P—
X

+X4/14 —H(x'p)1+-', (8 x)'. (2.10)

The equation of motion which is obtained from this
Lagrangian by varying X is given by

X'+g„„=o, (2.11)

where O„„denotes the usual symmetrized forml of the
canonical energy-momentum tensor for the whole sys-
tem (including X). The inclusion of a symmetry-
breaking term Li(g,x) in (2.10) will modify this equa-
tion of motion. If we suppose that I~ contains no

' C. Lanczos, Rev. Mod, Phys. 29, 337 (1957).
If V„ is a conformal four-vector of weight l= —3, then

D„V„=B„V„. Moreover, if V„=P~F„P, then 8„V„=(D„P)~I'„P
+Q~F„D„Q. Hence the term —(D„P)~I'„f is variationally equiva-
lent to /~I'„D„p, so that (2.9) is real up to a four-divergence.

where pr denotes the transpose of p, and I'„denotes a
set of numerical matrices. The adoption of (2.8) repre-
sents no loss of generality since any Lagrangian can be
brought into this form by introducing sufficient aux-
iliary fields. ~ Moreover, we can assume that the com-
ponents P are real. This implies that the spin matrices
S„„,defined by

P'(x') = (1 2i4»„S„—„)g(x)

for infinitesimal Lorentz transformations, are purely
imaginary. Lorentz invariance requires that H(P) in
(2.8) be a scalar invariant, while I'„must satisfy

&(S»v Pi+I iS»v) gviP» g»D v ~

Since divergence terms in a Lagrangian are variationally
insignificant, no generality is lost in assuming that the
matrices I'„are symmetric between fermion fields and
antisymmetric between boson fields. Thus, for example,
the four-vector PrI'»f vanishes identically, while the
electric current is represented by the quadratic form
i PrI'»qf, with q an antisymmetric I.orentz scalar
matrix.

For the conformal-invariant Lagrangian correspond-
ing to (2.8) we adopt the real form'

L Q,x) =4 (x~'f) I'„D„(xl+'P) x'H(x'P)+L—„, (2.9)

where I„ is given by (2.6) and the covariant operator
D„by (2.7). Explicitly,

—*,(L+Li) (2 13)

where T„„denotes the canonical energy-momentum
tensor. A little algebra gives

D» =8»„x„+xB»x+8„F„»,

where Ii „„=—P„„is defined by

F»v 2+a(Ha»»+Hv»a H»va) y

H =P'x:+"I'. 'xS+„„lf .

Define the new, noncanonical currents

(2.14)

D„=D„8„[F„„+i6—(r,„8» z»B,)x'j, —
(2.15)

0».=fl». 6(~»—~ g» f:—i)x'

in terms of which the relation (2.14) takes the particu-
larly simple form

D„=e„„x„. (2.16)

It should be emphasized that while this relation has the
same appearance as that of Ref. 4, it is not identical
with it. Our definitions of D„and 8„„di6'er from the
canonical ones only through the presence of the dilation
field X (in addition to the higher-spin contributions in

F„„),whereas Callan, Coleman, and Jackiw employ all
of the zero-spin fields in their redefinition. In particular,
we make no claims about the renormalizability of 8„„.

Ke conclude this section on the representation of
conformal symmetry in a Lagrangian framework by
remarking that the conformal-invariant Lagrangian
(2.10) must yield S-matrix elements which, on the mass
shell, are independent of /. This follows from the fact
that the modification l —+ 3' can be eGected by the field.

redefinition

which, according to the well-known equivalence theo-
rems of field theory, leaves the 5 matrix unchanged. In
the presence of the l-dependent symmetry-breaking
term

L,(x,p) =x-i~f(x~p) (l,~ 4)—
this statement remains true. It fails in more general
broken-symmetry models.

It may be of interest to see that this current can be put
into a form similar to that given in Ref. 4. To begin
with, we have

D„=T»„x„+Qrxl+' I' x'+'S»P+-xB»x,
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~2+222 —f2 (3.1)

where f is a constant which, in the tree approxims. tion,
can be identified with the pion decay constant F, . The
constraint (3.1) is conformally invariant only if both 0.

and ~ are assigned the conformal weight l=0. This is a
perfectly consistent arrangement. However, it is usually
more convenient to assign the value l= —1 to boson
fields (such as 22), since this corresponds to the assign-
ment l= —4 for the kinetic-energy term (8„)', which
then appears without the encumbering weight factor
X"+'. The conformal-covariant analog of the constraint
(3.1) now takes the form

0'+222 =x2 (l.=l.= l, = —1), (3.2)

which is also chiral invariant since X is a chiral scalar. 5

Clearly we should now expect (x)=F,. Using the
generalized constraints like (3.2), one can readily con-
struct Lagrangians which are invariant under both
chiral and conformal transformations. $1t may be re-
marked that the constraint (3.2) is more a redefinition
of scalar fields than a genuine constraint. However, this
is a peculiarity of the SU(2) XSU(2) case which does
not carry over to SU(3)XSU(3). In both cases we
introduce one chiral scalar —the dilation —into the
theory; it just happens that in the nonlinear SU(2)
XSU(2) case only one field was removed by the
constraint —as opposed to ten in SU(3) XSU(3).7

The nonlinear chiral transformations of the pion field
which can be deduced by using (3.2) to eliminate 0 from
the relations Bar'=e~fT take the form

S~~ = 2 xL1—(~/x)'$'"

In general, we should obtain a relation of the form

III. BROKEN CHIRAL AND
CONFORMAL SYMMETRIES

There are at least two equivalent methods of gener-
ating conf ormal-invariant Lagrangians from chiral-
invariant ones. However, caution must be observed in
applying the rules of Sec. II in order that the chiral
invariance should not be lost. It will be found that the
dilaton field X is intimately involved in the nonlinear
chiral transformations.

The simplest approach —and one which is particularly
suited to the chiral SU(2)XSU(2) case is to consider
chiral-invariant Lagrangians expressed in terms of fields
which transform linearly under the chiral group. Since
the conformal and chiral transformations are commu-
tative, there will be no difficulty in applying the pre-
scriptions of Sec. II. Conformal invariance is obtained
without disturbing the chiral invariance provided only
that the dilaton is taken to be a chiral scalar. This we
shall assume. Nonlinearity is now achieved by imposing
the appropriate covariant constraints. For example, in
chiral SU(2) XSU(2) the pion field is usually assigned
to a chiral four-vector (0,22) which is then constrained
according to

The pion kinetic energy is then expressed in terms of the
covariant derivative

V ~-=X,.( )a ~b

and added to the Lagrangian. In order to achieve con-
formal invariance as well as chiral invariance, this
prescription must be modified. Instead of V„p and V„2r',
we must insert the chiral- md conformal-covariant
derivatives

QpX 7r 7r

DA =a@+(lg„„2S„„N—+r„. —a„—4,
x x x (3.4)

D„w =xiii (~/x)B„(~b/x).

Each term in the resulting Lagrangian is then brought
to the correct weight by multiplying with a power of the
chiral-invariant dilaton field X, and, finally, the dilaton
Lagrangian (2.6) is added. LEquations (3.4) are based
on the assignment 1 = —1. If some other value of l„ is
chosen, then we must replace x by x ' in them. ]

Consider now the problem of symmetry breaking. To
the fully invariant Lagrangian, made up according to
the prescriptions outlined above, we shall add a non-
invariant term L~. In general, Lj must be a Lorentz
scalar with even parity. %e shall require in addition
that it contain no derivatives. For the case of chiral
SU(2)XSU(2), we shall assign Li to be the SU(2)
singlet member of a chiral four-vector and in the case of
SU(3)XSU(3) we shall consider two possible assign-
ments: a mixture of SU (3) singlet and octet components,
first in the chiral multiplet (3,3) (3,3), and secondly in

(8,8). In all cases we shall take li= —1.
The point about assigning the symmetry breaker L&

to a definite irreducible representation of the direct
product of the chiral and conformal groups is that one
obtains in this way a relation between the divergences of
the dilatation and axial-vector currents. Thus,

B„D„=(ii+4)Li,

8„A„=(1/i)LQb, L27,

(3.5)

(3.6)

where Qb' denotes the axial-vector charge operator.
Combining these formulas with the fundamental rela-
tion of Sec. II,

where the function f, b depends upon the choice of
chiral coordinates.

It is not always convenient to make explicit use of
constraint equations in setting up chiral-invariant
Lagrangians. The general method is to start with a form
which is invariant under the linear subgroup LSU(2) or
SU(3)7 and which does not contain the chiral boson
fields (2r or 2r, E, 21). Invariance under the full chiral
group is then obtained by everywhere replacing the
ordinary derivative B„P by a chiral-covariant form

V„Q= B„il+I'i, (2r) (812r')p.

fi2r =xf"(2r/x)b', (3.3) ~pap 0@A+2 X ~Op s (3.7)
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one could embark upon a current-algebraic investigation
of the consequences of partially broken conformal
symmetry. For example, in the case of SU(2) XSU(2),
where we takeo

It therefore appears that breaking the chiral SU(2)
XSU(2) symmetry with the isoscalar component of a
chiral four-vector of conformal weight l~ = —1 yields the
mass relation

with A a numerical constant, Eqs. (3.5) and (3.6) take
the respective forms

From Eq. (3.9) we obtain A =m 'F„which, together
with (3.12), implies the expected result

r/pD/I, =3A/T )

B„A„'=Ax',

and (3.7) then gives the basic formula

(3.8)

(3.9)

(3.M)

(X)=P.. (3.14)

As mentioned above, the constraint (3.2) can be
looked upon as a redefinition of the scalar 6elds. This
suggests that the mass relation (3.13) should be ob-
tainable by using (3.2) to eliminate the dilaton field X

rather than 0. Thus we should write

The right-hand side of (3.9), sandwiched between ap-
propriate states, is directly related to the so-called "0.
terms" of low-energy scattering, @ while, for zero mo-
mentum transfer, the left-hand side yields the mass of
the states.

One of the principal functions of the symmetry-
breaking term is to generate masses for the various
Goldstone particles in the theory. In the tree approxi-
mation these masses will be related. A simple procedure
for extracting this mass relation is to express the
symmetry-breaking term in powers of the Goldstone
fields and examine the coefIicients of the second-order
terms. In this approximation it is necessary to allow for
the nonvanishing of (X) by expressing the dilaton field
in the form

X =(X)+X

and adjusting the parameter ~ in I.„so as to make the
coe%cient of the linear term in x equal to zero. The
coe%cient of ——,'x.' will then be interpreted as the
dilaton bare mass (squared). We consider the cases in
turn.

A. Chiral SU(2)X SU(2), LiE (2,2)

The symmetry-breaking term is given by

I.i ——Ao =A L((X)+x)'—m']i/'

=A(X)+AX —(A/2(X))~+ ".
The pure dilaton part of the Lagrangian is given by

J. =-'(8 X)'+xX'
=-', (8„X)'+x(X)'+4x(X)'X+6K(X)'X2+ (3 11)

The vanishing of the codFicient of X gives the relation

4x(X)'= —A/(X),

which can be used to eliminate I(. from the expressions
for the bare masses. These are given by

m, „'=3A/(x), m '=A/(x). (3.12)

~This term was erst considered in the context of dilation
symmetry by G. Mack, Nucl. Phys. M, 499 (1968); see also
G. Mack and A. Salam, Ann. Phys. (N. Y.) 53, 174 (1969).

"S.P. de Alwis and P. J. O'Donnell, University of Toronto
report (unpublished},

+xX'+A 0.

+x(0'+m')'+A 0 .

Applying the same method as above, we do indeed
arrive at the relation m, '=3m '. The existence of this
alternative approach is, as has already been remarked, a
peculiarity of SU(2) XSU(2). The larger group SU(3)
XSU(3) requires the first approach.

B. Chiral SU(3)X SU(3), I,iC (3,3)+ (3,3)

The symmetry-breaking term is given by

where Uo and U'8 belong to the linear representation

(3,3)+(3,3) which contains a scalar nonet U; and a
pseudoscalar nonet V; of the diagonal subgroup SU (3).
These 18 components are constructed out of the eight
independent Goldstone fields M, , i= 1, 2, ~, 8 (or m,

E, E"., i1), which constitute a pseudoscalar octet of
SU(3). In terms of exponential coordinates, the 18
linearly transforming components can be represented by
the expressions"

U', (M X) X Trp . (~2ik 3E/y+e 'ia'i M/x)]—
0 ~ ~ 0

(M X) iX TrLI (s2A M/x s—2iX.3f/x) j
0 0

(3.16)

where all fields have been assigned the same conformal

weight
8

1=—1 and X M—= P XM..

x'= Q (U;U,+V;V;) .
s=o

"C. J. Isham, Nuovo Cirnento OIA, 729 (1969); Niicl. Phys.
$15, 540 (1910).

The dilaton 6eld can be expressed in terms of the
components U; and V; by a formula of the sa,me type
as the constraint (3.2), viz. ,
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Another nine constraints exist among these fields but
we shall not make any use of them.

Expanding I.~ in powers of M, we obtain

~ =6A(v )(( )+x)
SA 8 8

(v'3)+ —v'3 ~'+ (v'3) — v'3 «
(x)

8
+ (v'3) ——V'k n' + (3 1&)

for the vector and axial-vector currents and, it may be
argued, should not appear in a pure-current model. In
the latter case a more natural symmetry-breaking
representation would be (8,8). This possibility has been
discussed elsewhere. "

The 64 linearly transforming components ~,b of (8,8)
can be represented in terms of the Goldstone octet
M&, . . . , M8 by the formula

20 Af
co,q(cV, X)=X exp —,a,b=l, . . . , 8

—ab

Incorporating this with I.x as given in (3.11), we find, where
upon setting equal to zero the linear term in X™,the
condition

(0 cV),p=p f,g, M, .
c=l

(3.20)

4'(x'= —(6A x
For the symmetry-breaking contribution to the La-

which can be used to eliminate ~ from the expressions grangian we take
for the bare masses. These are given by 8 8

~i(~,x)=(v'-')A Z -+(v'-')& Z d'.~.', (3»)

m+

16A 8
(v'3)+ —v'3,

(x)

16A 8
(v'3) — v's,

(x) 2A

a=1

where the numerical factors are inserted for normalizing
purposes in order to facilitate comparison with the
(3,3)+(3,3) case (they do not affect the value of m„').

The computation now proceeds in the same manner as
before. In particular, expanding I j gives

8
(V'3) ——v'3, mx'=

(x) A

18A
v'3.

x)
6A j. 1. 8

Li ——2&2A((X)+X) — —+
(x) 2~2 2V'5 A

The four masses are expressed in terms of two parame-
ters and hence satisfy two relations: the Gell-Mann-
Okubo formula and

8m~' =3m~'+6m~' (3.19)

which implies for the dilaton mass m~ =440 MeV.
Finally, the parameter 8/A which measures the ratio of
SU(3) breaking to SU(3))&SU(3) breaking takes the
usual value = —1.25.

C. Chiral 8U(3)+SU(3), Lig(8,8)

Although the most popular method of breaking
SU(3) &(SU(3) symmetry is via the (3,3)+(3,3) repre-
sentation, this is by no means the only interesting one.
Indeed, the use of that particular representation was
originally motivated by considerations of a quark model

In addition to the Gell-Mann —Okubo mass formula, one
obtains the mass relation

3m„'=2m„'+4m", (3.22)

which implies for the dilaton mass m~ =590 M eV.
Finally, the ratio of SU(3) breaking to SU(3) XSU(3)
breaking is given by

8 mx'/m ' —1—= —2&2 Q(5/4) = —1.25v'(5/4).
A 2m"/m. ' —1 (3.23)

"K. J. Barnes and C. J. Isham, Nucl. Phys. Bl'7, 267 (1970).


