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Matrix elements are calculated for high-energy reactions in which an unlimited number of soft pions are
emitted or exchanged.

I. INTRODUCTION

'HE use of current algebra' allows us to calculate
matrix elements for the emission and absorption

of any definite number of soft pions in an arbitrary
hadron reaction. The same results can also be obtained

by the use of chiral-invariant phenomenological
Lagrangians in the tree approximation. ' It has long been
hoped that, by the use of current algebra or of chiral

Lagrangians, we might transcend these simple soft-pion
theorems, and learn to deal with problems involving

Nelimited numbers of soft pions.
Electrodynamics provides us with examples of the

sort of calculation we might attempt. For example, we

know how to express general sof t-photon matrix
elements in closed form, and we can sum up the emission
rates to obtain cross sections for the inner bremsstrah-

lung of arbitrary numbers of real soft photons. ' Also, by
using the eikonal approximation, recently it has been
possible to sum up an in6nite series of diagrams involv-

ing the exchange of unlimited numbers of virtual soft
photons. 4%e are thus presented with a challenge: Can
we sum up emission rates for real soft pions, 5 and can

we, taking the chiral Lagrangians seriously, also sum up
the sects of virtual soft pions?

The obstacle to meeting this challenge has been a
complex of ferocious technical difhculties not present in

electrodynamics. Pion couplings are determined by

noncommutative matrices' X and T, and pions couple
nonlinearly' to themselves and other hadrons. The
purpose of this article is to show how these difhculties
may be overcome.

It turns out that the complications encountered in
summing soft pions cancel each other, but only if the
Lagrangian used is chiral invariant, if the eikonal
approximation is employed, and if enough hadron
resonances are included in the problem so that the
pion-coupling matrices X and T form a representation
of the chiral algebra. ' These assumptions are explained
in detail in Sec. II.

Sections III and IV are devoted to the solution of
technical subproblems: the summation of sof t-pion
insertions on the external lines of a "hard" hadron
process, and the summation of pion trees. By tying
these pion trees onto the external hadron lines of a gen-
eral process, two "physical" problems are then solved in
Secs. V and VI: the eBects of soft-virtual-pion exchange,
and the emission of soft real pions in a coherent state.

A definite pattern seems to emerge from these
calculations. Soft pions can be produced profusely in a
high-energy reaction only if the S matrix violates
algebraic chiral symmetry. ' In compensation, the
exchange of soft virtual pions suppresses all the terms
in the S m.atrix which violate algebraic chirality; any
term belonging to an (2X, -,'A) representations of
SU(2) &&SU(2) gets suppressed by a factor
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where A is the maximum momentum allowed for the
virtual soft pions, and F ~190 MeV is the usual pion

6 S. Weinberg, Phys. Rev. 1'7'7, 2604 (1969).
7 I distinguish here between dynamic chiral symmetry, which

is an invariance of the Lagrangian, and algebraic chiral symmetry,
which if valid would mean that the S matrix commutes with the
pion-coupling matrix X. This distinction is discussed in detail in
Ref. 6; also see S. Weinberg, Contemporary Physics (Interna-
tional Atomic Energy Agency, Vienna, 1969), p. 261. Presumably,
dynamic chirality is broken only by terms in the Lagrangian of
order m, while in contrast there is no a priori reason to expect
X to commute with the S matrix.

STerms in the S matrix are classified in various representa-
tions of SU(2) SU(2) according to their commutation properties
with the matrices X and T of Ref. 6.
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decay amplitude. This suggests that the I'omerarlchuk
poles or cuts which domirIate elastic scatterirlg at high
erlergy may be algebraically chiral irIvariaet, or nearl'y so.'

Any such conclusion, based on the calculations in this
paper, must be regarded as only tentative, since there
are unsolved problems in justifying the application of
these calculatioris to the real world. (Some of these
problems are discussed at the end of Sec. II.) For the
present, I would be content to have this work regarded
as the exploration of a mathematical model of soft-pion
dynamics. A sufhcient reason for doing these calcula-
tions is to demonstrate the surprising fact that they
can be done.

II. GENERAL ASSUMPTIONS

This article will deal with the emission and absorption
or exchange of soft virtual or real pions in a reaction
n ~ P involving hard hadrons. (Some of these hadrons
may be hard pions. ) The treatment of this problem will
rest on three key assumptions.

A. Chiral Dynamics

The demands of chiral symmetry will be met here by
letting all soft pions be absorbed and emitted from the
external hard-particle lines of the process o. ~ P, using
for this purpose the chiral-invariant interaction
Lagrangian'

2'= —F 'LA& D„(m)+V& E„(m)). (2.1)

Here F 190 MeV is the usual pion decay amplitude,
V& and A& are phenomenological vector and axial-
vector currents, given by sums of terms like ilVyI"~N
and i(g~/gr)NyI'yr~N, and D„(~) and E„(~) are non-
linear functions' of the pion field:

sin)2F (~') "')-
D„(~)=B„~+—1—

~2 2F —1(~2)112

XL~ X (~X8„~)), (2.2)

E„(~)= (F./n') sin'LF —'(m')' ')L~X 8„~). (2.3)

FIG. 1.Typical diagram for soft-pion emission. (Solid lines are
hard hadrons; dashed lines are soft pions. )

Pion-pion interactions will be taken into account by
using a chiral-invariant pion Lagrangian

with the pion part of each diagram limited to certain
classes of trees, to be specified later. (The pion mass is
neglected throughout. ) Typical diagrams for the emis-
sion or the exchange of soft pions in a hard-hadron
scattering process are shown in Figs. 1 and 2. Evidently
a miracle is needed to make the summation of these
graphs possible; the particular assumptions and

FIG. 2. Typical diagram for
sof t-pion exchange.

~Note the contrast between the asymptotic algebraic chiral
symmetry suggested here, and the asymptotic chirality proposed
by T. Das, V. S. Mathur, and S. Okubo, Phys. Rev. Letters 18,
701 (1967); ibid 19, 470, (1967). The former is an approximate
property of the S matrix which derives from the dynamical effects
of soft virtual pions; the latter is a supposedly exact property of
current propagators which can either be assumed directly or
derived from assumptions about Schwinger terms or 6eld algebra.
Both ideas tend to confirm our underlying suspicion that chiral
symmetry ought somehow to emerge as a good symmetry of the
strong interactions at high energy, but they do so in different, and
apparently unrelated, ways.

"In general, the "covariant derivatives" of the pion field m
and any other field P are given, respectively, by D„(m) and
f8„+2iF E„.tjp, where t is the isospin matrix of P. The speci6c
form of the functions D„and E„depends in part on how we decide
to define the pion 6eld m, although of course the answer to any
physical question cannot depend on how this field is defined. In
the present work it proves extraordinarily convenient to adopt
the definition of the pion field given by S. Coleman, J. W. Wess,

II
J

and B. Zumino, Phys. Rev. 177', 2239 (1968); C. G. Callen,
S. Coleman, J. W. Wess, and B. Zumino, ibid. 1'7'7, 2247 (1968)
(referred to below as the CCWZ pion field), rather than the de6ni-
tion used in Ref. 2. Formulas (2.2) and (2.3) give D„and E„as
functions of the CCWZ Geld, and can be obtained by setting
f=v '= (m')'" cot(2F~ '(m')'"j in Eqs. (4.5) and (4.19) of
S. Weinberg, ibid. 166, 1568 (1968). If any pion Geld other than
that of CCWZ were used here, the calculations performed in
Secs. III and IV would be much more complicated, but the com-
plications would cancel in the 6nal results obtained in Secs. V
and VI.
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RppI oxlIDatlons DlRde hcI'e Mc choscD to cnsUl c that
this miracle will occu:I. ~

It is assumed that the only virtual hadrons which
contribute RpprcclRbly herc Rre those whose mass fs
satisdes the inequality

fm" —m'f«2fp qf. (2.8)
It ls RssuIIlcd hei e thRt lIl soIQc Lorcntz frame

all hard-hadron momenta p"~are so large, and all
soft-pion momenta ql' are so small, that they satisfy the
inequall tlcs

f p f
&&m» f q f, (2 8)

where ~ ls R typical, hadron mass. Then 8$ Rnd g~ may
bc ncglcctcd 1D thc ploll-hRdI'0Il vcltlccs, Rnd Rlso IQ

the numerators of the hadron propagators, which
become just projection operators onto the positive-
energy hadron spin states. ~ In consequence, R string
of pion-hadron vertices sandwiched between propagator
numerators may be calculated by just takjng the
product of mass-shell covariant matrix elements" of-

foI' cRch plOIl-hRdI'on vcx'tcx. To CRlcUlatc these
matrix elements, we note that for

f p f

—+ ~ the covar-
iant matrix elements of the currents arc'4

(2~)3(4p'opo)ii~(N'X'p
f
A~

f nap)
~ 4p~8y~yf XPi)g~&~~ (2.6)

4p"4 i,LTj ~, (2 'i)

where x ls thc hcllclty, s Is R discrete index x'Unning over
particle types, T is the isospin matrix, and X(X) is the
coupling HlRtI'lx dc6ncd ln cMllcx' wolk. The matl lx
element we seek will thus involve a st~ing of X
and T matrices multiplied into the internal and 6nal
pMtlclc lRbcls of R cox'c matrix clement, shown Rs R

cllclc 1D Figs. j. Rnd 2. It ls cxpllcltly RssUHlcd thRt. Rll

the p& are so large and all the qi' are so small that this
coI'c Hlatx'lx clement cRD bc evaluated Rs RD ordinary
on-mass-shell 5-matrix element for a reaction among
hard hadrons with the same 3-momcnta as those in the
initial and 6nal states of the original process.

There I'cIIlln thc dcnomlnatox's of thc hard-hadron
plopRgRtox's. Cons).dcr R vlI'tuRl hard hRdI'on of HlRss fg
and momentum p"+qi', where pN is the momentum of
the hadron when it leaves the initial state or arrives in
the final state, with p'= —m'. The denominator of its
PI'OPRgRtOI' lS

D= (p+q)'+m" —ie=2p —q+m" —m2+q' —ie

"In the usual case this Lorentz frame is the center-of-Inass
system Rnd thc process of cmItting soft real or vlI tual photons is
known as pionization. See J. Benecke, T. T, Chou, C. N. Yang,
and E. Yen, Phys. Rev. D (to be publiSeed.

1~ Detailed dIscussIons of this point for thc cRsc of spin & arc
given in the papers of Ref. 4.

18 In the scnsc used herc, R covarIant matrix clement ls just the
usual matrix element, but with factors (2m) 8'(2E) 112 omitted„"See Ref. 6. It follows from Lorentz invariance alone that these
Inatrix elements. have the form given in Eqs. (2.6) and (2.7), with
X(P ) and T(X) unknown p-independent matrices. The identi6ca-
tion of X and T can be achieved by using (2.6) and (2.7) to
calculate the matrix elements of A0+p 4 and V0.

Since 2fp qf is also much greater than fq'f, the
denominator takes the -eikonal form4

D~2p q
—ie

Thc numerator of thc pI'opagRtoI' hRs RllcRdy bccQ
incorporated into the matrix elements (2.6) and (2.7)„
so the rule will be to i~sert a factor

ih, o—, iD———'= —-i(2P q
—ie) '

fol each vll tUal hRId-hadron llQc.

(2.9)

It is assumed. that the matrices X(li) and T satisfy
the commutation relations of SV(2) XSV(2):

PT.,Ti,]=ir-.i„T„

f r.,x,p.}j=i,„x.(x),

fx.(x),x,(x)j=i..„T'..

(2.10)

(2.11)

Equations (2.10) and (2.11) are consequences of
isospin invariance alone and need no defense, but
Eq. (2.12) does require some explanation. This relation
is nothing but Rn algebraic formulation of the general
Adler-Weisbergcr sum rule saturated by single-particle
states~ Rnd ls therefore VRlld Rs long Rs wc sUID ovcl.
enough states in calculating the matrix product.
However, the single-particle states which can be
lnclUdcd RHlong thc LMd-hadl oIl bI'Rnchcs of gI'Rphs
like Figs. 1 and 2 are restricted by Eq. (2.8) to a
llmitcd band 68$ of sqURI'cd masses. Thcl'c RI'c two
(Mfcrent wRys thRt this condltloIl cRQ bc met.

Somisoff p'ioss. We cail consider 'typical pioii momenta
q„which, although small in the center-of-mass frame
of the hard-hadron reaction u~P, are large (say of
order 1 GeV or more) in the rest Pames of all of the hard
hadrons. Then

f p qf will be large, and Eq. (2.8) will
allow us to include among the hard-hadron lines of our
graphs enough resonant states to satisfy Eq. (2.12).

Very soft piols If we con. sider typical pion momenta
q, which are small (say of order 200 MeV or less) in the
center-of-mass frame of the reaction and ln the rest
frames of all of the hard hadrons, then

f
p. q f

will be
small, and (2.8) will compd us to restrict the hard-
hadron branches in our graphs to states that are
degcnclatc with thc lDltlRl 01 Anal hRdI'0DS. IIl R fcw
cases, the matrix XP.) will still satisfy Eq. (2.12)
approximately even when restricted to such R degenerate
set of single-particle states, and then the calculation
can go through. Such is the case for Dudeons in the
approximation that

f g~/gr f
is unity instead of 1.2.

f Here X(~-',)~~T.j Such is definitely not the case
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p+ q&+q~ P+ q2+ qt

I rG. 4. Another diagram for
emission of a pair of sof t
pion s. p+ q, +q~

2
/

FIG. 3. Y~o diagrams that contribute to the matrix element for
emission of two soft photons or pions.

for pions, kaons, p mesons, etc. Thus the results obtained
in this article can be applied to the emission or exchange
of very soft pions, but only if we restrict ourselves to
reactions like nucleon-nucleon or nucleon-antinucleon
scattering, and then only for ~gz/gv~ =1.The cases of
semisoft and very soft pions will be treated together
throughout this article.

In order to appreciate the crucial role played here
by the commutation relations (2.10)—(2.12), compare
the matrix elements for emission of two soft photons or
soft pions from a particular outgoing hard-hadron line.
For photons, the two diagrams of Fig. 3 yield a matrix
element proportional to a factor

f2 (P ' el) (P ' pl) (P ' s2) (P ' [pl+ $2])
+(P'2)(p. v2) '(P el)(p [v2+gi]) ', (2 13)

where q~I' and q2J" are the photon momenta and e~& and
e2" are the corresponding polarization vectors. [Compare
Eq. (2.9).] By combining denominators, we find that
this sum factors into a product of contributions for
each photon:

(2.14)

This wonderful factorization occurs for any number of
soft photons. Indeed, it is precisely this circumstance
that allows us to sum up infinite series of graphs in
electrodynamics, both in the Block-Nordsieck calcula-
tion' and in the eikonal approximation. 4

~In contrast, the matrix element for emission of two
soft pions receives from the two diagrams of Fig. 3 a
contribution proportional to the factor

f2-=(P Vl)X.(p Vl) '(P V)X2(p [Vl+V2]) '

+(P v)»(p. c) '(P v )X-(P I:~+& ]) ',

Using Kq. (2.12), we see that f2
' cancels the part of

f2 antisymmetric in a and b, leaving a symmetrized
product of individual pion factors

f2-+f2-'=2 IX. X2I (2 15)

III. HARD-HADRON PROCESSES IN
EXTERNAL SOFT-PION FIELD

It is necessary, as a prelude to the calculations in
Secs. V and VI, first to calculate the effect of an
external soft-pion field 22(x) on the matrix element for
a general hard-hadron reaction:

p1~1221l p2~2 N2) ~ ~ ~ l pl ~1 221 I p2 +2 222 I ~ ~ ~ ~ (3 ~ 1)

(The X's are helicities, and the 22's label particle types. )
Pion-pion interactions will be ignored in this section;
they are discussed in Sec. IV and brought together with

It will be seen in Sec. III that this factortzatton occurs
for a22y number of soft P2022s. Without Eq. (2.12), how-
ever, we would find an extra term in Kq. (2.15) which
would be proportional to p [ql —q2]/p. [q+q2], and
which would blight any hope of summing soft pions.

Honesty compels me to point out that the dynamical
framework laid out in the above assumptions is not
very well grounded. in current algebra. Chiral-invariant
Lagrangians like that given here by Eqs. (2.1)—(2.4),
when used in the tree approximation, are guaranteed' to
reproduce the results of current algebra for the emission
and absorption of very soft rea/ ptoms How. do we know
that such Lagrangians can be used in the tree approx-
imation for the semisoft pions discussed above, or for
virtual pions? The answer, if there is one, is reserved
for future papers. In the meanwhile, the calculations
performed here may be regarded as merely the summa-
tion of inhnite sets of tree graphs in a I.agrangian model
which happens to be consistent with current algebra.

where u and b are the isovector indices of pions 1 and 2.
[The vertex factors p. qX arise from the 6rst term of
Eq. (2.1).] Since X, and X2 do not commute for a&b,
it is impossible to combine these two terms into a
factorized, product like Eq. (2.14).

Fortunately, there is another diagram. The second
term in Kq. (2.1) generates the diagram shown in
Fig. 4, and contributes to the matrix element a term
proportional to a factor

f -'=2-' (p22[Vi-V2])"2T.(P [Vl+V2]) '.

Fxo. 5. Typical diagram of the
class summed in Sec.III.

7r

7F
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the results of this section in Secs. V and VI. The task
here is to add up all diagrams of the form illustrated in
Fig. 5, wlfll pion-hadron vclflccs given by Eqs. (2.1)—
(2.3), the field m(x) being now understood as a pre-
scribed c-number function.

The answer is amazingly simple. The effect of the
external pion field is just that the factor (21r)'8'(q),
which ensures momentum conservation in the absence
of external 6elds, is replaced with a matrix

Q(q) = d'x e
—*'&' expL2iF 'hX m(x)]. (3.2)

Here (I& is the net momentum loss

where G and e are a convenient set of auxiliary space-
tirne coordinates,

u—=x—px', it=——,'(y x+x') . (3 7)

The vertex insertions are given by the covariant
matrix elements of the interaction Lagrangian (2.1).
Using (2.6) and (2.'/), this gives for lpl —+ ~ the
vertex factors

i(2m) '(4p "p')'"(ll'lh'y
l
2'(x)

l flay) —h

2il y l
bh hi'„.(x; ll), (3.8)

whele F ls the matrix

1(x;~) = —2F.-'LX(X) D„(x)yT E„(x)], (3.9)

(p "+—p '+ .) (p. '"+-p '"+

sinL2F -1( 2)»2]-

2F —1(~2)1/2

and DX is a "net chiral boost"

AX=Xi'P. l')+X2'(P2')63 . Q —Xi(ill)
fIl- X,(~,)e (3 4) 8%

X ~X mX —,(3.10)
Bv

(3.11)

The effect of the pion 6eld on an outgoing hard-
hadron line with final momentum p" and helicity ll is
that the final "wave function" e'&'* in the S matrix is
replaced withL(X(lhi ))rst sss-trait, rsh 1st, '''; relet, ss'Rhh, ' "

(3.12)e'& "F(x y ll)

it being understood that all primed X matrices act
from the left, on the ff-labels on the 5 matrix of the
respective hadrons in the final state, while all unprimed
X matrices act from ths stht o the a-iaheis o the ", ' ' ' ' o X )5 matrix of the respective hadrons in the initial state.
That is,

+(X(4 )); 5„;ht,~hh;ththh, u", where F is a matrix, given by (3.8) as

F(x; y, ll) =1+Q d'xl d'x„L2ilyl I'(xi, lh)]
alert'hl', rsh'hh', "",sslltl rshh, " 2 rtss2 n=3

&&C2'lylp("; ~)]l '~-.(... *.; -p)]

(Here th can bc any matrix, Iiot jUst tile 5 lllafllx. )
To derive this result, it will be convenient to work

in coordinate space rather than momentum space.
The propagator for a hard-hadron line running upwards
from xl& to x2" (i.e., with xl" closer to the initial state Using (3 6) «»alh, we find that all factors 2

l y l
cancel,

or x2" closer to the final state) is given by the Fourier and ln «lms « thc aUxlllary coordinates (3.7), we now

transform of Eq. (2.9): have

—id. ;1,(x2 —xl, p) —= i(21r) '—d'q (2p
—

q ie)—F(u, rt; y, P.) =1+g i
n=l

XexpLi(p+g) (x1—xl)]

dr 6'(x2 xi 2pr) exp(2ip'r—), —

where pta ls fhc momcnfum of tile hadroll llllc whcii lt
starts in the initial state or ends in the final state. For
l yl —h u with p' fixed, this gives

d»1'(u, »; &)I'(u, f2; X) I'(u, f„;a). (3.13)

In the same way, the effect of the external pion Geld on
an incoming hard-hadron line with initial momentum
ph' and helicity X is that the initial "wave function"
e '&' in the 5 matrix is replaced with

ia h(x2 —xl p) = (2l yl)
—'b—'(us —ui)8(its —ftl) (3.6) c '"'*I(x;p, lh), (3.14)



SUM M ING SOF 7 P IONS 679

where I is the matrix

I(u, v; p,))=1++ i"
n=1

V$

~ ~

The S matrix for a general hard-hadron reaction will
now be

S(plX1 P2)12 ~ ~ ~ ~ pl )11 p2 )12 ~ ~ ~ )

V 22—1

dv. I'(u, vl, )1)I'(u, v2, )1) I'(u, v. ; &) . (3.15)
Id xy d $2 ' ' 'd Led xg

To calculate the matrices Ii and I, we note that they
obey the differential equations

—F(u, v; p, X) = —iF(u, v; p, )1)I'(u, v; )1), (3.16)
8'0

—I(u, v; p, )l) = ii'(u, v; )1)I(u,v; p, X),
Bv

(3.17)

with the initial conditions

F(u, ~; p,),) =I(u, —~; p,X) =1. (3.18)

Also recall that the functions E„and D„appearing in
I' are defined by CCWZ" so that

X[e Fi (xi ~1)8e F2 (x2 ~2)8 ' ' ']
XMO(xl)llpx2)12|. . . . ~ xi )11 ix2 ~2 1 . ~ ~ )

X [e '»'*'Il(xl Xl)8 e 'v"2I2(x2 )12)8 ] (3.24)

where Mo is the coordinate-space matrix element in
the absence of the pion field. (Labels are included on
the Ii and I matrices to indicate on which particle
labels the X matrices act.) Since )M'o is translation
invariant, it is convenient to introduce coordinates
x", $„1', and $„1'

x "=x~+$o,", x =x"+c '",

with the $„& and f '" constrained so that

$,"+$2"+" +$1"+b"+" =0.
I'(u, v; )1) = i exp[ —2iF "X(X) 22(u, v)] Then )M'o depends only on the ]„"and $„'1', not on xl',

and (3.24) therefore reads

exp[2iF 'X(X) 22(u, v)], (3.19)
8v tp1~4P2 2i Pi 1 )P2 21 )

Provided that the matrices X()1) and T obey the chiral

commutation relations (2.10)—(2.12). [It is at just this

point that these commutation relations, together with

the dynamic chiral symmetry of the Lagrangian (2.1),
play their crucial roles. ] The differential equations

(3.16) and (3.17) may thus be written

8—(F(u, v; p, X) exp[ —2iF, 'X()l) 22(u, v))}=0, (3.20)
8'v

—(exp[2iF 'X()1) 22(u, v)]I(u, v;p, X)}=0.(3.21)
Bv

We are tacitly assuming that + vanishes for v —+ ~~
with u 6xed [otherwise the integrals in (3.13) and

(3.15) make no sense], so the solutions which satisfy
the initial conditions (3.18) are

F(u,v; p,Z) =exp[2iF.—'X()l) 22(u, v)],
I(u,v; p,&) =exp[ —2iF —'X()l) 22(u, v)).

Note that F and I no longer depend on p&, either

explicitly or through the de6nitions of the auxiliary
coordinates u and v, so we may drop the label p and

write simply

F(x; 7,) =exp[2iF 1X(X) 22(x)], (3.22)

I(x )1)=exp[ —2iF 'X(X) ~ 22(x)]. (3.23)

d'xd'cl d'&2 d'&ld'&

Xb4(([))e-"-[e' '2 'F,'(xy~, ' Z, ')

8e*»'22'F2'(x+~, ', ),2')8 ]
X)IIO($1)11 $2~2 ~ ~ ~ ~ $1 )11 $2 )12 ~ ~ ~ )

X[e '» &'Il(x+&—1, )11)

8e 'v'&2I2(X+4; ) 2)8 ] (3.25)

where (P) is the average of all $„& and $„'&, and q& is
the momentum transferred to the pion field

q"=—(Pi"+P2"+ ) —(Pi'"+P2'"+" )

The pion field is supposed to be "soft," which means
that it varies very little over the support of Mo. Hence
the arguments x&+$„'" and xr+g„& in the F and I
matrices may all be replaced with x&, and (3.25) becomes

S(pl)ll, p2)12) ~ ~ ~ ~ pl )11 srp2 )12 )1 ~ ~ ~ )

d4x e-"'[F '(x; X,')8F,'(x ),')8" )

X TO(Pl)11)P2~2i ~ ~ ~ + Pl )ll )P2 4, ~ ~ ~ )

X[Ii(x; )11)8I2(x; X2) ~ ), (3.26)
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a». a„and space-time coordinates x» -x„will be
denoted II,,...,„~"& (xi x„).For example,

FIG. 6, Series of tree diagrams for the functional IIt q].

where To is the momentum-space matrix element for
zero pion field:

11.&~'&(x,y) = —ia. (x—y)b...
where 6 is the free-pion propagator

(4 1)

~0(pi~bp2~2). ~Pi ~i ~p& ~2 ~
.) A.(x—y) —= (2x)—4 d'q (q' —ie)—'e*'&'&*-"'. (4.2)

d4( ld4( I d4] dQ( bg({())

gfo~gl '$1 to~P2 'f2 .g &Pl'Ply —'tP2'$2. ~

Instead of dealing directly with the individual II~"), it
is both easier and more useful to work with the generat-
ing functional:

Note that for zero pion 6eld, F and I are unity, and
(3.26) gives an S matrix

So = (2n.)4b'(q) 2'o, {3.28)

as of course it must.
At this point we can condense our notation by

introducing the "net chiral-boost generator" 5X
defined by Eq. (3.4) or (3.5). Since I matrices for
different hadrons commute, the exponentials (3.22)
and (3.23) may be combined in (3.26) into a single
exponential. Equation (3.26) then reads

S= d'xe "*expL2iF 'dX n(x))TO (329)

as was to be proven.
If thc original hard-hadron process conscivcs chlrallty

in the ordinary algebraic sense, then QXTO vanishes
/see (3.5)j and the S matrix (3.29) becomes equal to
the S matrix (3.28) for zero pion field. Thus hard
hadrons undergo no scattering in an externaI soft pion-
field stnless they participate in a reaction in which algebraic
ch&al ievariaece is violated. In particular, a single hard
hadron which does not participate in any reaction at all
will not in the eikonal approximation be able to transfer
momentum to or from an external soft-pion field.
None of these conclusions would be altered if we took
the pion-pion interactions into account by attaching
trees of soft pions at all pion-hadron vertices, as in
Figs. 1 and 2; so we can further conclude that soft
Pions can neither be abso'rbed, enritted, scattered, nor
exchanged by hard hadroes Napless these hadroms parIic-
ipate ie some reaction which violates'' algebraic choral
symmetry. '

IV. PION TREES

Now that we know the effect of soft-pion insertions
on the external lines of a hard-hadron process, the next
step is to calculate the sums of pion trees which connect
these pion vertices.

The sum of all pion trees (connected or not), with n
external pion lines, labeled with isovector indices

Z(x) =Z, (x)+~(x) n(x), (4.4)

where 2 is given by Eqs. (2.4) and (2.2) (see Fig. 6).
A prescription for calculating the functional IILqj

is provided by the work of Nambu. '5 First, it is neces-
sary to calculate a c-number function P(x) by solving
the nonlinear 6cld equation

'fl(x) = g(x) J—(p(x),—8„&(x),B„B„fl(x)), (4.5)

which follows from the Lagrangian (4.4), using causal
boundary conditions. (That is, P should contain only
positive frequencies for t~+~ and only negative
frequencies for t~ —~.) Here J is the pion current
arising from pion-pion interactions,

J.(n, 8,n, 8„8„n)—=
82~ (Ã, 8p%) BeCw (%)8p'7c)8„——, (4.6)

Bn. 8{8„x.)
with 2 ' the interaction part of 4,

Z.—= —-', (a„n) (8&n)+Z. '.

Equations (2.2) and (2.4) give

Z.'=d(n') Pn XB„nj tn XB&nj.

—-', d'(n') PnX (axe„n)$ Pn X (n Xal'n) j, (4.8)
J=a„Ld( ') x( xa )j+d( ') x( x ' )

+d(n')n X{nXB„Ld(n') n X (n X8"n)]}
—2P 'e(n')(nxB'n) X{8„n+d(n')

XLnX(nXBpn) j}) (4.9)
'5 Y. Nambu, Phys. j.etters 263, 626 (1968). This article is

primarily concerned with the derivation of the tree approxima-
tion as a semiclassical limit, so a certain amount of work must be
done to adapt its results to the present context. Also see D. G.
Boulware and L, S. Brown, Phys. Rev. 1/2, 1628 (I968); and
L. V. Prokhorov, ibid. 183, 1515 (I969).

XII......„'"'(xi.. x„)g.,(xi). g.„(x„). (4.3)

This quantity is just the sum of all vacuum diagrams
(in the tree approximation) for a Lagrangian with an
external pion current st(x):
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where
1

d(s) = — 1—
sin(2F

2J —i~»2
(4.10)

e(s) = (p /s) siil (Fw s ) ' (4.11)

pnce is nownil own the functional II(gii can be calculated
from the formula
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attached to hard-hadron lines, but there are no purely
pionic loops.

Although not strictly necessary, it will be convenient
to go on using the CCWZ definition of the pion field.
The pion trees are then generated by the pion I.agran-
gian given by Eqs. (2.2) and (2.4). As in Sec. IV, define

Ir„...,„i"i(xi x„) as the sum of all pion trees with n
external pion lines. When the tips of these pion lines
are tied to the external lines of a hard-hadron reaction,
we obtain a matrix element

I 2z
S= d4x P ——(~X)., (~X).r.

=on! F.
XII. - ..'"'(x,x, . . .)c—'& * (5.1)

I see Eq. (3.29)j.But II&"& is translation invariant, so

II&"i(x,x, . . .) =rr&"&(0,0, . . .),
and therefore (5.1) gives

Also, Eq. (4.8) gives, in this case,

Z.'(ed. ,eB„A.) =0.
Using Eqs. (5.7)—(5.9) in Eq. (4.12) we see that

(5 9)

T(e) =expr ,'ie-h. (0)j (5.10)

That is, pion pion-interactions make no contribution here

Using Eq. (5.10) in Eq. (5.5) yields our general answer

S=expf 2iF '(hX)'d, (0)]so. (5.11)

The coefficient 6 (0) is, of course, infinite. Here, as
in the Bloch—Nordsieck calculation, ' it is necessary to
set some upper limit A on the momenta of pions which
qualify as "soft."The propagator is then

't dg
&-(x)= «pLiq x—iI qI I

x'I j~(&—
I qI)

(2 )'

and so
6 (0) =iA'/8x2

Putting this into (5.11) gives the effect of virtual
soft pion-exchange as"

T(e)—= IILeb'(x) j, (5.4)

where e is an arbitrary constant 3-vector. (Isospin
invariance ensures that Y actually depends only upon
e'.) Once T is known, the effect of soft-pion exchange on
the 5 matrix can be determined from the formula

S=T(2F '&X)so.

According to the results of Sec. IV, the first step in
calculating T is to solve the differential equation (4.5)
with causal boundary conditions. In our present
problem, the external pion current is

xrr. .....„&.&(0,0, . . . ,0)(ax)., (ax).„s„(5.2)

where S, is the S matrix (3.28) for the original hard-
hadron reaction, without soft-pion corrections. Compar-
ing with the definition (4.3) of the functional IILgj, we
see that

S=IIL(2/F. )aX&4(x)]S..

To complete the calculation it is only necessary to
compute the function

(5 13)

(EX)'So~——X(X+2)so~. (5 14)

(Note that So depends on h., because it includes the
eGects of all virtual pions with momenta greater than A.)

If the uncorrected 5 matrix Sp is algeblaically chiral
invariant, ' then, as already noted in Sec. III, AXSO
vanishes, and the virtual soft-pion exchange has no
effect on the S matrix. More generally, /he exponential
factor &s (5.13) fends fo suppress any parts of the S
matri @hick do Not commute m@h X. To make this
suppression explicit, suppose we expand 50 in terms
which belong to irreducible representations of the chiral
algebra. Since So does commute with isospin, this sum
can receive contributions only from terms So~ which
transform like the isoscalar part of the representation
(2iE,2iÃ) of SU(2)SSV(2), or, equivalently, like the
00 ~ ~ 0 component of a syimiietric traceless SO(4)
tensor of loath rank. It is an elementary exercise in
SO(4)-tensor algebra to show that"

and (4.5) reads
g(x) =eh'(x), (5 6)

Thus, if we write the uncorrected 5 matrix as an
expression

t-j'0(x) = —eb'(x) —J(0(x),~.0(x)A~.N(x))

An obvious solution is

P(x) =eh (x),

because Eq. (4.9) gives for the CCWZ 6eld

J(eh,eB„h,e8„8„6 ) =0.

(5.'/)

(5.8)

(5.15)

'6 A similar exponential factor is found by R. Perrin, Ref. 5.
Perrin deals only with neutral pions having a linear derivative
coupling, so a direct comparison with his results is difficult.

"The algebra is done in Sec. VI of S. steinberg, Phys. Rev.
166, 1568 (1968).Note that this earlier paper dealt with terms in
the Lagrangian which break dynamic chiral symmetry, rather
than terms in the 8 matrix which break algebraic chiral symmetry.
However, the algebra is the same.
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then the effect of virtual soft-pion exchange is to change more complicated, and the effect of the pion-pion
this expression to read interactions would just be to cancel these complications.

00 ;l'(,7+2)A'
S= p exp —— —5o'v.

%=0 4~2+ 2
(5 16) VI. SOFT-PION EMISSION IN

HARD-HADRON PROCESS

The critical energy appearing in Eq. (5.1.6) has the
numerical value

2+F„1.2 BeV,

so if we arbitrarily set A=re„ then h'/4n'F . ' ~0 4.
With this cutoff, the E=1 term is suppressed by a
factor of order 0.3, the %=2 term is suppressed by a
factor of order 0.04, and all higher terms become
negligible.

The reason for this suppression of chiral-nonvariant
terms in the 5 matrix is the same as the reason for the
suppression of the whole S matrix by virtual infrared
photons for reactions involving charged particles. ' That
is, the rates for reactions in which real soft pions or
photons are not emitted are suppressed to avoid the
corresponding rates for pion or photon emission from
being large enough to violate unitarity. "One important
difference between the suppression factors produced by
virtual photon or pion exchange is that for photons these
factors involve both an infrared and an ultraviolet
logarithmic divergence, while for pions they involve a
quadratic ultraviolet divergence only. Also, the suppres-
sion is far more dramatic for pions than for photons.

These remarks may also be applied to hadronic weak
and electromagnetic interactions. For instance, if all
strong interactions except for soft-pion exchanges are
neglected in high-energy electron-positron or electron-
antineutrino annihilation, then the uncorrected matrix
elements So are linear combinations, respectively, of
To and V (hypercharge) or Ti+i T2 and Xi+iX&. But,
Eqs. (2.10)—(2.12) give

Is) =H exp[z(q, b)o'(q, b)j I o),
q, b

(6.1)

where at(q, b) is the creation operator for a pion of
momentum q and isovector index b, I0) is the pion
vacuum, and the coefficients s(q, b) are an in6nite set of
complex numbers which characterize the state. (Box
normalization is used to define the product. ) Coherent
states are so named because they are eigenstates of the
annihilation operators

n(q, b)
I s) =s(q, b) I s), (6.2)

and hence also of the positive-frequency part of the
free pion field

where
oo&+'(x)

I s) =e'*'(x) Is),

oro'+'(x)—=p (2VIqI) '"e'o'a(q, b),

(6.3)

(6.4)

Now we shall consider the calculation of matrix
elements for the emission of soft pions in a hard-hadron
reaction. In this case, current algebra makes a definite
statement about how to calculate matrix elements':
They are given by the sum of all tree graphs like Fig. 1,
with all external soft-pion lines attached to pion trees
which are rooted, each at a single point, to the incoming
and outgoing hard-hadron lines.

Instead of trying to use this prescription to derive
expressions in closed form for matrix elements for the
production of arbitrary numbers of pions, it proves far
easier to sum the diagrams for emission of pions in a
coherent state. '8 The general coherent state is of the
form

hX' T—= [X., [X., T]j=2T,
AX' X—=[X., [X„xj]=2X, eo&*'(x) =P (2VIqI) "'e"*s(q b) (6.5)

so the isovector part of the electron-positron annihila-
tion matrix element and the whole electron-antineutrino
annihilation matrix element are suppressed by factors

exp ( —A'/2s'P, '),

while the isoscalar part of the electron-positron annihila-
tion matrix element is not suppressed by soft-pion-
exchange effects.

It is worth emphasizing that the pion-pion interac-
tions really play a very important role in this calcula-
tion, despite the fact that they do not contribute in the
final results. The point is that if we had used any
definition of the pion field other than that of CCWZ, "
then (5.8) and (5.9) would not apply, and pion-pion
interactions vvolld contribute to the 5 matrix. However,
in this case the results of Sec. III would also be much

and V is the normalization volume.
The use of Eq. (6.3), together with the above

current-algebra prescription for computing pion-emis-
sion matrix elements, leads immediately to a statement
of how to calculate matrix elements for emission of
pions in a coherent state: We must use the results of
Sec. III for hard-hadron reactions in an external pion
field, but with pion-pion interactions taken into account
by replacing the external field oo(x) with a function
P"(x), defined as e~'~ (x) plus the sum of all pion trees
with factors e"(y), etc. , at the branch tips. (See Fig. I).
Following the reasoning of Sec. IV, this means that

' R, J. Glauber, Phys. Rev. 131, 2766 (1963). Coherent states
are used to treat soft-photon emission and infrared divergences
by V. Chung, ibid. 140, 81110 (1965); and T. W. B. Kibble,
ibid. 1'73, 1527 (1968).
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p&'&(x) is the solution of the nonlinear integral equation n —& p is thus

P&'(x) =e'"'(x)+ d'y A.(x—y)
I'(n~ P) = de d4X e '&&. -»& *—

&&J(0"(y) ~ 0 "(y) ~ ~4 "(y)) (6.6)

with 6 and J given by Eqs. (4.2) and (4.9). With
P&'&(x) put in place of ~(x) in Eq. (3.29), the S matrix
for production of a coherent soft-pion state s in a hard-
hadron reaction n —+ p is

S(n~P+s)= d4xe '~" »"'

X(exp[2iF 'dX P&*&(x)5Tp}p . (6.7)

The exchange of trees of soft virtual pions could be
taken into a.ccount here by adding a term —A'(d, X)' /
4m'Il ' in the exponential.

The matrix elements for emission of any definite
number of soft pions can in principle be determined by
taking functional derivatives of S(n ~ p+s) with
respect to s':

S(n ~ p+q&b&+ +q„b„)

—S(n —+ p+e)
-b:(q b ) . b (q-b. ) —z=o

(6.8)

«le)(el, (6.9)

However, it is not necessary to square, integrate, and
sum these e-pion matrix elements in order to calculate
the total soft-pion emission rat" the calculation can
be done directly in terms of the coherent states. These
states form a complete set, with"

X(expL'2iF 'AX P&'&(x))TO}e

&(exp(2iF 'I&X 4t4&*&(0)jTO}p * (.6.11)

Note that there is just one x integration here, because
the rate I' should contain only one momentum-conserva-
tiOn faCtOr (24r)454( ), nOt tWO.

The functional integral in (6.11) could perhaps be
done by a Monte Carlo method. Instead of using the
plane-wave decomposition (6.5), it would be better to
choose a set of, say, 10 suitable spherical wave functions
44„(x), with covariant orthonormalization. A particular
set of 30 complex quantities e(44,b) would be chosen at
random, using the Gaussian probability distribution
prescribed in Eq. (6.10). Then one would have to
calculate the function P"(x) by solving the nonlinear
integral equation (6.6), with

e&, &'(x) —=g 44.(x)z(n, b),

and then compute the x integral in Eq. (6.11). This
calculation would be repeated for a number of different
random choices of the 30 s's, and the result would then
be averaged over all these choices. This task is left as an
exercise for the reader.

Note added im proof Lowell Bro.wn has pointed out
to me that Eq. (5.13) needs to be completely sym-
metrized in AX to each order in the power-series expan-
sion of the exponential, so that

( )nylon
S= P b(a, . . .a,„)41X., AX„„S,,

~=0 ~!

where & =It/2~F, and b is a product of &4 Kronecker-b
symbols, averaged over all permutations of a&. . .a2 .
As a result, the suppression factor is no longer given by
Eq. (5.16). The correct suppression factors for the
first few chiral tensors are now

where dk is a weighted-volume element in the in6nite-
dimensional space of the coeKcients s(q, b):

ds—=g —expL —~s(q, b) ~']d Res(q, b)d4fmz(q, b). (6.10)

The total rate for emission of soft pions in the reaction

E=O: 1,
N=1: (1—2X')e "'
N=2: 4s+32(1—8&')e 4"',
N =3: —',(1—18K')e '~'+-', (1—2X')e—"'

instead of e ~& +""'.For large A' all chiral tensors of
odd rank are still strongly suppressed, but the suppres-
sion factors in the even tensors remain finite even for
) —+~.


