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Matrix elements are calculated for high-energy reactions in which an unlimited number of soft pions are

emitted or exchanged.

I. INTRODUCTION

HE use of current algebra! allows us to calculate
matrix elements for the emission and absorption
of any definite number of soft pions in an arbitrary
hadron reaction. The same results can also be obtained
by the wuse of chiral-invariant phenomenological
Lagrangians in the tree approximation.? It has long been
hoped that, by the use of current algebra or of chiral
Lagrangians, we might transcend these simple soft-pion
theorems, and learn to deal with problems involving
unlimited numbers of soft pions.

Electrodynamics provides us with examples of the
sort of calculation we might attempt. For example, we
know how to express general soft-photon matrix
elements in closed form, and we can sum up the emission
rates to obtain cross sections for the inner bremsstrah-
lung of arbitrary numbers of real soft photons.® Also, by
using the eikonal approximation, recently it has been
possible to sum up an infinite series of diagrams involv-
ing the exchange of unlimited numbers of virtual soft
photons.* We are thus presented with a challenge: Can
we sum up emission rates for real soft pions,® and can
we, taking the chiral Lagrangians seriously, also sum up
the effects of virtual soft pions?

The obstacle to meeting this challenge has been a
complex of ferocious technical difficulties not present in
electrodynamics. Pion couplings are determined by
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noncommutative matrices® X and T, and pions couple
nonlinearly? to themselves and other hadrons. The
purpose of this article is to show how these difficulties
may be overcome.

It turns out that the complications encountered in
summing soft pions cancel each other, but only if the
Lagrangian used is chiral invariant, if the eikonal
approximation is employed, and if enough hadron
resonances are included in the problem so that the
pion-coupling matrices X and T form a representation
of the chiral algebra.® These assumptions are explained
in detail in Sec. II.

Sections IIT and IV are devoted to the solution of
technical subproblems: the summation of soft-pion
insertions on the external lines of a “hard” hadron
process, and the summation of pion trees. By tying
these pion trees onto the external hadron lines of a gen-
eral process, two “physical” problems are then solved in
Secs. V and VI: the effects of soft-virtual-pion exchange,
and the emission of soft real pions in a coherent state.

A definite pattern seems to emerge from these
calculations. Soft pions can be produced profusely in a
high-energy reaction only if the S matrix violates
algebraic chiral symmetry.” In compensation, the
exchange of soft virtual pions suppresses all the terms
in the .S matrix which violate algebraic chirality; any
term belonging to an (3N, iN) representation® of
SU(2)XSU(2) gets suppressed by a factor

N(N42)A2
ey
472F 2

1.1)

where A is the maximum momentum allowed for the
virtual soft pions, and F,~190 MeV is the usual pion

6 S. Weinberg, Phys. Rev. 177, 2604 (1969).

71 distinguish here between dynamic chiral symmetry, which
is an invariance of the Lagrangian, and algebraic chiral symmetry,
which if valid would mean that the S matrix commutes with the
pion-coupling matrix X. This distinction is discussed in detail in
Ref. 6; also see S. Weinberg, Contemporary Physics (Interna-
tional Atomic Energy Agency, Vienna, 1969), p. 261. Presumably,
dynamic chirality is broken only by terms in the Lagrangian of
order m,*, while in contrast there is no ¢ priori reason to expect
X to commute with the S matrix.

8 Terms in the S matrix are classified in various representa-
tions of SU(2) ®SU (2) according to their commutation properties
with the matrices X and T of Ref. 6.
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decay amplitude. This suggests that the Pomeranchuk
poles or cuts which dominate elastic scattering at high
energy may be algebraically chiral invariant, or nearly so.

Any such conclusion, based on the calculations in this
paper, must be regarded as only tentative, since there
are unsolved problems in justifying the application of
these calculations to the real world. (Some of these
problems are discussed at the end of Sec. II.) For the
present, I would be content to have this work regarded
as the exploration of a mathematical model of soft-pion
dynamics. A sufficient reason for doing these calcula-
tions is to demonstrate the surprising fact that they
can be done.

II. GENERAL ASSUMPTIONS

This article will deal with the emission and absorption
or exchange of soft virtual or real pions in a reaction
a— B involving kard hadrons. (Some of these hadrons
may be hard pions.) The treatment of this problem will
rest on three key assumptions.

A. Chiral Dynamics

The demands of chiral symmetry will be met here by
letting all soft pions be absorbed and emitted from the
external hard-particle lines of the process a« — (3, using
for this purpose the chiral-invariant interaction
Lagrangian?

£'=—F,~[A#-D,(x)+Vs-E,(=)].

Here F,~190 MeV is the usual pion decay amplitude,
V& and A* are phenomenological vector and axial-
vector currents, given by sums of terms like iNy#*eN
and i(g4/gv)Nv*yseN, and D,(x) and E,(x) are non-
linear functions! of the pion field:

1 sin[ 2F;~Y(=?)1/?
D,‘(m:) =0,m+ _|:1 — _I:A_L]:I

1:2 2F7r_1(ﬂ2)1/2

X=X (@Xdum) ],
Eyu(m) = (Fx/n%) sin®[F (=) (=X dym ]

(2.1)

(2.2)
2.3)

9 Note the contrast between the asymptotic algebraic chiral
symmetry suggested here, and the asymptotic chirality proposed
by T. Das, V. S. Mathur, and S. Okubo, Phys. Rev. Letters 18,
701 (1967); ibid 19, 470, (1967). The former is an approximate
property of the S matrix which derives from the dynamical effects
of soft virtual pions; the latter is a supposedly exact property of
current propagators which can either be assumed directly or
derived from assumptions about Schwinger terms or field algebra.
Both ideas tend to confirm our underlying suspicion that chiral
symmetry ought somehow to emerge as a good symmetry of the
strong interactions at high energy, but they do so in different, and
apparently unrelated, ways.

1 Tn general, the “covariant derivatives” of the pion field =
and any other field ¢ are given, respectively, by D,(%) and
[8,+2:F,E,-t]y, where t is the isospin matrix of y. The specific
form of the functions D, and E, depends in part on how we decide
to define the pion field =, although of course the answer to any
physical question cannot depend on how this field is defined. In
the present work it proves extraordinarily convenient to adopt
the definition of the pion field given by S. Coleman, J. W. Wess,

Fi1c. 1. Typical diagram for soft-pion emission. (Solid lines are
hard hadrons; dashed lines are soft pions.)

Pion-pion interactions will be taken into account by
using a chiral-invariant pion Lagrangian

Lr=—3D,(=)D*(x), (2.4)

with the pion part of each diagram limited to certain
classes of trees, to be specified later. (The pion mass is
neglected throughout.) Typical diagrams for the emis-
sion or the exchange of soft pions in a hard-hadron
scattering process are shown in Figs. 1 and 2. Evidently
a miracle is needed to make the summation of these
graphs possible; the particular assumptions and

Fic. 2. Typical diagram for
soft-pion exchange.

and B. Zumino, Phys. Rev. 177, 2239 (1968); C. G. Callen,
S. Coleman, J. W. Wess, and B. Zumino, 4bid. 177, 2247 (1968)
(referred to below as the CCWZ pion field), rather than the defini-
tion used in Ref. 2. Formulas (2.2) and (2.3) give D, and E, as
functions of the CCWZ field, and can be obtained by setting
[=v"1= (w12 cot[2F,1(w?)12] in Egs. (4.5) and (4.19) of
S. Weinberg, ibid. 166, 1568 (1968). If any pion field other than
that of CCWZ were used here, the calculations performed in
Secs. IIT and IV would be much more complicated, but the com-
p]i(cia‘t/ions would cancel in the final results obtained in Secs. V
and VI.
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approximations made here are chosen to ensure that
this miracle will occur.

B. Soft Pions and Hard Hadrons

It is assumed here that in some Lorentz frame!
all hard-hadron momenta ptgare so large, and all
soft-pion momenta ¢* are so small, that they satisfy the
inequalities

[p[>m>|q], (2.5)

where m is a typical hadron mass. Then 7 and ¢* may
be neglected in the pion-hadron vertices, and also in
the numerators of the hadron propagators, which
become just projection operators onto the positive-
energy hadron spin states.”? In consequence, a string
of pion-hadron vertices sandwiched between propagator
numerators may be calculated by just taking the
product of mass-shell covariant matrix elements® of
£’ for each pion-hadron vertex. To calculate these
matrix elements, we note that for |p| — « the covar-
iant matrix elements of the currents are't

(2m)°(4p"p°)*(w'N'p| A*| nAp)

= 4p*n[X(N) Jurn,  (2.6)
(2m)3(4p"p°) %'\ p| V¥ |1\ p)
— 4prn [T Jnrn, 2.7

where ) is the helicity, # is a discrete index running over
particle types, T is the isospin matrix, and X(A) is the
coupling matrix defined in earlier work.® The matrix
element we seek will thus involve a string of X
and T matrices multiplied into the internal and final
particle labels of a “core’” matrix element, shown as a
circle in Figs. 1 and 2. It is explicitly assumed that all
the p* are so large and all the ¢# are so small that this
core matrix element can be evaluated as an ordinary
on-mass-shell S-matrix element for a reaction among
hard hadrons with the same 3-momenta as those in the
initial and final states of the original process.

There remain the denominators of the hard-hadron
propagators. Consider a virtual hard hadron of mass #’
and momentum p#+-¢#, where p* is the momentum of
the hadron when it leaves the initial state or arrives in
the final state, with $?=—m? The denominator of its

propagator is
D= (p+qP+m—ie=2p-g+m’—mi+¢—ie.

11 Tn the usual case this Lorentz frame is the center-of-mass
system, and the process of emitting soft real or virtual photons is
known as pionization. See J. Benecke, T. T. Chou, C. N. Yang,
and E. Yen, Phys. Rev. D (to be published).

12 Detailed discussions of this point for the case of spin } are
given in the papers of Ref. 4.

18 In the sense used here, a covariant matrix element is just the
usual matrix element, but with factors (2r)~3/2(2E)~1/2 omitted.

14 See Ref. 6. It follows from Lorentz invariance alone that these
matrix elements have the form given in Egs. (2.6) and (2.7), with
X(A) and T(A) unknown p-independent matrices. The identifica-
tion of X and T can be achieved by using (2.6) and (2.7) to
calculate the matrix elements of A°4-5-A and V°.
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It is assumed that the only virtual hadrons which
contribute appreciably here are those whose mass m’
satisfies the inequality

|m2—m?|<KL2| p-q|. (2.8)

Since 2|p-q| is also much greater than |¢?|, the

- denominator takes the eikonal form?*

D~2p-q—1e.

The numerator of the propagator has already been
incorporated into the matrix elements (2.6) and (2.7),
so the rule will be to insert a factor

—iAeix=—1D1=—4(2p-q—1e)* (2.9)
for each virtual hard-hadron line.

C. Complete Chiral Multiplets

It is assumed that the matrices X(\) and T satisfy
the commutation relations of SU(2)XSU(2):

[_-Ta’Tb] =i€pc T e ) (2.10)
[To,Xs(\)]=ten.X (N, (2.11)
[Xa()\))Xb()\)]SieabcTc- (2.12)

Equations (2.10) and (2.11) are consequences of
isospin invariance alone and need no defense, but
Eq. (2.12) does require some explanation. This relation
is nothing but an algebraic formulation of the general
Adler-Weisberger sum rule saturated by single-particle
states,® and is therefore valid as long as we sum over
enough states in calculating the matrix product.
However, the single-particle states which can be
included among the hard-hadron branches of graphs
like Figs. 1 and 2 are restricted by Eq. (2.8) to a
limited band Am? of squared masses. There are two
different ways that this condition can be met.

Semisoft pions. We can consider typical pion momenta
q, which, although small in the center-of-mass frame
of the hard-hadron reaction a— 8, are large (say of
order 1 GeV or more) in the rest frames of all of the hard
hadrons. Then |p-¢| will be large, and Eq. (2.8) will
allow us to include among the hard-hadron lines of our
graphs enough resonant states to satisfy Eq. (2.12).

Very soft pions. If we consider typical pion momenta
q, which are small (say of order 200 MeV or less) in the
center-of-mass frame of the reaction and in the rest
frames of all of the hard hadrons, then |p-¢| will be
small, and (2.8) will compel us to restrict the hard-
hadron branches in our graphs to states that are
degenerate with the initial or final hadrons. In a few
cases, the matrix X(\) will still satisfy Eq. (2.12)
approximately even when restricted to such a degenerate
set of single-particle states, and then the calculation
can go through. Such is the case for nucleons in the
approximation that |gs/gv| is unity instead of 1.2.
[Here X(&=3)~=T.] Such is definitely not the case
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F16. 3. Two diagrams that contribute to the matrix element for
emission of two soft photons or pions.

for pions, kaons, p mesons, etc. Thus the results obtained
in this article can be applied to the emission or exchange
of very soft pions, but only if we restrict ourselves to
reactions like nucleon-nucleon or nucleon-antinucleon
scattering, and then only for |g4/gv| =1. The cases of
semisoft and very soft pions will be treated together
throughout this article.

In order to appreciate the crucial role played here
by the commutation relations (2.10)-(2.12), compare
the matrix elements for emission of two soft photons or
soft pions from a particular outgoing hard-hadron line.
For photons, the two diagrams of Fig. 3 yield a matrix
element proportional to a factor

for=(p-e1)(p-q)(p-e2) (p-[1+g2 !
+(p-e2) (prq2)(pred) (p-Lgot+q: ), (2.13)

where ¢1* and go# are the photon momenta and e;* and
es* are the corresponding polarization vectors. [Compare
Eq. (2.9).] By combining denominators, we find that
this sum factors into a product of contributions for

each photon:
far= (P'“)(P'Q)- (2.14)
P/ NP2

This wonderful factorization occurs for any number of
soft photons. Indeed, it is precisely this circumstance
that allows us to sum up infinite series of graphs in
electrodynamics, both in the Block-Nordsieck calcula-
tion® and in the eikonal approximation.*

"&In contrast, the matrix element for emission of two
soft pions receives from the two diagrams of Fig. 3 a
contribution proportional to the factor

Jer=(pq)Xa(p-q)7 (P q2) X (p-[q1tq2 D)
+ (- g2) Xo(p-g2) (P g2) Xa(p- [+ D7,

where a and b are the isovector indices of pions 1 and 2.
[The vertex factors p-¢X arise from the first term of
Eq. (2.1).] Since X, and X do not commute for ab,
it is impossible to combine these two terms into a
factorized product like Eq. (2.14).

Fortunately, there is another diagram. The second
term in Eq. (2.1) generates the diagram shown in
Fig. 4, and contributes to the matrix element a term
proportional to a factor

f21r, = %7’(? : qu_ 42]) €abcl e (P ' [q1+q2])h41 .
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F16. 4. Another diagram for 2
emission of a pair of soft
pions. p + q1 + q2

Using Eq. (2.12), we see that f», cancels the part of
f2r antisymmetric in ¢ and 3, leaving a symmetrized
product of individual pion factors

Jortfor' =3{Xa, Xb}. (2.15)

It will be seen in Sec. III that this factorization occurs
for any number of soft pions. Without Eq. (2.12), how-
ever, we would find an extra term in Eq. (2.15) which
would be proportional to p-[g1—gs]/p-[q+¢=], and
which would blight any hope of summing soft pions.
Honesty compels me to point out that the dynamical
framework laid out in the above assumptions is not
very well grounded in current algebra. Chiral-invariant
Lagrangians like that given here by Egs. (2.1)-(2.4),
when used in the tree approximation, are guaranteed? to
reproduce the results of current algebra for the emission
and absorption of very soft real pions. How do we know
that such Lagrangians can be used in the tree approx-
imation for the semisoft pions discussed above, or for
virtual pions? The answer, if there is one, is reserved
for future papers. In the meanwhile, the calculations
performed here may be regarded as merely the summa-
tion of infinite sets of tree graphs in a Lagrangian model
which happens to be consistent with current algebra.

III. HARD-HADRON PROCESSES IN
EXTERNAL SOFT-PION FIELD

It is necessary, as a prelude to the calculations in
Secs. V and VI, first to calculate the effect of an
external soft-pion field =(x) on the matrix element for
a general hard-hadron reaction:

P\#1, Pakeme, ... — DNy, poAdny, ... (3.1)

(The N’s are helicities, and the 7’s label particle types.)
Pion-pion interactions will be ignored in this section;
they are discussed in Sec. IV and brought together with

T S ,,TT
Ta LAaT
N
N
Fi16. 5. Typical diagram of the
class summed in Sec. III. ’1r
m / AT
LN / 7
T, -
KN
LRI
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the results of this section in Secs. V and VI. The task
here is to add up all diagrams of the form illustrated in
Fig. 5, with pion-hadron vertices given by Egs. (2.1)-
(2.3), the field =(x) being now understood as a pre-
scribed ¢-number function.

The answer is amazingly simple. The effect of the
external pion field is just that the factor (2r)%%(q),
which ensures momentum conservation in the absence
of external fields, is replaced with a matrix

Q(Q)=/d4x e exp[ 24F AKX -=(x)].  (3.2)

Here ¢* is the net momentum loss

= (p1u+p2u+ .. .)_ (Pl/“+P2"‘+ ced) 3.3)
and AX is a “net chiral boost”
AX=X/(\M)B XS \D -+ - —Xi(\y)
B —Xo(\)B -+, (3.4)

it being understood that all primed X matrices act
from the left on the n-labels on the S matrix of the
respective hadrons in the final state, while all unprimed
X matrices act from the right on the n-labels on the
S matrix of the respective hadrons in the initial state.

That is,

(AX S)m’)q',nz’)\z’,-n; NINL, 2NZ, 000

= Z [(X(All))m’nsn)\l',nz’)\z',-n; 1N, n2A2, ee
n

-f-(xo\z’))nz’nsm’)\l’,n)\z’.m;nl)\x,nzm,---
+ te "‘Sm')\l’.ng’)\z',---;nh,nz)\z,n-(x()\l))nm
“‘Snx'h’,nz’)\z’,---;nl)\l,n)\z,---(x(M))nnz_ o _-_I (3-5)

(Here S can be any matrix, not just the S matrix.)

To derive this result, it will be convenient to work
in coordinate space rather than momentum space.
The propagator for a hard-hadron line running upwards
from x3# to x2* (i.e., with x1* closer to the initial state
or x9* closer to the final state) is given by the Fourier

transform of Eq. (2.9):
—ilein(w2—%1; p)= —“i(Zﬂ')_“/d"Q (2p-q—ie)™
Xexp[i(p+q)- (x2—21) ]
=/ dr 6*(x2—x1—2p7) exp(2ip?r),
0

where p* is the momentum of the hadron line when it
starts in the initial state or ends in the final state. For

|p| — o with p? fixed, this gives

—1Aeik (X2 —2%1; p) = (2] pl)—153(U2—111)0(7)2—7)1) , (3.6)
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where u and v are a convenient set of auxiliary space-
time coordinates,

u=x—px®, v=1(p-x+a9). 3.7

The vertex insertions are given by the covariant
matrix elements of the interaction Lagrangian (2.1).
Using (2.6) and (2.7), this gives for |p|-— « the
vertex factors

i(2m) 3 (4p" ") (/N p| £’ (%) [ nAp) —
21[ pl 6m\I‘n'n(x; )\) ’ (38)
where I' is the matrix

with

o= 1 sin[ 24, 1(=?)1/2
p.= " _[1_ m[___ﬁi_]]
dv =2 2F ;Y (=?)1/2

X[nx<ec>< %)] (3.10)

Fr o
B, (=) sl = =). (3.11)
w2 9
The effect of the pion field on an outgoing hard-
hadron line with final momentum p* and helicity \ is
that the final “wave function” ¢?°# in the .S matrix is

replaced with

e F (x; p,N), (3.12)

where F is a matrix, given by (3.8) as

Flx; p\) =14+ f: d*y- + - d*x,[2¢]p | T'(w1; M) ]

n=1

X[ —tAei(x1—1x2; p)I[22]p| (225 ) ]- - -
X[2i|p| T(x1; N[ —ileis(xa—2; p)].

Using (3.6) for A.ix, we find that all factors 2| p| cancel,
and in terms of the auxiliary coordinates (3.7), we now
have

]9‘(11,7); pJ‘) = 1+ Z " / dvn / dvn—l' .

n=1
X/ dvil'(u,01; M)I'(u,02; N) - - -T'(,v,; A) . (3.13)
2

In the same way, the effect of the external pion field on
an incoming hard-hadron line with initial momentum
p* and helicity A is that the initial “wave function”
¢~7'# in the .S matrix is replaced with

eI (x5 p)\), (3.14)
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where [ is the matrix

© » 21
I(uw; pN) =143 i"/ dvI/ dvg- - -
n=1 —o0 —0

In—1
X/ dﬂnl‘(u,'l)l; )\)P(u,'vz; >\) e F(uﬂ}"ﬂ; >\) . (315)

To calculate the matrices F and I, we note that they
obey the differential equations

a
_F(uav; p:}\) = -11'(11)@) p7>‘)r(u;7¥'; )‘) ) (316)
v

a
'—_I(uyv; p7>‘) =i1‘(u:7}; )\)I(u,'l); p:)\) ) (317)
dv

with the initial conditions

F(u,oo 5 p’>\)=I(u7 —®; p,)\)=1 (318)

Also recall that the functions E, and D, appearing in
T are defined by CCWZY so that

I'(u,2; \) =1 exp[ —2iF . X(\) -=(u,0)]

a
X — exp[2iF~X(\) -=(u,2)], (3.19)
9

provided that the matrices X(\) and T obey the chiral
commutation relations (2.10)-(2.12). [It is at just this
point that these commutation relations, together with
the dynamic chiral symmetry of the Lagrangian (2.1),
play their crucial roles.] The differential equations
(3.16) and (3.17) may thus be written

d
;{F(uav; p))‘) eXPE_ZiFw_IX()‘) 'ﬂ(u,v)]} =0: (320)
v

;{exp[ZiF,“IX(A) m(u,9) ] (u,0; p,N)} =0. (3.21)
v

We are tacitly assuming that = vanishes for v—
with u fixed [otherwise the integrals in (3.13) and
(3.15) make no sense], so the solutions which satisfy
the initial conditions (3.18) are

F(u,0; p\) =exp[2iF, X (\) = (u,0) ],
I(u,v; p,\) =exp[ —2iF,X(\) - =(u,)].

Note that F and I no longer depend on p*, either
explicitly or through the definitions of the auxiliary
coordinates u and v, so we may drop the label p and
write simply

F(x;\) =exp[2iF,1X\) - = ()],
I(x;\) =exp[—2iF,1X(\) - =(x)].

(3.22)
(3.23)
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The S matrix for a general hard-hadron reaction will
now be

S(pl)\l,ﬁz)\z, el ™ pll)\ll,pgl)\zl, .. )
= /d4x1’d“x2’~ . d4x1d“x2- .

X[eip1’~x1’F1’(x1’; )\1’)®eim’-x2'F2’(x2/; )\2’)® .. ]
XMo(.’)Cl)\l,xzkz, A xll)\1l,x2’>\2l, .. )
X[e‘”"'“ll(xl,h)®e‘ipz'*'?Iz(xz,)\g)@ .. '], (324)

where M, is the coordinate-space matrix element in
the absence of the pion field. (Labels are included on
the F and I matrices to indicate on which particle
labels the X matrices act.) Since M, is translation
invariant, it is convenient to introduce coordinates
a#, Eq#4, and £,

xn“=x“+£n“ ; xn’=x“+£n/“ ;
with the £.# and £,* constrained so that
ErtEob e 8- - =0,

Then M, depends only on the £,* and £,'#, not on wx*,
and (3.24) therefore reads

S(ﬁl)\l,[h)\z,. e > P{)\l’,pzl)\gl, .. )
=/d“xd4£1’d4£2'- e didiEs -

Xt ((ENe e Lo W FY (a+ &5 M)
® ety (&' M) @ -+ -]
XMO(EI)\1,£2X2, e EINLEN L)
X[emwral(x+£1; A1)

Qe rialy(w+E; ) -+ -], (3.25)

where (£#) is the average of all £,* and £,/#, and ¢* is
the momentum transferred to the pion field

= (prtprter )= (prsHpiit ).

The pion field is supposed to be ‘“soft,” which means
that it varies very little over the support of M,. Hence
the arguments x*+£,/* and x#+£,# in the F and I
matrices may all be replaced with x#, and (3.25) becomes

S(pﬁ\l,pﬁw, e ?1’)\1’,?2’)\2’, .. )
=/d4x e [Fy (0 M)QFy (5 \)® -+ -]

X To(prs,paha, .« = PN, pe/N, .. L)

XI(x; M) @ La(x; M) ® -+ - ], (3.26)
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where T’y is the momentum-space matrix element for
zero pion field:

To(pl)\l,p2>\2, e T pl,)\ll,p2l>\2,7 o ~)
= / At drE) - - - drEdiEs - - - 54((E))

ipl’ £V pip2/ 2" . | . p—ip1-b1p—ive-f2. L
Xe e e e

XMO(El)\l,EzAg, R 4 E{}\l,,gzl)\z,, .. .) . (327)

Note that for zero pion field, F and I are unity, and
(3.26) gives an S matrix

So=(2m)*6*(¢) T,

as of course it must.

At this point we can condense our notation by
introducing the ‘“net chiral-boost generator” AX
defined by Eq. (3.4) or (3.5). Since X matrices for
different hadrons commute, the exponentials (3.22)
and (3.23) may be combined in (3.26) into a single
exponential. Equation (3.26) then reads

(3.28)

S=/d4x e exp[ 21F AKX - =(x) Ty, (3.29)

as was to be proven.

If the original hard-hadron process conserves chirality
in the ordinary algebraic sense,” then AXT, vanishes
[see (3.5)] and the .S matrix (3.29) becomes equal to
the S matrix (3.28) for zero pion field. Thus kard
hadrons undergo mo scattering in an external soft-pion
Jield unless they participate in a reaction in which algebraic
chiral invariance is violated. In particular, a single hard
hadron which does not participate in any reaction at all
will not in the eikonal approximation be able to transfer
momentum to or from an external soft-pion field.
None of these conclusions would be altered if we took
the pion-pion interactions into account by attaching
trees of soft pions at all pion-hadron vertices, as in
Figs. 1 and 2; so we can further conclude that soft
pions can’ neither be absorbed, emitled, scattered, nor
exchanged by hard hadrons unless these hadrons partic-
ipale in some reaction which violates. algebraic chiral
symmetry.”

IV. PION TREES

Now that we know the effect of soft-pion insertions
on the external lines of a hard-hadron process, the next
step is to calculate the sums of pion trees which connect
these pion vertices.

The sum of all pion trees (connected or not), with #»
external pion lines, labeled with isovector indices
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ai---a, and space-time coordinates x;---x,, will be
denoted I,,...q, ™ (x1- - - x,). For example,

ILs® (x,y) = —iAr (¥ —¥)bas, “.1)

where A is the free-pion propagator
A,(x—y)s(%r)—“/d“q (g?—ie)~lefr v, (4.2)

Instead of dealing directly with the individual II™, it
is both easier and more useful to work with the generat-
ing functional :

0 i"
H[‘))]E 1+ Z -—; d4x1' . -d"xn
n=19.

XHal--‘an(n)(xl' : 'xn)"]m(xl) o "’Ian(xn) . (43)

This quantity is just the sum of all vacuum diagrams
(in the tree approximation) for a Lagrangian with an
external pion current n(x):

L(@) =L+ (2)+n(x) =(x),

where £ is given by Egs. (2.4) and (2.2) (see Fig. 6).

A prescription for calculating the functional II[ %]
is provided by the work of Nambu.!® First, it is neces-
sary to calculate a ¢c-number function ¢(x) by solving
the nonlinear field equation

0?6 (x) = —n(x) —J((),0, 6 (),0,0, 6 (x)) ,

which follows from the Lagrangian (4.4), using causal
boundary conditions. (That is, ¢ should contain only
positive frequencies for {— +o and only negative
frequencies for {— —.) Here J is the pion current
arising from pion-pion interactions,

(4.4)

@.5)

9L, (=, 0,m) AL, (=,0,m)
—a

]a(ﬂ;anwya,uavﬂ) = s (4.6)
o, 6(8,‘7@)
with £, the interaction part of £,,
Lr=—1(0ux) (0*=)+ L, . 4.7)
Equations (2.2) and (2.4) give
L/ =d(=)[mXdum |- [7X x|
—32(@) =X (= X3um)]- [ X (= Xd*x)], (4.8)
J=9.[d(=*)n X (= Xd*x) J+d (=*)= X (= X %)
Fd(z?)m X {mXdu[d (=)= X (X *x)]}
—2F,le(n?) (= X3*®) X {0, m~+d (=2)
X[=X (=X0,=)]}, (4.9)

15Y. Nambu, Phys. Letters 26B, 626 (1968). This article is
primarily concerned with the derivation of the tree approxima-
tion as a semiclassical limit, so a certain amount of work must be
done to adapt its results to the present context. Also see D. G.
Boulware and L. S. Brown, Phys. Rev. 172, 1628 (1968); and
L. V. Prokhorov, 7bid. 183, 1515 (1969).
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where
1 sin(2F . 151/%)
d(z)= -[1— ——W##], (4.10)
2 2F 1512
e(z)= (Fr/z) sin®(F,12'/%). (4.11)

Once ¢ is known, the functional II(%) can be calculated
from the formula

nm=exp[%i / 2(x) 1) An (e —y) diadty
i / B, 0,8()) s
_3 / Pty J(B(2),0,8(2),0,0,8(x))

T (5),0,8(), 8,06 (3))A £ (5—) d4xd4y]. (4.12)

It will turn out in_Sec. V that the calculation of II[ ]
is nowhere near so formidable as it looks.

In order to prove Eq. (4.12), it must first be noted
that ¢,(x) is nothing but the sum of all connected tree
graphs with one external pion line, labeled with iso-
vector index ¢ and coordinates x* (see Fig. 7). This
interpretation becomes obvious if we write Eq. (4.5),
with its boundary conditions, as an integral equation:

o) = f By A=) HTG)],  (413)

where, for brevity, we write

J)=J(6(),0.8(¥),0:0,9(»))-

The first term in the integrand generates the first term
in Fig. 7, while the second term generates all terms of
higher order in 7.

Next, note that since II[ 9] is the sum of all vacuum
tree graphs, its variational derivative with respect to
in.(x) is the sum of all tree graphs, connected or not,
with one external pion line. The disconnected contribu-
tions to this latter sum are just vacuum graphs, so
they add up to a factor II[n], which just multiplies
the connected part ¢,(x) of this sum. Thus II[ 9| obeys
the functional differential equation

61 ]
ona(x

(4.14)

=i, () [n], (4.15)

which obviously determined II[%] uniquely as a power
series in 7.

It now only remains to show that Eq. (4.12) does
satisfy the functional equation (4.15). Direct calculation
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[ [ty antamsimo+i [y 7t
na(x) na(x)
) 6T v(2)
=i [yt 1) =) |ACaD. - 016)
ona(x)

By taking the variational derivative of Eq. (4.13) with
respect to n, we find

d¢u(y)

ana(x)

5]1;(2)

=A,,(x—y)6ab+/d4z A(y—2) 4.17)

onalx

Using (4.17) in (4.16), we find that the terms involving
8J/0n, cancel, and we are left with

DUEE
577a(x)

thus verifying that the formula (4.12) for II[n] does
obey the functional equation (4.15).

i / dby As(x—)Dnaly)+7o() ],

V. SOFT-PION EXCHANGE IN
HARD-HADRON PROCESS

We now turn to our first “physical” problem, the
summation of diagrams in which soft pions are ex-
changed among the external lines of a hard-hadron
reaction. A question immediately confronts us: What
shall we do with the pion-pion interactions? Current
algebra is not much help with virtual pions, so an
element of guesswork necessarily enters the calculation
at this point. We have however one guide which seems
highly reasonable: The graphs included should be
selected according to a topological criterion, such that
the final answer will not depend upon how the pion
field is defined. For instance, it would not do to arbitrar-
ily discard all pion-pion interactions, because the result
will then depend on whether we take the pion field to
be the CCWZ field =(x) used in the above sections, or
some arbitrary function of =(x). The simplest selection
criterion which gives a result independent of the
definition of the pion field is to include all graphs in
which the purely piowic part is a tree, connected or not.
In particular, this includes graphs like Fig. 2. Note that
the over-all graph is not a tree, because the pion tree is
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attached to hard-hadron lines, but there are no purely
pionic loops.

Although not strictly necessary, it will be convenient
to go on using the CCWZ definition of the pion field.
The pion trees are then generated by the pion Lagran-
gian given by Egs. (2.2) and (2.4). As in Sec. IV, define
Ioyeea, ™ (%1° - < ®4) as the sum of all pion trees with »
external pion lines. When the tips of these pion lines
are tied to the external lines of a hard-hadron reaction,

we obtain a matrix element

5= / > i(;—i)nmxnl- - (AX)0,Ts

n=0 !

KXaperoan ™ (2,2, ... )12 (5.1)

[see Eq. (3.29)]. But II™ is translation invariant, so
o™ (x,2,...)=0I0™(0,0,...),
and therefore (5.1) gives

w 1 /27\"
52
=0 I\F,

X1gpea, (0,0, . .,0)(AX )y + + (AX) S0, (5.2)

where Sy is the S matrix (3.28) for the original hard-
hadron reaction, without soft-pion corrections. Compar-
ing with the definition (4.3) of the functional II[ 9], we

see that
S=1[(2/F,)AX&(x) ]So. (5.3)

To complete the calculation it is only necessary to
compute the function

T(e)=1[ed(x)],

where e is an arbitrary constant 3-vector. (Isospin
invariance ensures that T actually depends only upon
€2.) Once T is known, the effect of soft-pion exchange on
the S matrix can be determined from the formula

S=T(2F,~AX)S,.

(5.4)

(5.5)

According to the results of Sec. IV, the first step in
calculating T is to solve the differential equation (4.5)
with causal boundary conditions. In our present
problem, the external pion current is

n(x) =ed*(x), (5.6)
and (4.5) reads
04 (x) = —ed*(x) —J ((x),0, 6 (x),0,9, 8 (%)) .
An obvious solution is
¢ (x) =eAr(x), .7
because Eq. (4.9) gives for the CCWZ field
J(eA,,ed,A,,8,9,A,)=0. (5.8)
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Also, Eq. (4.8) gives, in this case,

£, (eAr,ed,A,)=0. (5.9)
Using Eqgs. (5.7)-(5.9) in Eq. (4.12), we see that
T(e) =exp[2ieA.(0)]. (5.10)

That is, pion-pion interactions make no contribution here.
Using Eq. (5.10) in Eq. (5.5) yields our general answer

S=exp[2iF,~2(AX)*A, (0)1So. (5.11)

The coefficient A,(0) is, of course, infinite. Here, as
in the Bloch-Nordsieck calculation,® it is necessary to
set some upper limit A on the momenta of pions which
qualify as “soft.” The propagator is then

i d¥q
= exp[iq-x—i|q||«° —|q]
a.0= s [ s eliax—ilal ¢ a- gD,

and so

A, (0) =3A%/8x. (5.12)

Putting this into (5.11) gives the effect of virtual
soft pion-exchange as!®

AZ
- :(AX){,SO. (5.13)

S=exp| —
P[ 4w2F
(Note that Sy depends on A, because it includes the
effects of all virtual pions with momenta greater than A.)
If the uncorrected S matrix .Sy is algebraically chiral
invariant,” then, as already noted in Sec. III, AXS,
vanishes, and the virtual soft-pion exchange has no
effect on the .S matrix. More generally, the exponential
factor in (5.13) tends to suppress any parts of the S
matrix which do not commute with X. To make this
suppression explicit, suppose we expand .So in terms
which belong to irreducible representations?® of the chiral
algebra. Since Sy does commute with isospin, this sum
can receive contributions only from terms .S¢¥ which
transform like the isoscalar part of the representation
AN,LN) of SU(2)®SU(2), or, equivalently, like the
00---0 component of a symmetric traceless SO(4)
tensor of Nth rank. It is an elementary exercise in
SO (4)-tensor algebra to show that!?

(AX)2SoY =N (N+2)SoV.

Thus, if we write the uncorrected S matrix as an
expression

(5.14)

(5.15)

16 A similar exponential factor is found by R. Perrin, Ref. 5.
Perrin deals only with neutral pions having a linear derivative
coupling, so a direct comparison with his results is difficult.

17 The algebra is done in Sec. VI of S. Weinberg, Phys. Rev.
166, 1568 (1968). Note that this earlier paper dealt with terms in
the Lagrangian which break dynamic chiral symmetry, rather
than terms in the S matrix which break algebraic chiral symmetry.
However, the algebra is the same.
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then the effect of virtual soft-pion exchange is to change
this expression to read

- N(NV42)A2
S=3 exp(— - —> SoV. (5.16)
N=0 Y S o

N

The critical energy appearing in Eq. (5.16) has the
numerical value
2rF,~1.2 BeV,

so if we arbitrarily set A=m,, then A%/4w?F,~0.4.
With this cutoff, the N =1 term is suppressed by a
factor of order 0.3, the N=2 term is suppressed by a
factor of order 0.04, and all higher terms become
negligible.

The reason for this suppression of chiral-nonvariant
terms in the S matrix is the same as the reason for the
suppression of the whole S matrix by virtual infrared
photons for reactions involving charged particles.? That
is, the rates for reactions in which real soft pions or
photons are not emitted are suppressed to avoid the
corresponding rates for pion or photon emission from
being large enough to violate unitarity.'* One important
difference between the suppression factors produced by
virtual photon or pion exchange is that for photons these
factors involve both an infrared and an ultraviolet
logarithmic divergence, while for pions they involve a
quadratic ultraviolet divergence only. Also, the suppres-
sion is far more dramatic for pions than for photons.

These remarks may also be applied to hadronic weak
and electromagnetic interactions. For instance, if all
strong interactions except for soft-pion exchanges are
neglected in high-energy electron-positron or electron-
antineutrino annihilation, then the uncorrected matrix
elements Sy are linear combinations, respectively, of
T3 and YV (hypercharge) or 7147 and X1+1X,. But,
Egs. (2.10)-(2.12) give

AX? T=[X,, [X,, T]]=2T,
AX2 XE[Xa, I:Xay X]:I:ZX’

so the isovector part of the electron-positron annihila-
tion matrix element and the whole electron-antineutrino
annihilation matrix element are suppressed by factors

exp(—A%/2m2F,2) |

while the isoscalar part of the electron-positron annihila-
tion matrix element is not suppressed by soft-pion-
exchange effects.

It is worth emphasizing that the pion-pion interac-
tions really play a very important role in this calcula-
tion, despite the fact that they do not contribute in the
final results. The point is that if we had used any
definition of the pion field other than that of CCWZ 1
then (5.8) and (5.9) would not apply, and pion-pion
interactions would contribute to the S matrix. However,
in this case the results of Sec. IIT would also be much
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more complicated, and the effect of the pion-pion
interactions would just be to cancel these complications.

VI. SOFT-PION EMISSION IN
HARD-HADRON PROCESS

Now we shall consider the calculation of matrix
elements for the emission of soft pions in a hard-hadron
reaction. In this case, current algebra makes a definite
statement about how to calculate matrix elements?:
They are given by the sum of all tree graphs like Fig. 1,
with all external soft-pion lines attached to pion trees
which are rooted, each at a single point, to the incoming
and outgoing hard-hadron lines.

Instead of trying to use this prescription to derive
expressions in closed form for matrix elements for the
production of arbitrary numbers of pions, it proves far
easier to sum the diagrams for emission of pions in a
coherent state.!® The general coherent state is of the

form
12>=Hb exp[z(q,0)a'(q,0)]]0), (6.1)

where a'(q,b) is the creation operator for a pion of
momentum q and isovector index b, |0) is the pion
vacuum, and the coefficients z(q,b) are an infinite set of
complex numbers which characterize the state. (Box
normalization is used to define the product.) Coherent
states are so named because they are eigenstates of the
annihilation operators

a(q,b)|2)=2(q,)|z),

and hence also of the positive-frequency part of the
free pion field

(6.2)

=P (2)[2)=e@ (x)]2), (6.3)

where
m P (@)= (2V[q|)"%e'e"a(q,b), (6.4)
6.5)

e (x)=3 (2V|q|) %' 5(q,b),
q

and V is the normalization volume.

The use of Eq. (6.3), together with the above
current-algebra prescription for computing pion-emis-
sion matrix elements, leads immediately to a statement
of how to calculate matrix elements for emission of
pions in a coherent state: We must use the results of
Sec. IIT for hard-hadron reactions in an external pion
field, but with pion-pion interactions taken into account
by replacing the external field =(x) with a function
6 (x), defined as €@ (x) plus the sum of all pion trees
with factors e ) (y), etc., at the branch tips. (See Fig. 7).
Following the reasoning of Sec. IV, this means that

18 R. J. Glauber, Phys. Rev. 131, 2766 (1963). Coherent states
are used to treat soft-photon emission and infrared divergences
by V. Chung, ibid. 140, B1110 (1965); and T. W. B. Kibble,
ibid. 173, 1527 (1968).
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6 (x) is the solution of the nonlinear integral equation

9 (x) =e® (2)+ / 2y A (5—9)

XJ($9(1),0,0(),0:0.0(y)),  (6.6)

with A, and J given by Egs. (4.2) and (4.9). With
¢@ (x) put in place of =(x) in Eq. (3.29), the .S matrix
for production of a coherent soft-pion state z in a hard-
hadron reaction « — @ is

S(e— B+2) =/d4x ¢ i (pa—pp)a

X{exp[2iF AKX -6 (x) 1T o} ga- (6.7)

The exchange of trees of soft virtual pions could be
taken into account here by adding a term —A2(AX)?%/
47?F.? in the exponential.

The matrix elements for emission of any definite
number of soft pions can in principle be determined by
taking functional derivatives of S(a— B8+432) with
respect to g:

S(a— B+qibi+ - - - +4.bs)

6n
— —S(a— .

However, it is not necessary to square, integrate, and
sum these z-pion matrix elements in order to calculate
the total soft-pion emission rate—the calculation can
be done directly in terms of the coherent states. These
states form a complete set, with'®

1=/dzlz><z|,

where dz is a weighted-volume element in the infinite-
dimensional space of the coefficients z(q,b):

6.8)

(6.9)

1
dZEH - expl:_ IZ(q, b) l 2]d Rez(q,b)dilmz(q,b) . (6 10)

noT

The total rate for emission of soft pions in the reaction
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a— B is thus

I‘(a—*ﬁ)=/d2/d4x ¢ pa—pp)a

X {exp[2iF 71AX - ¢ (%) ]T 0} g

X {exp[2iF,~1AX - $@(0) ] To}sa*. (6.11)

Note that there is just one x integration here, because
the rate I" should contain only one momentum-conserva-
tion factor (2)%*( ), not two.

The functional integral in (6.11) could perhaps be
done by a Monte Carlo method. Instead of using the
plane-wave decomposition (6.5), it would be better to
choose a set of, say, 10 suitable spherical wave functions
un (%), with covariant orthonormalization. A particular
set of 30 complex quantities z(#,b) would be chosen at
random, using the Gaussian probability distribution
prescribed in Eq. (6.10). Then one would have to
calculate the function ¢ (x) by solving the nonlinear
integral equation (6.6), with

ey (0)=2_ un(x)z(n,b),

and then compute the x integral in Eq. (6.11). This
calculation would be repeated for a number of different
random choices of the 30 2’s, and the result would then
be averaged over all these choices. This task is left as an
exercise for the reader.

Note added in proof. Lowell Brown has pointed out
to me that Eq. (5.13) needs to be completely sym-
metrized in AX to each order in the power-series expan-
sion of the exponential, so that

» (_)n}\Zn
S—"-Z " 5(01...d2n)AXm...AXaZ,‘So,
n=0 7.

where A=A/2nF,, and § is a product of # Kronecker-8
symbols, averaged over all permutations of a;. . .asn.
As a result, the suppression factor is no longer given by
Eq. (5.16). The correct suppression factors for the
first few chiral tensors are now

N=0: 1,
N=1: (1—2\)¢™,
N=2: 3+Z2(1—8\)e

N=3: 3(1—18\)e™N+1(1—2\2)¢ M

instead of =¥ ¥+2) For large A2, all chiral tensors of
odd rank are still strongly suppressed, but the suppres-
sion factors in the even tensors remain finite even for
A— oo,



