
NODAL STRUCTURE, NODAL FLUX F IELDS, AND

which, on the basis of the identifications discussed,
could be derived from a multivalued phase function
does not in general correspond to the magnetic field
obtained from the appropriate quantum-mechanical
current j(r) by applying Maxwell's inhomogeneous
equations. LTake, e.g. , the state P„,~ (r) of an isolated
hydrogen atom whose phase is multivalued around the

s axis.]It is the aim of further studies to gain more in-

sight into the nature of this inconsistency.
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We examine the assumption that the J3 meson (1220 MeV, J~~= 1+ ) and its chiral partner are gauge
6elds. This leads to the introduction of an internal SU(6) group which contains SU(3) XSU(3) as a sub-
group. We discuss the appropriate formalism and mass degeneracy breaking by means of the use of non-
linear realizations of the group.

INTRODUCTION

HE assumption that hadrons display a chiral
SU(3)XSU(3) symmetry'broken by the partially

conserved axial-vector current (PCAC) condition has
produced many successful results, especially when these
results refer to massless pions. ' However, for physical
pions the situation is not that satisfactory. The appli-
cation of techniques like the use of Ward identities or
equivalent phenomenological I.agrangians' mak. es clear
that from chiral symmetry and PCAC one can obtain
at most correlations between a certain number of low-

energy processes and masses relations which are deter-
m.ined only when supplemented by extra assumptions
such as, for example, vector-meson dominance4 and
high-energy behavior. ' ' The possibility of constructing
nonlinear representations besides the usual linear ones
adds an extra degree of arbitrariness to the task of
assigning the experimentally known particles to chiral
multiplets. A large number of papers have been devoted
to the study of the multiplets characterized by J~~
= (1,1++), (0 +,0++), and (2+), and their physics is
well understood both in its successes and in its
limitations.

In the present article we discuss the inclusion within

'M. Gell-Mann, Phys. Rev. 125, 1067 (1962); Physics 1, 63
(1964).' See, e.g. , S. L. Adler and R. F. Dashen, CNrrent Algebras and
Their Applications to Particle Physics (Benjamin, New York,
1968).

3 The review article by S. Gasiorowicz and D. A. Geffen, Rev.
Mod. Phys. 41, 531 (1969), contains an extensive list of references
on the use of these techniques.

4 J. J. Sakurai, Ann. Phys. (N. Y.) 11, 1 (1960).' S. Weinberg, Phys. Rev. Letters 18, 507 (1967).
T. Das, V. S. Mathur, and S. Okubo, Phys. Rev. Letters 18,

761 (1967}.

the chiralschemeof theBmeson (1220 MeV, J =1+ ).
In doing so one immediately faces the problems of
assigning the 0 to a particular representation, linear
or nonlinear, and of finding (or predicting) its partners.
Assuming a linear representation, the chiral companion
of the 8 octet (or nonet) should be a 1 SU(3) multiplet
with positive or negative charge conjugation according
to whether we have a (1,8)+ (8,1) or a (3,3*)+(3*,3)
representation. The 8 decay modes and the experi-
mental possibility for a 1 object at a mass around
1650 MeV seem to favor the assignment to a (3,3*)
+(3,3). As is shown in this article, this choice offers
the possibility of enlarging the, symmetry by assuming
that all spin-1 particles are gauge-field quanta, the
corresponding (internal) symmetry group being SU(6).
General considerations about SU(3)&&SU(3) as a sub-

group of some larger one have been made earlier, ' '
and there are many possibilities. The group we choose
here appears to be the minimal one that would include
the known spin-1 mesons and contain all the results of
chiral symmetry.

As a framework for the discussion of the consequences
of our assumptions, we shall use the phenomenological
Lagrangian approach together with vector-meson
dominance in the theoretical form developed by Lee,
Weinberg and Zumino. ' In Sec. I is presented a very
compact formalism for the treatment of representations
of the chiral symmetry group. Besides its simplicity, it
has the value of suggesting that the enlarged group is

' S. Coleman and S. Glashow, Ann. Phys. (N. Y.) 17', 41 (1962);
S. Coleman, ibid. 24, 37 (1963).

8 M. Gell-Mann and Y. Ne'eman, Ann. Phys. (N. Y.) 30, 360
(1964).

9 T. D. Lee, S. Weinberg, and B. Zumino, Phys. Rev. Letters
18, 1029 (1967).
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an internal SU(6). In Sec. II we discuss a Lagrangian
displaying a PCAC-broken SU(6) symmetry, while
in Sec. III we work out some general consequences of
the use of nonlinear representations of SU(6). We
refrain in this paper from calculating any specific
numerical results, mainly because it is still unclear,
both for chiral SU(3)XSU(3) and for SU(6), what
extra assumptions besides symmetry and PCAC have
to be imposed to obtain a consistent physical theory.
The alternative procedure, consisting in the construc-
tion of a general "super-Lagrangian'" depending on an
experimentally consistent set of parameters (fewer in
number, one may hope, than the predictions), is under
study.

L SU(3)XSU(3) AS 8U(6) SUBGROUP

In this section a very convenient formalism for the
chiral SU(3)XSU(3) is presented. Although it is
suggested by its relationship to SU(6), we prefer to
ignore this fact for the moment in order to make the
formalism self-contained. Ke shall use the following
notation: ) means any of the nine SU(3) Gell-Mann
matrices which satisfy

To implement the chirality, we de6ne the parity
operation by

PM(x)P-'= r,M( —x)r, XP„r, (10)

and I'~——~I is the intrinsic parity of the M multiplet.
We see from (10) that the components 0 and 2 in Eq.
(6), and 1 and 3 in Eq. (7), have opposite parities as
they should. The correct behavior under charge conju-
gation is ensured by the usual prescription

CMC '=M~&(C~.

C~ is the intrinsic charge conjugation of M, and
because of Eq. (3) we see that Mo=-', %2M,9.~ has
opposite charge conjugation to 3f2, while 3E~ and 3f~
have the same charge conjugation. Kith the formalism
outlined above, it is now very simple to couple represen-
tations and to form invariants to be used in a La-
grangian. The couphng of two multiplets is obtained
by matrix multiplication in any order; for example,

(3)A (3) +(8)) M(3p (8) =I (3)) M(s)27(()) =I (8) . (12)

The trace of a product is an invariant, obviously equal
to zero if the product is L(3).

For baryons we have
) l(~=((f ~&+if ~&)) &.

r is a set of Pauli-type matrices with

Zab c+g b

and we choose a representation in which

(2)

PB(x)I' '= y, r,B-( x)r,I'r)— (13)

Therefore, the projection operators P+———,
' (1&y(;r&)

commute with the parity operation as well as with 0,
so the equation

I" 8=0
is a covariant irreducibility condition. If 8 is a (1,8)
+ (8,1) representation, wehave, owing to (14), 82 p(BO. ——
If 8 is a (3,3*)+(3*,3), we have instead 8)——iy(;8&.

For completeness we translate into this formalism
some of the results of Coleman, Kess, and Zumino"
on nonlinear representations. If E=A&"P (n= 1, . .—. , 8)
transforms linearly under SU(3), we assign to P the
following chiral transformation behavior:

&a F &27 a&2

If we de6ne

then Ap and Ap (o.=1, . . . , 8) have the commutation
relations of the vector and axial-vector charges postu-
lated by Gell-Mann':

[AO,Aos]=if »AO&,

[AO,Ap]=if ()&A,&,

[A2,Age]=if »Ap&.

(15)(5)
with 0&=82 A2, and N=N Ao . Since, for example, 7'2

anticommutes with 7), we get from (15)
It is trivial to check now that the components of the
matrices ~

—iP' —~-i8gg —iPg—itt,

M(())=M(I Ao +M2 Ag

(16)

(6) As in Ref. 10, we eliminate e '" from (15) and (16) to
obtain

M(3) ——HID Ag +&3 A3

transform as representations (1,8)+ (8,1)
+ (3*,3), respectively, if

3f'=e"Bate "

(7) (17)

(3 3~) With the help of I, one can construct representations
of SU(3)XSU(3) out of objects transforming linearly
under SU(3). For example, if

8
In Eq. (8),

0= gopAop+ |)pA2~
e= —geX,

~2 e=o

where oo are the parameters of a general SU(3) trans-
formation, and 82 are those of a chiral one.

S. Coleman, J. less, and B. Zuminp, Phys. Rev. 1'7'7, 2239
(&969).
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and with

we define
(18)

Therefore, for ii=0 or 2, Ar transforms like a (1,8)
+(8,1). Also, for a=1 or 3, AT, transforms like a
(3,3*)+(3*,3). In particular, if only ibb&0 and ib=3 we
get the standard form for the representation containing
the pseudoscalar octet

Pa2 Pr —'r ~+ (P2 ~b)1/2

II. 8 MESON AS GAUGE FIELD

(20)

The idea that spin-1 mesons are associated with the
genei Rtors of locRl gI'oups of transformatlons has
proven useful in the treatment of the p and A~ mesons
and their octet partners. It seems natural then to
explore the possibilities and consequences of the assump-
tion that the 8 meson is also a gauge field. We should
ask that by doing so we do not spoil the good results
of chiral SU(3)XSU(3). Therefore, B should belong
at least to a (3,3*)+(3*,3) or to a (1,8)+ (8,1) represen-
tation of this group. Its chiral con1panion should then
be a 1 nonet or a 1 + octet, respectively. Ke are
interested here in the case in which the 8 and the
corresponding R nonets belong to a, (3,3*)+(3",3),"
and we make the hypothesis that together with the
known vector octet t/ and a nonet containing the AI
they form a set of 35 spin-1 n", esons which make up a
regular representation of an (internal) SU(6) group.

With the notation developed in Sec. I, we can write
compactly the commutation relations of the SU(6)
generators:

where

with

[X:,Ad']=bP. „-a A, ,

p„, av=S„,f ax+,„,d iiv

Saba= habtieb+baabb0+hbahc0 2haafibbgab ~

A representation 35 can be expressed as a matrix:

%=A., M =-',42~,M

Under a, general SU(6) transformation, we have

3f'=e"3fe '
(23)

Ke define the action of parity and charge conjugation
in the same way as in Sec. I. It is obvious that M
breaks up into a (1,8)+(8,1) and a (3,3*)+(3*,3) of
chiral SU(3)XSU(3). We write the gauge 35-piet in
the form

G„=,'VZ(ra V„+riB„+r2A„+ rbR„-) . (25)

The over-all parity and charge conjugation of the
multiplet are +1 and —1, respectively. Through the

"A diferent higher symmetry in which the 8 would belong to
a (1,8)+(8,1) has been recently considered by P, J. O'Donnell,
Phys. Rev. 184, 1728 (1969).

work of Lee, Weinberg, and Zumino, ' we know how
to construct a Lagrangian which will imply the 6eld-
current identity leading to the algebra of 6elds. For
example, the Lagrangian for the vector fields alone
has the form

with
Io= ——,

' Tr(G,„G a)+-', m, 2Tr(G„Ga),

G„,= B„G, B,—G„+ig/G„,G„]

(26)

I bi -', Tr(M——„M&) ~iIia' Tr—(M') .
3I„ is the covariant derivative of M:

M„= B„cV+ig[G„,M] (30)

M breaks into a (3,3*)+(3*,3) and a (1,8)+ (8,1.) plus
a singlet, and if the (3,3*)+(3*,3) contains the ~ and 0.

we see that the (1,8)+(8,1) part contains scalar and
pseudoscalar octets of positive and negative charge
conjugation, respectively, while the singlet is a negative
charge conjugation pseudoscalar. Such particles, if
they exist, certainly do not have masses in the same
range of the z's and 0's. We know, however, that the
break. ing leading to PCAC induces also the breaking
of the masses and we may speculate that in this way
we could obtain a realistic removal of the mass de-
generacy implied by a purely symmetric Lagrangian.
However, if we consider, for example, a simple model
in which the vacuum expectation value of M30 is non-
zero, we will find by a repetition of the, by now standard,
phenomenological Lagrangian techniques that the pion
nonet (3IIi) remains degenerate with a 0 (M,), and
that also 8 and A remain degenerate.

III. NONLINEAR REALIZATIONS OF SU(6)

To have the same mass for the 8 and Aj is not a
bad result since they differ experimentally only by
about 10%.We cannot say the same about the pseudo-
scalars and the yet unobserved mesons associated with
M~. As we shall show, we may solve this difIIculty by
assigning the spin-0 mesons to nonlinear representations
of SU(6). Following the procedure of Coleman, Wess,
and Zumino, "we choose first an SU(6) subgroup (H)
under which all the representations will transform
linearly. Although it is not the only possible choice,
we shall use the one in which IJ is the subgroup whose
generators are A.o and A.2, i.e., II contains the chiral
SU(3)XSU(3) and the transformations generated by
A2a. Next, we introduce a (3,3*)+(3*,3) linear represen-
tation of II:

$= (bri+ brb)/~~ (31)

$ plays a fundamental role in the process of generating

G ~ —(1/ig)aibg g
—ib+eiHG a

—ib

If we want to include a spin-0 35-piet containing the
pseudoscalar mesons (a-'s) and scalar mesons (o 's),
we should add
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ei$' ei8ei(e—iu (33)

0=0qq+Ori, I=NO Ao +N2 A2 . (34)

Here u is a function of ( and 0 which reduces to OII

when 0~ is zero. Since 0~ anticommutes with r~, we
have under a transformation involving 0~ only

e
—i$' e—igge —ice—iu (35)

From (33) and (35) we can eliminate e '" to obtain

e2i) eiff &e2i hei 8&

If z is a linear representation of H, then under 8

and therefore

(36)

(37)

SU(6) representations out of representations of H.
Kith the notation

O'er=00 Ao +02 Ag, Oii
——Oi Ai +03 Ag, (32)

we have under a general SU(6) transformation

sociated with &. This can be easily done by considering
the covariant derivative of Z:

D„Z=2i[0„)r2+~ii/2i g (B„r3 R„—r i)+ ]. (41)

The center dots represent terms containing at least
bilinears in the fields. From Eq. (41) we see that the
2 kinetic-energy contribution to the Lagrangian will
contain a mixing between f., and B„and between $3
and E„. Therefore, the Goldstone bosons have the
same quantum numbers as the corresponding generators
of the group. This rules out the possibility of obtaining
by this method a nonlinear representation not con-
taining particles of negative charge conjugation. We
proceed now to examine a general Lagrangian conta. in-

ing the gauge fields, the $'s, and s. (3,3")+(3",3)
representation of H containing the usual pseudoscalars
and their 0 partners. More generally, this (3,3")+(3*,3)
could be a truly linear or a linearized representation
of H.

We write L as

E=—e'Sate '& (38) L=Lg+L~+LI+Lb' (42)

provides a "linearized" SU(6) representation; i.e., in
general,

E'=e'lee " (39)

In particular, if ri = r2 we can construct a function of t
only which transforms linearly:

g —e2igr Z'=e"Ze ". (4o)

We find the use of linearized forms like (38) and (40)
very convenient for the construction of phenomeno-
logical Lagrangians. This is not the only way of doing
it, alternative forms being the ones based on the use of
Lagrangians superficially invariant under H. '2 Both
procedures are obviously equivalent.

As discussed by Salam and Strathdee" on the basis
of previous work by Anderson, '4 by Higgs, " and
especially by Kibble, " the particles associated with $
are Goldstone bosons and they could be made not to
appear explicitly in the Lagrangian if we omitted the
mass term in La, Eq. (26). The B and R would acquire
then an induced mass, a,nd A~ would also, owing to
PCAC. The vector-meson octet, however, would remain
massless. Besides, we would not have the field-current
identity. So we choose to retain the mass term in Eq.
(26). The fields $ will appear explicitly with zero mass
in a symmetric Lagrangian. As we shall show, they can
be given an arbitrary mass by introducing a breaking
which has the favorable property of being invariant
under chiral SU(3) &&SU(3). Before proceeding on this
line it is useful to discuss the quantum numbers as-

Here La is the SU(6)-symmetric Lagrangian for the
gauge fields and is given by Eq. (26). I ir is a symmetric
form containing the spin-0 fields and their covariant
derivatives. LI is an interaction Lagrangian, also sym-
metric, and is a function of G„„, the spin-0 fields and
their covariant derivatives. Finally, Lb,. contains the
symmetry-breaking terms. If ri=i2V2(z. ri+or3) is the
representation of H mentioned above, we can form
with it two linearized representations of SU(6):

and

E =e'4se '&

Af =e'&ir~ee '&

(43)

(44)

We can now write"

Li„=ai Tr(Ag cV) —a2 Tr(Ai M)+(Q~)b Tr(Ag Z). (45)

The first two terms are responsible for the PCAC
condition and induce a vacuum expectation value
(00)—:0 0M O. The last term is chiral invariant and
produces a mass contribution for the f's Up to bilinea. rs,
Lb, has the form

Lgp (a i+a2) 0 [b+ (8/3)—ala 0]$1 $1

-[b+(8/3)a. ~o]b f.3 (46)

We turn now to L~. Because ZZ =1, i~E=M, and
(&)i=e'&(ri)'g —

'&, Lir consists of a function of ri plus a
kinetic-energy part. This kinetic energy contains
mixings between the spin-0 and the gauge fields, and
we show that explicitly by developing the covariant

"C.G. Callan, Jr., S. Coleman, J. Wess, and B. Zumino, Phys.
Rev. 177, 2247 (1969).

"Abdus Salam and J. Strathdee, Phys. Rev. 184, 1750 (1969)."P.W. Anderson, Phys. Rev. 130, 439 (1963).
'5 P. W. Higgs, Phys. Letters 12, 132 (1964).' T. %. B. Kibble, Phys. Rev. 155, 1.554 (1967).

"As discussed by M. Gell-Mann, R. J. Oakes, and B. Renner,
Phys. Rev. 175, 2195 (1968), a more realistic breaking would in-
clude also some octet contributions in such a way that L&, would
be approximately SU(2))&SU(2) invariant. For the purpose of
our discussion the form of Kq. {45) is sufhcient.
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derivatives of E and iV:

D„1V= B„rp+rpop(Q ,') —8„(g
+goo(V-p) (& p» —A~r~)+' ' ' (47)

D,M =ir pB„n+rpop(Q ', ) 8-„&p

+g o(Q-', )(R„—A„)+ . . (48)

We have then, writing the kinetic-energy part L~'

Lpr'=up Tr(D„ED"N)+np Tr(D„MD"M)
+up Tr (D„ZD&Z), (49)

that there are in L~ mixing terms, i.e., bilinears,
between B„g~ and 8„, 8„)p and R„, and 8„7r and A„.
Taking into account also the mass term from Lg, we
can eliminate the mixing by the substitutions gp gA gB gR (54)

of the masses can not be derived by the above type of
arguments. Recalling the familiar case of the
meson, ' the relation Pl'Ay &2m, is based on the KSRF
relation, on PCAC, and on high-energy behavior
assumptions, besides that of SU(2) )&SU(2) symmetry.
For the sake of completeness, let us apply asymptotic
symmetry arguments to the currents' spectral functions.
We restrict ourselves to the sector of internal SU(6)
which contains chiral SU(2))&SU(2). We assume the
currents are dominated by the isospin-1 mesons of
spin 1 and 0. A repetition of the superconvergence
considerations of Das, Mathur, and Okubo leads to
two sets of first and second Weinberg's sum rules.
Extending Weinberg's' notation in an obvious way, we
obtain

13„=b„+P yB„(y,

A „=a„+'A28„x,

R„=r„+Ape„(p,

(50a)

(50b)

(50c)

and

g pm —2 g~pmA 2+F p

gB mo +Fr)
=ga mz +Fr, ~ (55)

with

52+ —Slp )
2 2

m~' =mp'+ (g/3) g'o p'(nr+np)

moP =mpP+4g'( —Ppngop'+2n, ),
mg' =mp'+4g'(-', upop'+ 2np) .

(52)

Xg = —
g (2np+-', ugop') [4mpp+g'(2np+ snoop')] ',

4=-,'v3gop(ui+up)L4mp'+(ni+np)g'pop'3 ', (5~)

Xp g(2np+3npop )Lgmp +g (2np+3upop )]
When the mixing is eliminated, the vector mesons
emerge, with masses

We see from the preceding formulas that the knowledge
about gp and P permits one to determine the A & mass.
Because of the closeness of the masses of 8 and Al,
we see also that P~,2~P '. We cannot, however, say
very much about P~,2 because of the still uncertain
mass of E and the possibility of a p-E mixing.

An experimental consequence of the Lagrangian
(42) should be the determination of the 8 and R decay
rates. An examination of the resulting three-particle
terms show that, for example, the 8 meson couples to
R and x, but not to V and x, as it should. The observed
decay B~co+pr can be obtained by adding ad hoc
SU(6)-symmetric terms like

Relations of the type displayed in (52) are not the most
general ones compatible with symmetry and (oP)WO.

By forming Li with terms like

Tr ((G„„,D&Z }D'M)

Tr (G„,G&"E) .

(56)

(57)
Ir=a& Tr(G„„ZG&"Z)+ap Tr(G„„SG&"S)

+up Tr(G„„MG""M), (53)

we can produce even more complicated mass relations
among the spin-1 mesons. Therefore, the actual values

A term like (57) produces, besides, a mixing between
E and V, and, through it, the decay E~ 2x. Finally,
an R-V mixing would be relevant to the discussion of
the electromagnetic structure of hadrons.


