
3/2 + si/2 15 393(5.667)+ 16 053 —19 752/7. 667

+0.4565 (6.667) ' —~i (425.1)
=91504.5 cm-1 1092.84 A= X,

281(g —+ ~+1(g ——9J 079.4 cm ' —& 109).94 A= g.

The following table gives a comparison of the 0 vI

values with experiment. '

P3/2 + S1/2

P1/2 ~ S1(2

Observed
Calculated (Ref. 9)

v 96874.8 cm ' 96907.5 cm '
1032.05 L 1031.91 i.

F 96358.1 cm ' 96375.0 cm '
1037.80.A. 1037.61 L

Edlen
(Ref. 10)

96905.0 cm '
1031.94 i.

963726 cm '
1037.64 i.
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Source of the Kerr Metric*
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Assuming that the Kerr-Newman. metric is the field of a layer of mass and charge distributed over the
equatorial disk spanning the ring singularity, the source distribution on the disk is computed explicitly. In
the uncharged case, this interpretation automatically excises the noncausal parts of the manifold, so that
one obtains the unique source of the causally maximal extension of the vacuum metric. A Newtonian field
which gives the same source distribution is exhibited, and shown to be closely analogous to the relativistic
case. In particular, the Newtonian particle orbits show the same avoidance of the ring singularity that is
such a remarkable feature of geodesics in the Kerr geometry. In the charged case, we examine how the
gyromagnetic moment (which is equal to that of the Dirac electron) is rejected in the character of the
source distribution.

r. zm'RODUCTION

~ ~HE gravitational collapse of a star is a highly
complex phenomenon whose details depend

sensitively on the nature of the asymmetries involved.
Xo matter how diverse the initial conditions, however. ,
it is now widely believed' ' that, in the terminal
black-hole stage of an irreversible collapse, the external
field depends on only two parameters, and in fact is
identical with the Kerr vacuum field having the
appropriate mass and angular momentum.

In the case of zero angular momentum, this conjecture
is already on fairly Arm ground. It is known4 that the
Reissner-Nordstrom spherisymmetric space-times are
the only electromagnetic vacuum (EMV) fields which
are static, asymptotically Rat and possess nonsingular
even. t horizons with the topology of a 2-sphere. There-
fore, external asymmetries due to internal sources
(such as mass quadrupoles and magnetic dipoles)
cannot be statically supported by a black hole. This
suggests4 that in the gravitational collapse of a nonrotat-
ing electrically neutral star all such asymmetries shouM.

* Work partially supported by the National Research Council
of Canada.' B. Carter, Phys. Rev. 17'4, 1559 (1968).

2K. S. Thorne, in Proceedings of the International School of
Physics "Enrico Iiennz" (Academic, New York, to be pub'. ished),
Course 47.

3 J. M. Bardeen, Nature 226, 64 (1970).
V. L. Ginzburg and L. M. Ozernoi, Zh. Eksperim, i Teor. Fiz.

4'7, 1030 (1964) t Soviet Phys. JETP 20, 689 (1965)]", A. G.
Doroshkevich, jt."a. B. Zel'dovich, and I. D. Novikov, Zh.
Kksperim i Teor. Fiz. 49, 170 (1965) t Soviet Phys. JETP 22,
122 (1966)J; W. Israel, Commun. Math. Phys. 8, 245 (1968).

rapidly leak away —partly by radiation to infinity, and
partly by falling in through the event horizon after the
star itself has collapsed —leaving Schwarzschild's
vacuum field as the sole external manifestation of the
collapsed object. Direct support for these ideas has come
from recent dynamical studies' of idealized collapse
models with small departures from spherical symmetry.

Justification for extending these arguments to the
case of nonvanishing angular momentum hangs at
present on two rather slender lines of evidence. First,
the charged Kerr-Newman field' are (in several senses)
the natural stationary generalizations of the Reissner-
Xordstrom fields; they have the same simple algebraic
structure (Petrov Type D) and are the only stationary,
asymptotically Oat EMV fields having this structure.
Secondly, a study of small, axisymmetric stationary
EMVperturbations of the Reissner-Nordstrom fields' 7 9

shows that the only perturbations which preserve
asymptotic fatness and a nonsingular event horizon
are members of the Kerr-Newman family.

These considerations, inconclusive through they
still are, lend a special interest to recent eGorts to

5 V. de la Cruz, J. E. Chase, and W. Israel, Phys. Rev. Letters
24, 423 (1970).

6 K. T. Newman, E. Couch, K. Chinnapared, A. Kxton, A.
Prakash, and R. Torrence, J. Math. Phys. 6, 918 (1965).' V. de la Cruz and %. Israel, Phys. Rev. 170, 1187 (1968),
Ref. 15.' K. S. Thorne, 1968 (unpublished).

~ W. Israel, in Proceedings of the Berne Seminar on the Bearings
of Topology upon General Relativity, Gravitation et Relatite

g Generale, Vol. 1, No. 3 (to be published).
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understand the nature of the Kerr geometry and its Investigation of the geodesics had to be confined at
sources. Of course, there is no reason to expect that first totheaxisof symmetry" and theequatorialplane, "
such studies will provide direct insight into the actual until Carter noticed that the IIamilton-Jacobi equation
conditions prevailing in the deepest interior of a black is separable, and was thus able to reduce the solution
hole; asymmetries which have been sucked inwards in of the complete geodesic equations to quadratures.
the collapse will presumably begin to make their A number of curious results emerged from these
presence felt at or near the inner of the two Kerr analyses. For example, it was found that, for a particle
horizons. Nevertheless, an understanding of the unper- falling down the axis, the gravitational force becomes
turbed Kerr space-time is a necessary prelude to more repulsive'4 when r( ~a~, that particles in the plane of
ambitious investigations. the fiat disk have straight orbits, " and, most remark-

For the moment, we confine attention to the un- ably, that all timelike and null geodesics avoid the ring
charged Kerr vacuum metrics' characterized by two singularity excePt for some in the equatorial Plane. '
parameters es and mg, representing the mass and Several papers have been devoted to the problem of
angular momentum of the source. The Riemann tensor fitting the Kerr exterior field to rotating material
is algebraically degenerate Type D, so that there are two sources of various kinds, " including fluid bodies' and
congruences of principal null geodesics, directed inwards spherical shells. " Naturally, this problem does not
and outwards, respectively, which transform into each have a unique solution, since one is at liberty (for
other under simultaneous reversal of time and sense of example) to choose arbitrarily the boundary between
rotation. "It is useful to describe the manifold in terms the exterior vacuum and the source. The arbitrariness
of a coordinate r, which can be defined geometrically disappe«»f one asks about the source of themaximppy
as an affine parameter along either of these two principal extended vacuum metric, but here we are thwarted by
null congruences, and which functions as an asymptotic our present inability to interpret singularities of
radial coordinate at spatial infinity. Einstein's field equations. Newman and Janis" conjec-

A key feature of the Kerr geometry is an equatorial ured that Kerr's solution is the field of a spinning ring
of mass, but (as they themselves recognized in a noteuisk, centered on the axis of syllurj. etry, which is intrin-
appended to their paper) this fails to take account ofsically Oat and of radius ~u~. The ringlike boundary the peculiar geometry oi the disk. ."

of this disk comprises the geometrical singularity of the In the present paper, we shall follow up this conclud-metric. In addition, the disk itself has a remarkable
ing note in the Newman- anis paper. " Adoptingproperty: As one approaches it from either above or e err geometry, we consider

below, r tendstozerothroughpositivevalues, butgradr the lack of smoothness of the metric at r=0 to be
(directed outward from the disk) does not vanish. Since caused by a layer of mass spread over the disk. Since
r has an intrinsic meaning, this must be interpreted in the theory of surface layers in general relativity is well
one of the following ways. understood, " the physical properties of the layer can

(C

(i) The complete Kerr manifold is defined so that
r everywhere, and there is a discontinuity in the

argument" we can then infer the general characteristics

normal derivative of the metric across the aat disk.
0 the ring slngu arity. ls approach has the added

(u) Alternatively, the metric remains smooth every-
' ~ advantage that, by cutting out the ne ative-r sheet we

where away from the ring singularity, but an observer
eliminate (at any rate for the unchar ed case'3~~ allh un harged case ~ all

crossing t e dis r= rom a region with r&0 emerges
noncausal features of the space. Ke obtain in this way

into a new asymptotically fiat space characterized by
rg0. The two "Riemann sheets" with r/0 and r&0 '4B. Carter Phys. Rev. 141 1242 (1966); see also R. L. Gau-

treau, Xuovo Cimento SOA, 120 (1967),are to be considered as joined together on the disk r=0, » This follows from the formulas of Ref. 1 after adjusting for
which serves as a branch cut Iz As Carter~ first pointed the fact that the quantity I' in Eqs. (64)—(71) of this reference

enters with the wrong sign. (The conclusions of the paper areou, e azimu a vec or ~' ~ ecomes ime i e or unaffected. )rg0 so that the negative-r sheet contains closed "W. C. Hernandez, Phys. Rev. 159, 1070 (1967); 166, 1263
timelike curves. " (1968).

~'f R. H. Boyer, Proc. Cambridge Phil. Soc. 61, 527 (1965);
62, 495 (1966); M. Triimper, Z. Naturforsch. 22a, 1347 {1967)."J.M. Cohen, J. Math. Phys. 8, 1477 {1967)."R. P. Kerr, Phys. Rev. Letters 11, 237 (1963). Most of our "E.T. Newman and A. I. Janis, J. Math. 'Phys. 6, 915 (1965).remarks apply without change to the charged EMV generaliza- "Hernandez, Ref. 16 (1968), has given additional reasons whytion of the Kerr solution discovered by Newman et al. (Ref. 6). this simple interpretation will not work.R. H. Boyer and R. W. Lindquist, J. Math. Phys. 8, 265 "C. Lanczos, Ann. Physik /4, 518 (1924); W. Israel, Nuovo
Cimento 448, 1 (1966); 488, 463 (1967); A Papapetrou and A.' R. P. Kerr, in Quasistellar Sources and Gravitational CollaPse, Hamoui, Ann. Inst. Henri Poincare 9, 179 (1968).edited by I. Robinson, A. Schild, and E. L. Schucking (Chicago "W. B. Bonnor and A. Sackfield LCpmmun. Math. Phys.U. P., Chicago, 1965), p. 99. 338 (1968)j have applied a similar approach to the interpre-"In the charged Kerr solutions these noncausal curves extend tation of certain static axisymmetric vacuum fields with disksome way into the positive-r sheet. singularities.
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the unique source of the causally maximal extension of
ICerr's space tim-e

Our main results may be briefly symmarized as
follows. The (uncharged) Kerr disk has a negative
surface density, "effectively" (i.e., taking kinetic and
gravitational potential energy into account) equal to

o 22= —-'(m/tra') (1—p'/a') —'" (1)

where p is the radial coordinate on the (intrinsically
flat) disk. . The material of the disk rotates with supra-
aluminal speed and angular velocity (as measured by
a stationary observer at infinity) oi=a/p2; the annulus
from p to p+dp contributes angular mon1entum

2m(p/—a)'(1 p'/a') —"'dp

8= 0 Vr
)i

Vr

8= g, O& r &CO

Since both the mass and angular momentum of the
disk diverge to —eo as p~ ~a~, we infer that the
singular ring must have positively infinite mass and
angular momentum in order to yield the finite net
observed values m and ma.

In terms of this mass distribution, we can understand
at once why the gravitational field becomes repulsive
close to the disk. Going a step further, we can derive
the Newtonian potential of the surface distribution (1),
assuming the disk surrounded by a massive ring which

brings the total mass up to m. The orbits of particles in
this Newtonian field closely resemble the local descry ption22

of timetike geodesics in the Kerr geometry. The Newtonian
analog cannot, of course, reproduce inertial dragging
CGects of the Lense-Thirring type. However, it does
exhibit the same avoidance of the ring by test particles,
showing that this is not a new nonlinear CAcct of
Einstein s theory, but is explainable more simply in
terIns of the peculiar dipole-like structure of the source
near the ring.

These results are useful in giving us a better intuitive
feeling for the geodesic structure of the Kerr geometry
Ltest particles behave as if they were in the Newtonian
field of the surface distribution (1)]. But it is clear
from the unstable and unphysical character of the
relativistic distribution that we are not much closer
to an understanding of the real conditions within the
inner Kerr horizon. In any realistic collapse situation
it is very possible that strong, time-dependent, random
perturbations will overwhelm the background metric
in this region, making a radically new approach to the
problem necessary.

II. SURFACE ENERGY TENSOR OF
CHARGED KERR DISK

For the sake of completeness, we consider the charged,
EMV generalization' of the Kerr metric, which can

"Globally, there may be far-reaching differences resulting
from the existence of relativistic event horizons in the ease of low
angular momentum l [o )

&ta).

I IG. 1. Map of a 2-space of constant @ and I, showing sections
of the Kerr disk and the ring singularity. The horizontal and
vertical axes represent pseudocylindrical coordinates p and s de-
fined by s—=r cos8, p

—= (r'+a')'" sin8. The same diagram illustrates
the character of the oblate spheroidal coordinates r and. 8 used to
discuss the 6eld of the Newtonian disk of Sec. V; p and s are now
genuine cylindrical coordinates in Euclidean space.

be written

df
ds'= (r'+s' cos e)(d8 +''

2tpw+8 +8

21sr —8
+(r2+a2) sin2g dy2 dt2+

r'+a' cos2t)

&&(dt —a sin28 dp)' (2)

in terms of the Schwarzschild-like coordinates r, 8, p,
and t introduced by Boyer and Lindquist" for the
uncharged metric and extended to the charged case by
several authors. "4*'5 The associated vector potential is

Ag ——32=0,
A2= (ear sin2t))/(r2+a2 cos28)

A 4= er/(r'+a' cos2e) . —

If icgloils of ncgativc r arc excluded fI'OIIl thc man-
ifold, and if we wish to regard r, 8, and P as asymptot-
ically spherical coordinates, then dr/ds must change sign
and 8 must change to m —8 when a curve 8, @, I,= const
crosses r= 0 (Fig. 1).To avoid confusion, we introduce
a new angular variable 1, with range 0&(& 222r, such-
that 8=f and 8= vr —f, respectively, in the upper and
lower half-spaces in Fig. 1.

~ F. J. Ernst, Phys. Rev. 168, 1415 (1968). Note that Ernst's
sign conventions for a and A„are opposite to ours. Apart from
this, there is a persistent sign anomaly in Ernst's work which is
most; easily corrected by reversing the sign of or in his basic metric
form (erst equation of Sec. II). Our signs agree with those of
Ref. j..

» J. M. Cohen, J. Math. Phys. 9, 905 (1968).
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In terms of intrinsic coordinates~6 j':—f, p, and t, the
3-metric of r = 0 is

where
S,'= o (u,N, '+t, t'),

o = —km/4iru' co sf;

(7)

t = (u cosf, 0,0) is a unit radial vector; and

is an orthogonal unit spucelike vector. The disk is thus
composed of material having negative proper surface
density 0., r'otating with supraluminal velocity I and
prevented from flying off radially by a radial tension
~o~. The angular velocity measured by a stationary
observer at infinity is

io=n&/n'=1/u sin'|.

Consider now the stationary field of any axisym-

2' Greek indices run from 1 to 4. Lower case italic indices refer
to the subspace r =0 and run from 2 to 4. Capitalized italic indices
(in Sec. VI) run from 1 to 3.

g dPd$'= u' cos f df'+u' sin'f dQ' d—t'
—(e'/u' cos'f) (dt us—in'f' dP)'. (4)

In the special case e= 0, this hypersurface is Rat (radial
coordinate p =u sinf'), the history of a disk of radius

~

u
~
.

For general e& the rim of the "disk" (r = 0, e= ~ir) marks
a singularity of the 4-metric (2) and of the four-
dimensional Riernann tensor.

I.et e, proportional to 8 r, be the unit normal
pointing Npmards from the disk. Then

n =k cos88 '= ok cosf 8 ',
where k=(1+e2/u') 'i' and &=+1 and —1 on the
upper and lower faces, respectively.

The extrinsic curvature of the disk is defined by

+~&—rtal P~( ) ~(b)

I%ere, the stroke indicates covariant differentiation with
respect to the 4-metric (2), and e&,&

=Ox /el+ are the
tangential base vectors associated with the intrinsic
coordinates t, P, and t: e&r& =el~, e&o& =4, and

e(&) = 54 . Straightforward calculation yields for the
nonvanishing components

E~q= (cm sin4$)/k cops, E« em/ku'c o's1,
——

Eo,= —(cm sin'|)/k cos'|,

which change sign across the disk.
We consider all the gravitational and electromagnetic

sources to be concentrated on the disk in the form of a
surface layer. The surface energy tensor 5 & is then
given by"

—8xS,i, = LE a3 grig'"PEco—h (6)

in terms of the jump pE, &7 in the extrinsic curvature
on crossing the layer in the direction of e . The final
result can be written in the form

metric, steadily spinning shell, in which the metric has
the asymptotic form

g44= —(1—2m/r), g34= —(2mu sin29)/r (r —+ oo ) .

(We are using quasispherical coordinates which are
canonical in the sense that all metric coefficients are
independent of p and t, and g34 is the only o6-diagonal
component. ) In the case where S„& is finite everywhere„
it can be shown that'

ell

cT,gfdZg, ma =
ell

where dZ2 is the invariant element of 2-area of the
shell, and

o,n= —(—g") "'(S ' —Sp —Sr )

( o44)—1/2S

can be interpreted as "effective" surface densities of
mass and angular momentum, including contributions
from the gravitational field and energy of rotation.
For the Kerr disk, Kqs. (12) give

o if'& ———(m/2su' cos't )u cosf df u sin/ d k, i(13)
XdZ2 ———L(m sin'f)/4~u cos'fju cosf'dl usinf dg. (14)

The integrals of (13) and (14) diverge as l ~ -'x. Hence,
if Eqs. (11) are assumed to retain a meaning in the
present case, the singular ring r=0, i'=-', s. must con-
tribute infinite positive mass and angular momentum.

III. SURFACE CHARGE AND CURRENT

We begin by deriving the electromagnetic analog
of the gravitational jump conditions (6) for an arbitrary
charged surface layer.

Starting with arbitrary intrinsic coordinates P, P,
and P in the layer, we extend these to a system of
four-dimensional coordinates x by a Gaussian construc-
tion": x =P, x'=&(normal geodesic distance from
layer), so that gi =alii Maxwell's . equations, (4ir) '
X8„((—g)"'F""j= (—g)"'J"= (—g)"'j"h(x'), integrate
to t

Fi'$=4vrj". Here j" is the surface current and
j denotes a jump across the layer. Our result can

be more conveniently written

2' J. L. Synge, Relativity, The General Theory (North-Holland,
Amsterdam, 1960), p. 35.

Pe(.) F.pnoj=4rrj. ,

in which j~=j e( )~, and the left-hand side may now
be evaluated in arbitrary four-dimensional coordinates,
since it is a 4-scalar dependent only on the intrinsic
coordinates P.

consider now a stationary field due to any (non-
singular) axisymmetric surface distribution of charge
and current such that (in canonical quasispherical
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0=

shell

shell

( g44) I/2g-/dg'

( g44)
—I/2 judg

(16)

To obtain the charge and current distribution on the
Kerr disk, we compute Ii p

——B„Ap
—BpA at r=O from

(3). The nonvanishing components are

F12= (e//I) tan2t, F14= —(e/a2) esc12' (17)

We then find, from (5) and (15),

gQ qpQ

where
v = (0, 41 ', 1)k seel

is a unit timelike vector orthogonal to I, and the
surface charge density is

It = —(e/22r/22) sec2f'. (20)

The integrals in (16) diverge to —0O as f —+ 22r,

indicating that the ring carries infinite positive charge.

IV. A CLASSICAL MODEL FOR THE ELECTRONP

Fl olll R colllpRI lsoll of (3) with the Rsylllptotlc
formula

A 2=/4(sin2t/)/r (r —+ ~ ) (21)

for an axisymmetric stationary magnetic field of dipole
moment p, a curious result emerges's: The Kerr-
Newman field is characterized by a gyromagnetic ratio
/t4/ma=e/m. This ratio is twice that of a classical
distribution having a constant ratio of charge and mass
densities, and coincides with that of the Dirac electron.
It is of interest to examine whether the "unrenormal-
ized" distribution over the Kerr disk exhibits the same

gyromagnetic "anomaly".
In EncHdeae space the magnetic moment defined by

(21) can be re-expressed as an integral over the source
distribution. %e postulate a disk source, represented

by r= 0 in oblate spheroidal coordinates Lsee Eq. (25)],
in terms of which the Qat space-time metric is

ds2= (r2+o2 cos'e)C dr2/(r2+o2)]

+ (r2+/I ) sin2g dg —dp. (22)

Then the integral for p, is

m /2 2m

p= j~e cosf dg e sing dye,

0 0

with t defined as in Sec. II.
2 G. C. Debney, R. P. Kerr, and A. Schild, J. Math. Phys.

cooldlllRt;es)

A4= —%, A2=0(r ') (r l ~).
By integrating Maxwell's equations over all space, it is
readily shown that

In general, there is no analog of (23) in a curved space.
However, it is possible to associate a Rat space-time
with the Kerr-Newman manifold by identifying points
having the same coordinate labels in (2) and (22).
LBecause .the Kerr-Newman metric (2) can be in-
variantly decomposed' as (2)= (22)+(k dx )', where
k is either of the two Debever principal null vectors,
this apparently arbitrary association actually has an
invariant significance. ] Equation (23) is then an
identity provided we insert a new "effective" source
distribution j, computed from the 6eld (3) by using
the auxiliary flat metric (22) in place of (2). The only
change in our previous formulas (18)—(20) is that /2 is
ieplaced by unity~ and we obtain

j4= —(e/22r/I) (sin2f)/(cos2t ) .

Comparing with (14), we obtain for every annulus of
the disk the gyromagnetic ratio e/m.

It thus appears possible to account for some of the
spin properties of the electron on a purely classical
basis by visualizing it as a Kerr-Newman disk having
angular momentum ma=22k and diameter 2a=k/m
equal to the Compton wavelength. Since the disk
material has negative mass, the electrostatic repulsive
forces normal to the plane of the disk would tend to
draw the material doser together, and the thin disk
structure would actually be stable for

~
e

~
)m. Whether

such a model is to be taken seriously is a question we
shall not pursue further here.

V. NEWTONIAN ANALOG

tA'hat Newtonian field yields the mass distribution
that we found in Eq. (13) for the Kerr diskP For
simplicity, we shall confine ourselves here to the un-
charged case.

Consider the scalar held in Euclidean 3-space:

V= —22m(R2 —22/IR cosO~ —/22) '"
——2m (R2+ 22aR cos0—/12)

—'/' (24)

(R, O~, and g are spherical polar coordinates). This
function is obviously harmonic, being formally the
potential due to two masses of ~m placed at imaginary
points (R=2a, 0~=0) and (R=2a 0~=2r) on the axis of
symmetry. To make V single-valued we postulate that
in (24) the positive square roots be taken on the
equator 0&=-',x, E&a, and that V be extended to other
parts of the complex Re'8 plane by analytic continua-
tion. It is then necessary to consider the disk 0+= ~w,
g& g as a branch cut.

Introduce oblate spheroidal coordinates r, 8 defined by

R cosO~=r cos0, R sinO~= (r2+a2)I/2 sin|/ (25)

(see Flg. 1). Thell (24) slnlpllf les to

V = mr/(r2+/12 cos2t/) . —

10, 1842 (1969). I am much indebted to Dr. E. T. Nev. man for
calling this reference to my attention.
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The potential becomes singular at the ring r = 0, 8= ~w,
and its normal derivative is discontinuous on the disk
r=0. For the surface density of the disk, we obtain

= —m/2m. a' cos'f,

in concordance with (13) O is defined as in Sec. II).
Expansion of (24) in spherical harmonics gives

m Q 2Ã

V= —P (—I)"+' — E2„(cosO)
g n=O E

= —m/R+ (ma'/E')Pg(cos0) —~

The quadrupole moment ma' agrees with that of the
Kerr metric. ' "

pq ——(r'+a') sin'9 j=—C

and the total energy

I = —,'gggx~x~+ V.

The Hamilton- Jacobi equation

BS 8S 8S
+xgAB +P' —0

Bt ()x~ 8x

(27)

has the separable solution

VI. ORBITS IN THE NEWTONIAN FIELD

For a particle on the axis of symmetry in the New-
tonian field (26), conservation of energy is expressed by

~r'2 mr/(r'+ a—') =E,
the dot denoting a time derivative. For r& ~a~, the
gravitational force becomes repulsive. Only a particle
w'ith sufficient energy to escape to infinity can penetrate
the repulsive potential barrier of the disk. Since V=O
when r =0, particles moving in the disk experience no
gravitational force. These results are in full agreement
with the relativistic analysis. ""

The general orbital equations can be integrated by
separating variables in the Hamilton-Jacobi equation.
The kinetic energy in oblate spheroidal coordinates is

j2
—',g x x =-', ( '+c'coc'9) —+8')

r2+a2

+~(r'+a') sin'8 j'.
Two constants of the motion are the angular momentum

where Sg and S~ satisfy

—(r'+ a') (dSi/dr)'+ 2Er'+ 2mr+ a'C '/(r'+ a')
=E= (dS,/d0)' 2E—a' cos'0+4'/(sin'8)

and E is a constant. The equations p&=dS2/d0 and

p, =dSi/dr now yield

(r'+a' cos'8) 8 =&LE'+2Ea' cos'8 —C '/sin'8j"' (29)

(r'+a' cos'0)

r2+ a 2

g2@2 1/2

—E 2' 2 2mr (30)
r +Q

Equations (27), (29), and (30) determine p, 8, and r
as functions of time. Essentially the only difference
between the Newtonian and relativistic equations' is
that the latter contain extra terms in a4 corresponding
to rotational dragging effects on local inertial frames,
which naturally cannot be reproduced in a purely
scalar theory.

We conclude by showing that, just as in the relativ-
istic case, ' no freely moving particle can strike the ring
singularity r=O, 0=-,~ unless its orbit lies in the
equatorial plane.

H r = 0, 19= 2x is a point on the orbit,

follows from (29) or (30). By combining these two
equations we then obtain

cos0 (2a'E —4&'/sin'0) '"

$2rgr+2Er' r4'/(r'+a') j' (r—'+a )'i

assuming the orbit does not lie entirely in the plane
0=-,'z. The last equation is incompatible with our
assumption that the orbit includes r=0, 0=-,'m, since
(for m)0) the right-hand integral tends to a finite
limit as r ~ 0, whereas the left-hand integral becomes
infinite as 0 —+ ~m. This contradiction establishes our
statement.

Pole added im proof Dr. W. J. S. arill kindly points
out that H. Keres" has devised a "correspondence prin-
ciple" for associating Newtonian with general rela-
tivistic fields, and has applied his principle to the Kerr
metric, thus arriving by a completely independent
route at the Newtonian analog of Sec. V.

"H. Keres, Zh. Eksperim. i Teor. Fiz. 52, 768 (1967) )Soviet
Phys. JETP 25, 504 (1967)).


