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Several applications of a simple approach to unitarization in the case of the three-point functions of hard-
meson theory are made. For the erst of these, effective-range formulas are obtained for the pion form factor
in the timelike region for both hard-pion current-algebra (8 = ——,) and Veneziano models. Next, the exten-
sion of this procedure to the case of several coupled channels is used to obtain an effective-range formula
for the pion form factor which includes the small effect of the closed EE channel. Finally, an expression for
the pion form factor is derived which allows for the inclusion of some nonresonant p-wave (I=1) ~~ scatter-
ing. Since this component is parametrized via the introduction of an additional (nonresonant) p-wave
scattering length, the resulting expression for the pion form factor generates a one-parameter family of Qts
to the experimental data. The data appear to be consistent with a small positive nonresonant scattering
length and favor a value of Fp slightly less than 124 MeV.

I. INTRODUCTION
'N a previous communication' dealing with an ap-

~ - proach to unitarization in hard-meson calculations
in the case of three-point functions, it was shown how
effective-range formulas may be derived by the applica-
tion of the principles of unitarity and meson dominance,
assuming real tree form-factor inputs. In the case of the
pion form factor, we' are led to the selfsame hard-pion
effective-range formula derived earlier by Brehm, Golo-
wich, and Prasad' from the specific hard-pion current-
algebra method of Ward identities. ' Important features
of our derivation' are its independence of any particular
current-algebra procedure which produces hard-meson
results and its easy extension to other three-point
problems, e.g. , the m-A&-p system. Such an extension,
along with the appropriate application to a hitherto
intractable problem, the calculation of the soft m+-vr

mass difference for subtracted tree form factors, was
undertaken in our previous note. ' In this paper we are
primarily concerned with increasing the range of ap-
plication of this procedure; as before, we find the pion
form factor well suited for purposes of illustration.
After some recapitulation below, we turn to a considera-
tion of the perturbation produced by an additional
coupled two-particle channel in our approach, specifi-
cally the effect of the EK channel in the case of the
pion form factor, in Sec. II. The resulting expression
for the pion form factor is still a "zero-parameter"4
prediction in the sense of Ref. 1. On the other hand, in
Sec. III, we show how the unitarity-preserving addition
to the resonant p-wave (reducible) amplitude of an
admissible small nonresonant scattering (irreducible)
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tion, under Grant No. GP-7082.

' R. Rockmore, Phys. Rev. Letters 24, 541 (1970).
J. J. Brehm, E. Golowich, and S. C. Prasad, Phys. Rev.

Letters 23, 666 (1969).
3 H. J. Schnitzer and S. Weinberg, Phys. Rev. 164, 1828 (1967).
4 There are no free parameters in the one-channel approximation

if the parameter 6 (which essentially characterizes subtractedness)
has the value 5 —-', which fits both A& and p decay. (8 is the
parameter 8 of Refs. 1—3.) In the two-channel approximation of
Sec. II, for want of a better modus operandi we again take B~
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amplitude can generate a "one-parameter" family of
pion form factors which allows for some additional
freedom in fitting to experiment.

To make things simpler, we present first a capsule
version of the derivation of our approach' Lin the case
of the pion form factor F(t)7 to which we may later
refer when discussing possible modifications. Thus for

(oI l'."'(0)
I '(p) (q) )=F (t) (—p+q). , (&)

we have the usual two-particle unitarity relation in the
ver region,

AbsF(t) =F(t) (e'"' sinbn)*, t&4m '

with the partial-wave projection given by'

(p' —a') (p —ri)
e '~» sinbil ——— — I'l

327r2 4e

)&(7r+(p')~ (q') inl I"+"&'~(0)
I +(p))

I („~,=~,).

The mutilation of the xw amplitude, '

(~+(p')~ (q') inl J" '"'~(0) l~ (q)&
—F*(t)(—p'+q') „g,

—'L( — +m p')

X(OI V, & &(0)
I +(p) -(q) out)7 ..., (4)

which is suggested by considerations' of reality, reduci-
bility, and vector dominance, yields the "effective-
bubble approximation" of Ref. 1,

where

e3
AbsF(t) = IF(t) I'

gt 12~F.'m, '

f(t) ( p+q). —
—

I (m 2 t)(ol V &3&(0)lvr+(p)~
—

(q) out)7, ... (6)
and

gp =2F7r 8$p .

' As in Ref. 1, Q(t) = (-,'t —m ')'" with t = —(p+q)'.
'We discuss the form-factor approximation in an oR-shell

context in the Appendix.

593



RONALD ROCKMORE

Hard-pion current algebra gives

1+8
f(l) =m, '(1—

4 mp'

while from considerations of the Veneziano model, ~

(Sa)

21'(f) 1"(s—s«)
(t) = ——

v21rb 1'(5/4 —s'n()
(gb)

with b 1/(2m, '), (r1 bt+-', .
In Ref. 1 the "solution" of the unitarity equation,

Eq. (5), was argued from the standpoint of dispersion
relations, but note that that solution is also obtained
if one utilizes the device of dispersing only the phase-
space factor Q/gt. Thus one introduces

Ii g

I

with

h(t) —h(0) = —t
dt' Q(t')

.Qt't'(t' —t) I ti
i I

zoo 4oo moo 6oo 7oo Soo coo

2Q(t) Qt+2Q t~Q(t)
— ln — — —, t&4m '

2m.

2IQ(t) I &ltl+2IQf
ln t&0

2m.

2IQ{t) I—tan ', 0&t&4m '
2fQI

h{O)=1;
then the "class of solutions" of {5),of the form

(10)

f(t)Q'Lh(t) —h(0)]
Lp(t))—'=1+t(polynomial in t)+-

12K F~ mp

reduces on making the one-parameter linear (in t)
appl oxlmatlon

6 (Mev)

FIG. 1. Results of the form-factor calculation in the timelike
region. The solid line is the prediction of hard-pion current algebra
(5 = ——', ), while the dashed line is that of the Veneziano model
of Ref. 7. The closed circle refers to the experimental results of
V. L. Auslander et al. (Ref, 8), the closed triangle to that of J. E.
Augustin et al. (Ref. 8).

only 5%%u~ lower than that predicted by hard-pion
current algebra for the favored value' of 6 = —-'„so
that both models would appear to fit the data equally
well. Finally, we remark that I'p~116 MeV in the
Veneziano model as compared with the currently
favored value I", 124 MeV (for b = —-', ) in the
former case. '

II. PION FORM FACTOR AND EFFECT OF
(CLOSED) XZ CHANNEL

f(t)Q'h(o)
t(polynomial in t) ——

12K Ftr mp

f(0)m 'h(0)
+ttt (»)

127r'F 'mp'

Our procedure is easily extended to several coupled
two-pseudoscalar-meson channels; in the case of the
pion form factor, we are led to a matrix version of the
unitarity equation, Eq. (5),

AbsF(t)=(1/121rF. sm ') Tr+r(t)(o(t)F(t)ff(t). (13)

to the one-parameter solution of Ref. 1,

f(t)Q'h(t) f(0)m 'h(0)
LP(t)3 '=1+Pt+ + — —.(12)

1271'J'.'m p' 12m'J" 'm '

&n»g. 1 we have plotted
I
Pl' rn the timelike region

for both the hard-pion current-algebra model LEq.
(&a)7 (solid line) and the Veneziano model LEq. (8b)]
(dashed line). Note that the peak in the latter model is

'H. Suura, Phys, Rev. Letters 23, 551 (1969); 23, 1007(E)
(1969).

One can then determine the perturbation on the pion
form factor which results from the coupling to the
(closed) EE channel. Prom considerations of hard-
meson current algebra, ' one has

'Our p»t of f 7(tl ' as predicted by bard-pion cnrreIlt algebra
(8 = —&) is identica with Fig. 1(a) of Ref, 2. We have also
plotted the experimental points plotted there, i.e., the experi-
mental results of V. L. Auslander et al. , Phys. Letters 258, 433
(1967); in Proceedz'ngs of the Fourteenth International Conference on
IJigh-L'nergy Physics, Vi erma, 196h' (CERN, Geneva, 1968)
(closed circles), and those of J. E. Augustin et al. , Phys. Letters
288, 508 (1968) (closed triangles).

9 Y. Ueda, Phys. Rev. 1'74, 2082 (1968).
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1+8.
f (i)= f.(i) =m, '(i—

4 mp'

f~(t)=—fx(&) =m. ' 1— gag

2m ' F~'m~~'

8~g+~ mp
&&(mx, ' m—')+ . (15)

FQ m+g

Our solution to the unitarity equation for Fi(t) [or
F(t)] follows from the ansatz F;=&]&(t)f, (t), with'o

Lf (t)]'-
AbsF(t) = lP(t) l' ~.(~)f.(t)+~ (~)——;(16)

2f-(&)—
thus, "

of the parameters characterizing the EK channel. If we
make the convenient, ' though not at all necessary,

simplification 5 =8~———» then there still remains'2

1&Fir/F & 1.3, with either mx„1320 or 1260 MeV.
Furthermore, the possible existence of the ff: meson' "
will have some effect on our result. In spite of these un-
certainties, we do 6nd, for example, that the conglom-
erate parameter (grr„'/Fx'm)r~') (mx„'—m, ') does not
show much variation. For b =6~= ——'„we 6nd that a
reasonable value for

1 (g—x'—/F x'mx~')(mx~' km')—

Q.'(r) f, (t) m. '
F(t) =12irF ' 12vrP. '+p/+ — fi (r)+—

1 Qx'(&) [fx(&))'
+ —— — &x(&)+ ——

2 ~m, 'f, (),) 27r

where, below the XI threshold (t&4mrr'),

is g~0.7."If, as in Ref. 2, we compare

(1&) with
2 f"-' LQ-(m, ')]'

p

3 4z mp'

a 12irF, ' '3 —l), [Q,(m, ')]'
d& F(),), 4

Unfortunately, in the numerical evaluation of the
expression for l P (/)

l

' which results, we are confronted
with the rather wide yet permissible variation in several

then we obtain the Kawarabayashi-Suzuki-Riazuddin-
Fayyazuddin. (KSRF) relation'4 modified by the factor
i4(3-8„) within 0.1%. (In the same comparison in
Ref. 2, this result was obtained within 5%.) Moreover,
the change in the p-wave scattering length obtained
from

mp

{1+-,' g (4[Q.(m, ') ]'/m, '—1)}'

{4[Q-(m.')]'/m. '}'{1+4(3—~-)m. '/LQ-(m. ')]'}
m ', 3 —8 m'

&& tan-' —— 1+ — (22)
(mx' —m. ')'(' 4 [Q.(m, ')]'

4

1 mrr ' (2—g) ' l Qx(m, ')
l

' mp——
cotta~ j —14.9m ' =m ' ——— +- tan —'—

2~ m, (3—s.) ~m, m. ' 2l Qx(m, ')
l

-4[Q.(m, ')]'

is just 0.1m.2. The shape of
l
P(t)

l

' is only very mildly
depressed on the low side of the resonance by the cor-
rection and very mildly enhanced on its high side; there
is no significant alteration in the peak height. Alto-
gether, the KK channel appears to constitute a negli-
gible perturbation in this model.

III. PION FORM FACTOR AND EFFECT OF
NONRESONANT P WAVE {I=1)~~-

SCATTERING

So far in our discussion of the pion form factor F(t)
we have assumed the validity of the (unitary) form-

10 p;(t) =Q (/)/Qt (i=~, E), gath Q;=(-'t —W )'".
"Note that there is an additional factor of 2 arising from uni-

tary spin considerations in the case of the subchannels (E+E )
and (E0E').

factor approx1mation to T~~, namely, "

Tyy= -- —8 slnkyy
O'F(t)f(~)

Qyymp 2
(23)

However, it is realistic to expect an additional small
nonresonant contribution to Tii (what is effectively the

"I. S. Gerstein and H. J. Schnitzer, Phys. Rev. I'75, 1876
(1968).

"This value is close to that obtained using the values FE/F,
=1..2, F,/F =0.2 LS. Okubo and V. S. Mathur, Phys. Rev.
Letters 23, 1412 (1969)g, or ruth F~/F =1.1, F,/F =0.6.

'4 K. Kawarabayashi and M. Suzuki, Phys. Rev. Letters 16,
255 (1966); Riazuddin and I'ayyazuddin, Phys. Rev. 147, 1071
(1966)."Ke drop the subscript ~ on the variable Q henceforth;
@II——12vrF ' as in Ref. 2.
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previously' neglected irreducible amplitude) arising from

p and e exchange in the crossed-channel plus seagull
terms. "Such a (unitary) nonresonant contribution can
be easily accommodated in the construction of T~~ with
but slight modi6. cation. We dehne

which in our simple model reduces to

~f(&) ~f(0)
I'(t) = ———

KttStt(t) xttStt(0)
(33)

Ttt ——Q'G(&) f(t)/attmp' jftt, (24)

where tqq is the nonresonant amplitude which satishes
(elastic) unitarity by itself,

Imf»=(Q/g~) l~»lr,

ImT»=(Q/4&) I
T'rtl', &&4~.'

The resulting "phase-modified" pion form factor,

(34)

It is a tedious matter to show that TI~ given by Eq.
(24), with G(f) given by Eq. (29), does indeed satisfy
elastic unitarity,

One might conveniently write such an amplitude tqq as j 1

at =Q'&tt/&tt(&), (26)
( )

F(r) = 1+pl
8

X)tt(/) =1+9lttQ'h(f)/7r, (27)

thereby enabling the introduction of the nonresonant
p-wave (I=1) scattering length att'=1/Ktt as a free

parameter. In our earlier dispersion solution for F(t),
we had to deal with the subtracted integral

(
f(&) f(o)

X ——,(35)
X&»(t) x)tt(0)

satisfies both elastic unitarity,

ImF (f) =F*(t)(Q/Q&) T»(t), f& 4m. ' (36)

dr'Q'(t') f(~')
I(&)= —

&

„„„(Qf)&'(&' —&)

this was replaced with

(28)
as well as the normalization condition F(0) = 1.As in our
earlier discussion, P is determined by requiring that
ReLF(m ')j '=0. Thus

P=Lmp'ReSrt(nap') j '

I.„--(&)=Q'(&)f(&)h(&) —Q'(o)f(o), (29)

which satisfies the weaker requirements of local uni-
tarity. ' Now, in the presence of left-hand singularities,
etc. , the subtracted integral (28) is changed to

f(m p') f(0)
&( —Rentt(mp') 1+ —,(37)

m p'$ m, 't X)t t(0)

I'(~) =

G(~)= [m (~)]' 1+p~
Gggz PE p

di'Q'(t') f(t')
(30)

50-
= O. I

The integral (28') can be evaluated with the aid of an
old trick. '~ Since

20—

jo-

ch'f(t')

z»r'm»(f) (&' —&)

(32)

'6R. Arnowitt, M. H. Friedman, P. Nath, and R. Suitor,
Phys. Rev. Letters 20, 475 (1968)."R.Rockmore, Phys. Rev. 151, 1228 (1966).

P(() can be transformed into a contour integral around
the elastic cut

I I
41

I I

300 400 500 600 700 800 900

Ct, Mev

Fro, 2. Comparison of calculations of ~J'(r) ~' for the three
values of the parameter (= (g»/gII'}, $ = —0.1, 0, 0.1. @11——12~1' '
and aII is the p-wave scattering length associated with permissible
nonresonant p-wave (I=1) m.m. scattering. The solid line refers to
the form-factor approximation (=0. The experimental results of
Ref. 8 are plotted as in Fig. 1.
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with
&&'1I/&r 11 ~ (38)

APPENDIX: FORM-FACTOR APPROXIMATION
IN OFF-SHELL CONTEXT

Of this one-parameter family of pion form factors F(t),
those corresponding to the values of $= —0.1, 0, and
0.1 are plotted in Fig. 2. The experimental data appear
to be consistent with small positive $, i.e., small posi-
tive %». Since the width is given approximately by

I'&—(124—54 7$) Mev, (39)

for small 3, a slightly smaller p width seems indicated.
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cility available to us. this requires that one study the absorptive part"

(A1)

"bsT"=-' & (2~)'~'(n —(p —q))(~+(p)
I

AP" '"'~(0) ln)(nl V."'(o)
I
o)

——', Q (2&r)'t&'(n' —q)(7r+(p) I
V, "&(0)ln')(n'I A„&' "&'~(0)I0)—=AbsT„„&'&—AbsT„„"&. (A2)

n'

In the case of a 6nite p width, one need concern oneself only with AbsT„„(";in pole-dominance calculations, this

is given by

AbsT„,"'=2 m&&((p —q)'+nt ')(~+(p)
I
A &'-"» '(0)

I
p'(p —q); x&(p (p —q); xl v„& &(0)

I
o&. (A3)

In our procedure, we replace the intermediate p'-meson state in (A3) by the appropriate two-pion state, so that

1 dp dq 1
Abs T„„&"= — — (27r) 4t&'(n (p q—))—

(2~)' 4~(p')~(q')
&&(~+(p) I A." '"'~2(0)

I
~+(p')~ (q') in&(~+(p')~ (q') inl V."'(o)

I o) (A3')

Then the proper mutilation of the off-shell amplitude (x+(p) I A„" 2"~2(0) I7r+(p')m. (q') in) is

(+(p)IA„'—" '(0)l +(p') —
(q') i

d'x e ""(7r+(p)
I
T&LA„" '"'~(x) V&, "'(0)]l0&l (p+q)'+nt, ']

&&g -'(ol v, &»(0) l~+(p')x-(q') in&, (A4)

with the "tree" amplitude to be given by a pole-dominance calculation; thus we have to deal with

AbsT„„(')= dQ
8 (2&r) 'Qt

d'x e "*(7r+(p)
I
T[A p&' "&'~(x)

v~'"(0) jl0&L(p+q)'+~ ') g 'IF(t) I'(p' —q')~(p' —q')'
tree

S. G. Brown and G. B. West, Phys. Rev. 168, 1605 (1968).


