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a possibility would lead to reexamination of soft-pion
theorems which work rather well in other applications.

In conclusion, we observe that if $ as determined
from E» decay turns out to be large ($= —1) as
claimed, " the theory will be hard put to explain such
a result. A ~ meson is certainly necessary, and its
properties are such that Gell-Mann —Oakes —Renner
type of symmetry breaking is ruled out. Further, if

"For a recent report on IC~3 decays, see I, Cronin, in Proceedings
of the Fourteenth International Conference on High-Energy Physics,
Vienna, 1066' (CERN, Geneva, 1968).

such a meson is broad, then in the pole-dominance
approximation, (3*,3)P(3,3*)-type breaking, as well
as soft-pion theorems, are ruled out. As pointed out by
Dashen and Weinstein, the alternative is to give up
p-e universality and/or current algebra.
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We have evaluated a contact interaction between the protons using the vector currents and wave func-
tions provided by the relativistic O(4,2) model. The resulting enveloping differential cross section at
s= ~ is discussed and compared with experiment over the entire range of accessible momentum-transfer
values.

I. INTRODUCTION

~ 'HE purpose of this paper is to suggest a formula,
Eq. (6), for the infinite-energy limit of the X-1V

differential cross section do/dt. The result is based on
the use of a covariant wave function for the nucleon
which takes into account its composite structure (e.g.,
excited states N~) and also based on a postulated con-
tact interaction of the J„J& type. We shall see that at
high energies (s —+~) this interaction gives a finite
contribution to do/dt, when the contrib. ution of all other
interactions has died out.

II. VECTOR CONTACT INTERACTION

The relation between the p-p scattering and the
electromagnetic charge form factor of the proton was
erst suggested by Wu and Yang. ' More recently,
Abarbanel, Drell, and Gilman' have considered a vector
contact interaction between the protons with phe-
nomenological form factors Dor

~
t

~
)4(GeV)']. Since

it is possible to describe the composite structure of the
proton covariantly by an infinite-component wave

*Supported in part by the U. S. Air Force Once of Scienti6c
Research under Grant No. AF-AFOSR-30-67.

f Present address: University of Colorado, Boulder, Colo.
T. T. Wu and C. N. Yang, Phys. Rev. 137, B708 (1965); see

also N. Byers and C. N. Yang, ibid. 142, 976 (1966);T. T. Chou
and C. N. Yang, in Proceedings of the Conference on High-Energy
Physics and nuclear Structure, edited by C. Alexander (North-
Holland, Amsterdam, 1967), p. 348; L. Durand III and R. Lipes,
Phys. Rev. Letters 20, 637 (1968).' H. D. I. Abarbanel, S. D. Drell, and F. J. Gilman, Phys. Rev.
Letters 20, 280 (1968); Phys. Rev. 177, 2458 (1969).

function ip(p), one can consider, among others, contact
interactions of the form

g,tp'(p3) O,g (pi) tp (p4) 0'ip(p~) (1)
to describe the simple momentum transfer between two
composite particles without any exchange of consti-
tuents. This was done in a previous paper' for the scalar
interaction, i.e., 0;=I. In this paper we consider the
more interesting case of vector interaction. More
precisely, we write the amplitude in the form

A =gi ((n~p~
~
J„(nipi)(Fi4p4( J"

( n2p~) —exchange), (2)

where gi is a constant,
~ np) is the state of the nucleon

of momentum p and other quantum numbers fi, and J„
is a vector operator to be specified. For the wave func-
tion, we use the relativistic O(4, 2) states used in the
derivation of the form factors and mass spectrum of
baryons, ' and in I. The current operator J„in (2) is a
function of the O(4, 2) generators and of the momenta.
It will be taken to be more general than the one used in
obtaining the electromagnetic form factors because here
it need not be a conserved current. From Eq. (2), we
can calculate the contact amplitude for any reaction
of the form

+I++II~+III++IV
where E', Ã", . . . are arbitrary nucleon resonances E*
in the O(4, 2) tower (the nucleon being the ground state)

'A. O. Barut and D. Corrigan, Phys. Rev. 172, 1593 (1968),
referred to as I.

4 A. O. Barut, D. Corrigan, and H. Kleinert, Phys. Rev. Letters
20, 167 (1968).
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by appropriately inserting the quantum numbers n;.
For the j= —,

' states one can simplify the calculation, for
then from general invariance considerations we can write

(n3p3l J„lnipi)= fi(t)u~y„ui+ f2(t)(k/2m)u~o„, g"ui

+f8(t)(1/2m)usq)'ui, (3)

where now the I's are the Dirac spinors and the form
factors f;(t) are determined from the matrix elements
on the left.

The calculation of the amplitude for this case is
discussed in the Appendix. We give the 6nal result in
terms of the five helicity amplitudes:

M =M-++;++=f '(&)[(yb 2&)—I4 ')+ f"(&)L &*)—+f '(&)[ &b)—+f (&)f (t)[ 2&l—m)

+fi(t) fm(t) [0]+f2(t) f3(t)[0]+fi2(u) [(2nd —yt/n) (4m') ']+f22(u) [nb (1+5)]+fm'(u) [—tb]

+f,(u)f, (u) [2nblm)+f, (u)f, (u)[0]+ f,(u)f, (u)L0],

M I=M++.,+ f,'(t)[———y]+f,'(t)[ ty]+ f—,'(t) $&y]+fi(t)f,(t) [ny/m]

+fi(~)f3(~)[0)+f2(~)f3(t)[0)+fi'(u)l:y]+f~'(u)[ —nay]+f~'(u) [n~y]

+fi(u) f2(u)[ —ny/m]+ fi(u) fs(u)[0]+ f2(u) fs(u)[o],

M4 =M++—, f.&'(t)——ft/n]+ f2'(t) [(n+sb) t/4m')+ fP(t)[—st'/4m'n]+ fi(t) f2(t)[—8/m)

+f,(t)f,(/) [0)+f,(t)f,(t)[0)+fP(u)[ b)+ f22(u)[(st n')b/4m']+ f,'(u) [ nsb/4m']

+fi(u) f2(u) [nblm)+fi(u) f3(u) [0)+f2(u)fs(u) Lo]

M);=—M+ :+—= f-(i~)[yb/4 m)+ f2'(~) [)'b)+ f3'(~)[ )'b]+ fi—()')f2(~)[0]
+fi(t) fm(f)[0]+ f2(t) f8(t)[0]+fi'(u)[ —b]+f2'(u)[(st n')b/4—m']+ fs'(u)[ nsb' /4m' )

+f (u)f2(u)L —&/m)+f (u)f (u)[0)+f (u)f (u)l:o]

Ms= M+ ., +=fi'(t)[—)I/n]+ f2'()I)[—(n+ sb) t/4m']+ f))2(t) [st'/4m'n]+ fi(t) f2(&)[&/m]

+fi(t)f,(t)[0)+f2(t) f 3()')[0)+fi2(u) [yt/4m'n)+ f,'(u) [—M)+ f82 (u) [tb]
+fi(u) f2(u) [0]+fi(u)f~(u) [0)+f2(u) f~(u) Lo]

(4)

in which

n=s 4m', b=—1+3/(s —4m'),
x= 1—t/(s —4m'), y= 2s —4m',
y= (2m) '[ stb(s 4m'—) ']"'—m=—my/

and the remaining three amplitudes a,re just the nega-
tives of M3. Within the context of the O(4, 2) theory, the
form factors are determined as we have mentioned. Also,
if we use the particular model developed for the electro-
magnetic form factors, 4 we obtain

f,(t) = (1—t/4M')-&(1 —at)-'[1—t(u/4m' —b(&))],

f2(t) = (1—t/4m') '(1—at) '()a —[1+tb(t)])/2m g (5)

f))(t) = (1/2m)(1 —at) ',
where

b(t)——(1—at) '(0.168+0.524/)
and

a = 1.41 (GeV/c)'

p, = 2.79, total magnetic moment.

The parameters in the current, in particular e, are
determined from other considerations. 4 Thus we have
only one new over-all normalization constant g&. We
determine this over-all constant as follows. The ampli-
tude (2) is a real amplitude. The complete amplitude
will have a very large imaginary part at large but 6nite
energy due to the exchange of mesons which, for

example, can be parametrized by Regge terms. The
reason for the amplitude (2) is that for s ~~ the Regge
terms will vanish and we will get a real residual term
expressing the composite structure. Therefore, we can
obtain gr from the ratio A=Red(s, t)/ImA(s, t) if the
only real part of the amplitude at high energy is the
term (2). At t= 0, the ratio R is measured' and, because
a Pomeranchuk. term is pure imaginary, we can deter-
mine gy from its experimental value. In practice this
determination would be ambiguous, because secondary
Regge poles and cuts give also a real part. (The exact
value of R is not very critical at the moment, because
of the log scale in the figure. )

The result for da/dt is shown in Fig. 1 together with
the experimental points at various energies. The
in6nite-energy limit is given by

d0
=gr'Ss (2m)-4 1— (1 at)—

dt .- 4m'

pt
X 2 1—— +2m'(2m) 4)',2

4m'
Ij,t

+4 '(2m) 't(1 — (6)—
4m'

' K. J. Foley, R. S. Jones, S. J. Lindenbaum, %. A. Love, S.
Ozaki, E. D. Platner, C. A. Quarles, and E. H. %'illen, Phys. Rev.
Letters 19, 857 (1967).
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Pro. 1.DifI'erential scattering cross section for elastic p-p scattering based on contact current-current interaction versus —I, with s as
a parameter. I b(t) WO, f3(t), f3(e) AO. Single normalizing constant used: gv~ =2)&10 ~'.j Comparison with experimental points of
J. V. Allaby et al. I Phys. Letters 288, 67 (1968)j and G. Cocconi et gl. I Phys. Rev. 138, 3165 (1965)j. Cocconi eE g/. represents early
exploratory measurements and is signi6ed by the symbol Q. The other symbols are taken from Allaby et cl.

in units of cm'/(GeV/c)', @=2.79, z= 1.'l9, while

dg
]—8

s~~™
We have further from (6)

In contrast to this, a scalar interactiona between the
protons does not give an s-independent louver limit, but
vanishes like- Z'= LRea(s, O)/rma (s,O)j'—9y 1O 2.

dc'
g
—2]—6

8~+
(&)

We have also evaluated one of the polarization parame-
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ters, specifically,

(10)

In Fig. 2, A is plotted against t for some values of s.

III. FURTHER CONSEQUENCES

If we have the postulated contact interaction, the
following important consequences have to be
emphasized.

(a) The Regge asymptotic behavior of the amplitude
at fixed 1 (t(0) as s~~ of the form s~&'i, n(t)(1 for
f(0, cannot be an exact mathematical input, although
it may be correct at 6nite but large s. Instead, the
s —&~ limit is given in (6).'

(b) It had been conjectured that da™/d& will

eventually dominate da"' '/di (everywhere except in
the forward direction). With the residual amplitude (6)
this is no longer true except in the very forward direc-
tion. Instead, we have

d~"""g/Ch g&' t' (g~/4m2) 2—t2

do' /dh '-" e' (4m')' e'

Finally, we comment on the calculation of the ampli
tude at finite s. One might postulate a Regge term in
addition to the residual contact interaction, as was done
in Ref. 2. However, a single or a few Regge terms do not
account for the observed cross section over the whole
known/ range up to 20 (GeV/c) '. In the formalism using
in6nite multiplets, Regge-type terms arise from the
exchange of such infinite multiplets in the crossed
channel. ' But there is not yet a definite procedure to
calculate such interaction between the meson clouds of

the two protons in a nonphenomenological way.

Pote added in manuscriPt Two re. cent works, in the
meantime, also argue for a real part of the amplitude
and a non-Regge behavior as s —+~: D. Horn, Phys.
Letters 313, 30 (1970); and G. Hohler, F. Steiner, and
R. Strauss, Karlsruhe report, 1969 (unpublished).

=3.4X 109'.

(c) The slope of the diffraction peak at s —+~ can be
evaluated from (6). For small 1, we can write do/dt
=Aes'=A(1+Bt+ .) and compare this expansion
with (6). We find

8=ga —~(2 —~)(2m') ' —3z/s —2m'/s', (12)

which for s ~~ approaches the value 10.96 (GeV/c) '.
The comparison of the slope with experiment at 6nite s
can be seen from Fig. 1.

(d) It is interesting to compare the current-current
amplitude with the lower limit derived from analyticity
assumptions by Cerulus and Martin. ~ This lower
bound is at a 6xed angle and is given by

I A(g, g) I )p ~~& i~' c&e& C(8)~gg

for small angle. In contrast, the amplitude (2) gives at
fixed angle, i.e., s and t large, but s/t fixed,

16ns' cos'8
A (&q6) I 8 go, furst

u' 1—cos'8

i.e., a much slower decrease than (7). Consequently,
there is considerable dynamical information in Eq. (2)
beyond the general principles, and so the hypothesis of
minimal interaction which equates, at high energies,
the amplitude to the lower limit (7) cannot be correct
if there is vector contact interaction.

P(i)

0.3-

0. 1

11.34
15.04 19.16

"0
~ 2

Fxo. 2. Polarization as a function of —t (in GeV') with s as
a parameter corresponding to double p-p scattering. The model
used is one equivalent to double scattering, i.e., a completely
polarized incident beam and an unpolarized target.

6 The point t=0 needs special consideration: If n(0) =1, then
we have a nonvanishing imaginary part of the amplitude as s —+ ~,
in agreement with the optical theorem, so that the experimental
value of da/dt will always remain above the value given by con-
tact interaction. For this reason, an exact determination of the
over-all constant gy and an exact comparison of the slope 8 t Eq.
(12)j with experiment cannot be made.

7 E. Cerulus and A. Martin, Phys. Letters 8, 80 (1964); see also
A. Martin, Nuovo Cimento 37, 671 (1965).

'T. Kinoshita, Phys. Rev. Letters 12, 257 (1964); C. B. Chiu,
J. Harte, and C.-I. Tan, Nuovo Cirnento 53, 174 (1968).

9L. Van Hove, Phys. Letters 24$, 183 (1967); see also R.
Blankenbecler, in Proceedings of the 196' International Conference
on Particles and Fields (Interscience, New York, 1967).
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APPENDIX: CURRENT-CURRENT COUPLING
WITH THREE FORM FACTORS

In the c.m. frame the momenta are given by

P'=m(cosh/, 0, 0, sinh$),

p'=m(cosh), 0, 0, —sinh$),

PB——m(cosh), sin8 sinh$, 0, cos8 sinh$),

P4 m(c——osh&, —sin8sinh&, 0, —cos8sinht).

Hence

s=4m'cosh'g '=2m'sinh'P(1 —cos8).

For the ground state we can use the identification ex-
pressed in Eq. (3) and, consequently, the Dirac spinor
formalism. In the case of two form factors f~ and f~,
the j„j& interaction has been recently evaluated by
Shieh. "We give the general case with three form factors
fr, f2, and fa, whichdoesnotseemtobeintheliterature.
In the c.m. frame of the s channel we evaluate, in the
helicity basis, matrix elements of the form

&p*"(J.(p') = Le '""""""'"'u(o s')]'»j.
)&[e"'&r"& 'u(0, s,)7,

where
r;=+1, i 1,3=

= —1, i=24
with j„given by Eq. (3). Denoting the helicity states
by (pz+&—= (prf&, etc. , we obtain the following matrix
elements (in these X=-',8, where 8 is the scattering angle
in the barycentric system, 3 refers to p3, m—=m„, etc.):

&3+(j"(1+)={(e/m) cosx fz(t), (P/m) sinx[fz(t)+2m sin'X fp(t)+2m cos'X f8(t)],
i(p/m) sinx[fr(~)+2m f2(t)], +(p/m) cosx[fr(t)+2m sin2X f2(t) —2m sin'X f3(t)7},

&3+(j"(1—)= {sinX[f&(t)—2m(P/m)'f2(/)7, 2m(P—e/m') cosX sin'X[f, (~) —f3(t)7, 0,
2m(P—e/m') sinX[cos'X f2(t)+sin'X f,(~)]},

(3+ (j&(2+&={(e/m) sinX f~(u), (p/m) cosx[f&(u)+2m cos'X f2(u)+2m sin'X fa(u)],
i(P/m—) cosx[f~(u)+2mf~(u)], (P/m—) sinx[fr(u)+2m cos'X f~(u) 2m c—os'X f3(u)7},

(3+(j&(2—)= {cosX[f (u) 2m(P—/m)'f2(u)7, 2m(P—e/m') sinX cos'X[f2(u) —fa(u)7, 0,
2m(Pe/m') cosx[sin'X f2(u)+cos'X f~(u)]},

&4+(j„(2+)={(e/m) cosx fr(t), (P/m) sinx[f&(t)+2m sin'X f2(t)+2m cos'X fs(~)],
i(P/m—) sinx[fr(t)+2m f2(t)], (P/m) cosx[fr(t)+2m sin'X f2(t) 2m sin—'X f,(t)7},

&4+(j„(2—)={—sinx[fz(t) —2m(p/m)'f&(t)], 2m(pc/m') cosXsin'X[f2(t) —fa(t)], 0,
2m(Pe/m') sinX[cos'X f~(t)+sin'X f~(t)]},

&4—( j„(2—)= {(e/m) cosx fr(t), (P/m) sinx[f&(t)+2m sin'x f,(t)+2m cos'X f,(t)7,
i(P/m) sinx[f~(t)+2m f2(t)], (P/m) cosX[fr(t)+2m sin'X f,(t) —2m sin'X fa(t)]},

&4—( j„(2+)={sinx[f&(t)—2m(P/m)'f2(t)], 2m(P e—/m) cosx sin'X[f&(t) —f~(t)7, 0,
2m(P e—/m) sinX[cos'X f~(t)+sin'X fa(t)]},

&4+(j„(1+)={—(e/m) sinX f&(u), —(P/m) cosx[f&(u)+2m cos'X f2(u)+2m sin'X fs(u)],
—i(P/m) cosx[f~(u)+2m f~(u)7, (P/m) sinx[ f~(u)+2m cos'X f2(u) —2m cos'X f~(u)]},

(4+(j„(1—)={cosx[f&(u)—2m(P/m)'f (u)7, 2m(P /m') e—sinXcos'X[f2(u) —f3(u)7, 0,
2m(Pe/m') cosX[sin'X f,(u)+cos'X f,(u)7},

&4—( j„(1—)= {(e/m) sinX f&(u), (P/m) cosx[fr(u)+2m cos'X f2(u)+2m sin'X fa(u)],
i(P/m) cosx[f~(u)—+2m f~(u)], —(P/m) sinx[fr(u)+2m cos'X f~(u) 2m cos'X —f3(u)]},

&4—( j„(1+)= {cosx[f&(u)—2m(P/m)'f2(u)7, —2m(Pe/m') sinX cos'X[f2(u) —f~(u)], 0,
2m(Pe/m') cosX[sin'X f2(u)+cos'X f3(u)7}.

Next, we take products of matrix elements and sum over p. With the notation

~++;++= &3+ I
j"

I 1+&&4+ I j~(2+)—&3+ I
j"(2+&&4+ I j~( 1+)

"S. V. Shieh, Kuovo Cimento 53A, 790 (1968}.
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this gives the following amplitudes:

M~=—&3+ I
j"11+&(4+ I j~ I 2+ &

—&3+ I j"12+&&4+ Ij~ I 1+&™++'++
= fP(t) [2(P/m)' sin'X+ (P'+ ~')m-' cos'X]+ f2'(t) [4(P/m) 'm' sin'X(1+ sin'X)]+ fs'(t) [4(P/m) 'm' cos'X sin'X]

+fq(t) f~(t) [8(P/m) 'm sin'X]+ fr(t) fa(t) [07+f2(t) fa(t) [0]
+f|'(u) [2(p/m) ' cos'X+ (p'+ e') m ' sin'X]+ f2'(u) [4(p/m) 'm' cos'X(1+cos'X)]

+fg'( u)[4(P/ m)' m' cos'X sin'X]+ fq(u) f~(u) [8(P/m) 'm cos'X]+fq(u) f3(u)[0]+f2(u) fa(u) [0],
M8—=&3+ I

j"11+&&4+ I j.I
2 —

&
—&3+ I

j"12—&&4+ Ij.11+&™++:+-
= fP(t)[—(e/m) cosX sinX]+ f~'[4m'(P/m) (Pe/m') cosX sin'X]+ fa'(t) [—4m'(P/m) (Pe/m') cosX sin'X]

+f~(t) f2(t)[4m(P/m)(Pe/m') cosX sinX]+ fr(t) fs(t)[0]+ fq(t) f3(t)[0]
+f~'(u) [(e/m) cosX sinX]+ f,'(u) [—4m'(p/m) (pe/m') sinX cos'X]+f,'(u) [4m'(p/m) (pe/m') sinX cos'X]

+f~(u) f,(u)[ 4m—(P/m) (Pe/m') cosX sinX]+ f~(u) f,(u) [0]+f2(u) f,(u) [0],
M4—=&3+ I

j"11—&(4+ I j.12—
&
—(3+ I

j"
I
2 —)&4+ I j.l1—&™++;—

=fq'(t) [—sin'X]+ f2'(t) [—4m' sin'X((P/m) '+ (Pe/m') ' cos'X)]+fg'(t) [—4m'(Pe/m') ' sin'X]

+f&(t)f2(t)[4m(P/m)' sin'X]+ fr(t) f&(t)[0]+fg(t) fg(t)[0]
+f|'(u) [—cos'X]+ fg'(u) [—4m' cos'X((P/m) '+ (Pe/m') ' sin'X)]+ fs'(u) [—4m'(Pe/m') ' cos X]

+fi(u) f2(u) [4m(p/m) ' cos'x]+ fr(u) fa(u) [0]+f2(u) f8(u) [0],
M~=—&3+ I

j"
I 1+&(4—I j.I

2 —
&
—(3+ I

j"
I
2 —&«—

I j.11+&™+-;+-
= fP(t) [(P +~')m ' cos'X]+ f2'(t) [—4m'(P/m)' sin'X cos'X]+f&'(t) [4m'(P/m)' sin'X cos'X]

+fg(t) f2(t) [0]+fg(t) fg(t) [0]+f2(t) fa(t) [0]
+fr'(u) [—cos'x]+f2'(u) [—4m' cos'x((P/m) '+ (Pe/m') ' sin'x)]+ f3'(u) [4m'(Pe/m') ' cos x]

+fr(u) fs(u)[ 4m(p/m)—' cos'x]+ fg(u) fg(u)[0]+ f2(u) fs(u)[0],
M =—&~+ I

j"11—
&&4

—
I j.12+&—&3+ I

j"
I 2+&&4—I j.11—&—=M+-:-+

=fg'(t) [sin'X]+ f,'(t) [4m' sin 'X((P/m) '+ (Pe/m') ' cos'X)]+f32(t) [4m'(Pe/m') ' sin'X]

+fr (t)f2(t)[—4m (P/m) ' sin'X]+ fr (t)fs(t) [0]+f2(t) fg(t) [0]
+f12(u)[—(P2+&2)m—2 sin2X]+f22(u)[4m'(P/m)2 cos2X sjn2X]+f32(u)[ 4m'(P/m)2 cos2X sin2X]

+fr(u) f2(u) [o]+f~(u)fa(u) Lo]+f2(u) fa(u) [o]
and

M2—=M++,. +, M7 —=M+ ,.++, M,=—M+,
are each equal to —&M3 =—M++,.~ }and these labels are in terms of 4X4, X~X2.

The di6erential cross section is given by

or
do. 4x gy' 8

g IM; I
'.

Ct s(s —4m') 2 '-r


