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and @+ coincides with P~ within the experimental error
of a few degrees. " The ~+~ contribution to (12) is
therefore 1.3X10—'. There is far greater uncertainty
about goo, but it is consistent with all reported measure-
ments to say that it has a magnitude comparable to
~p+ ~. The only reported' measurement of g» yielded
a value in the first quadrant, which assures a positive
contribution to (12). We can therefore predict a finite

"D.A. Jensen et al. , Phys. Rev. Letters 23, 615 (1969).

nonvanishing T asymmetry LKq. (10)7 of several parts
in a thousand, independent of any symmetry assump-
tions. The expected asymmetry could vanish only in
the unlikely circumstance that ~g»~ were significantly
larger than

~ g+ ~

and had a phase &00 differing from Pw
by considerably more than 90'.

I wish to thank Professor K. E. Eriksson and
NORDITA for hospitality at the Chalmers Institute of
Technology, where the basic argument was first pre-
sented at a Seminar.
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The complete gauge-invariant matrix element for the decays K ~ 7f.+l vy (l=e or p) is derived using the
soft-photon theorems of Low and of Adler and Dothan. These theorems, along with several corollaries of
them, are reviewed in detail and their application demonstrated by reference to the radiative %&3' decay
mode. The square of the matrix element is calculated using the theorem of Burnett and Kroll, and is com-
pared with the result of a direct computer evaluation of the appropriate traces. Structure-dependent terms
are discussed, and the dominant terms among those linear in the photon energy are estimated in the soft-
pion and kaon limits. Results for the radiative photon spectra are given, together with the decay rates for a
specific value of the minimum photon energy Eo.

I. INTRODUCTION

~ 'HE present paper, which is the sequel to a previous
paper' on radiative E&3+decays, has two purposes.

*Work supported in part by the U. S. Atomic Energy Com-
mission, under Contract No. AT(30-1)-3668$.

)Air Force OfIj,ce of Scientific Research Postdoctoral Fellow,
1968-1969. Address after Sept. 1, 1970: Los Alamos Scientific
Laboratory, Los Alamos, N. M.

f Present address.
'E. Fischbach and J. Smith, Phys. Rev. 184, 1645 (1969);

hereafter called L A compilation of rates and spectra for both
charged and neutral E decays (with different values of Eo) has
also been published. See H. W. Fearing, E. Fischbach, and J.
Smith, Phys. Rev. Letters 24, 189 (1970). With regard to the
comment made in this Letter on the first number in the branching
ratio F (E' —+ ~pv) /F (E —+ xev) published by N. Cabibbo in
Proceedings of the Thirteenth International Conference on High-
Energy Physics, Berkeley, 1966 (University of California Press,
Berkeley, 1967), p. 34, we would like to thank Dr. Cabibbo for
confirming the fact that this number was misprinted and should
read 0.6457 (for charged X decays) and not 0.6487. Details of
Dr. Cabibbo's calculation have been given by C. T. Murphy in
University of Michigan Bubble Chamber Group Research Note
No. 58/66 (unpublished). The correct branching ratios for

One is to discuss in detail the matrix element for the
radiative decay Eo~ vr+1 iy (1=e or p), and then cal-
culate results for decay branching ratios and photon
spectra. The other is to use this calculation as a vehicle
for reviewing a number of soft-photon theorems and
corollaries which are useful for discussing radiative
processes in general. Of particular interest are the
thgorems of I.ow' and Adler and Dothan' for the radia-
tive matrix element, and Burnett and Kroll4 and Bell
and Van Royen for the square of the radiative matrix
element. Additional references to radiative decays are
given ln I.

charged and neutral E decays can be obtained from Eqs. (2)—(5)
of the Letter referred to above, and are given in Appendix B
below.

2 F. E. Low, Phys. Rev. 110, 974 (1958).' S. L. Adler and Y. Dothan, Phys. Rev. 151, 1267 (1966).
4T. H. Burnett and N. M. Kroll, Phys. Rev. Letters 20, 86

(1968).
~ J. S. Sell and R. Van Royen, Nuovo Cimento 60A, 62 (1969).
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Although soft-photon theorems have been applied
to many radiative processes, ' radiative E~3 decays are
of particular interest since the corresponding nonradia-
tive modes have been studied extensively both experi-
mentally and theoretically. Thus these modes provide a
unique opportunity for checking the predictions of
soft-photon theorems (which relate the radiative modes
to the corresponding nonradiative modes) and, in
pa, rticular, the presence of derivative terms, which are
absent in two-body radiative decays and usually dif-
icult to observe in scattering processes owing to the
lack of a. simple theory of the elastic scattering matrix
element. Although radiative E~ao decays are formally
simila, r to radiative E~3+ decays considered before,
there exist some additional technical problems due to
the fact that in this case both of the charged particles
are in the final state. This necessitates the calculation of

many additional phase-space integrals. There is, in the
E~3~0 decay mode, the additional question of a possible
CI' violation which we would expect on the basis of the
known CP violation in the corresponding nonradiative
modes. ~ Throughout this paper, we will, however,
assume that CP is conserved and reserve for a. future
paper a discussion of CI' violation. We will assume, in
addition, the usual t/ —3 theory, p,-e universality, and
the ~AIl =—,

' rule.
On the experimental side, a, recent experiment. by

Evans et al. ' found a few events consistent with radia-
tive leptonic KJ. decay and quoted a preliminary
branching ra, tio

&(&r.' ~ ~~e+vy)/F(E'r, ' —+ n+e+r ).
= (0."IS&0.4) )& 10 '. (1.1)

However, their results have not yet been fully analyzed.
In particular, the branching ratio depends logarithmi-
cally on the energy Eo, below which the apparatus does
not detect photons, and Eo is not given by the authors.
In our paper, we calculate the branching ratios

Rg= 1'(E' ~ 7r+e ry, E,)Eo)/F(K' +~+e e)—
82= F(E'-+m+IJ, ry, E,&ho)/I'(E'~m+p r)—

for a, typical value of ho=30 MeV. ' We also plot the
photon spectrum for representative values of the EI.3'

SSome recent examples are: p+p —+ p+p+y, E. Nyman,
Phys. Rev. 170, 1628 (1968); q —+ m.+m m y, R. Ferrari, Nuovo
Cimento 48A, 898 (1968);E—& 3~y, R. Ferrari and M. Rosa-Clot,i'. 56A, 582 (1968).' J. Steinberger, in Proceedings of the Topical Conference on
Weak Interactions, CERN Report No. 69—7, 1969, p. 291
(unpublished); D. Dorfan, J.Enstrom, D. Raymond, M. Schwartz
S. Wojcicki, D. H, Miller', and M. Paciotti, Phys. Rev. Letters
19, 987 (1967};S. Bennett, D. Nygren, H. Saal, J. Steinberger,
and J. Sutherland, ibid. 19, 993 (1967);19, 997 (1967);S.Bennett,
D. Nygren, H. Saal, J. Sutherland, J. Steinberger, and K. Klein-
knecht, Phys. Letters 273, 244 (1968).

8 G. R. Evans, .M. Golden, J. Muir, K. J. Peach, I. A. Budakov,
H. W. K. Hopkins, W. Krenz, F. A. Nezrick, and R. G, Worthing-
ton, Phys, Rev. Letters 23, 427 (1969}.

1"IG. 1. Feynman diagram for the process a+c —+ b+d+y, a and b

refer to bosons, while c and d are fermion lines.

form factors. This spectrum diverges as k ' for small

photon momentum k.
The outline of the present paper is as follows. In

Sec. II we d.iscuss soft-photon theorems in general and

then apply our results to the speci6c mode Eo—+ z+e vy.

In Sec. III the Burnett-Kroll method is used to derive

the k ' and k ' terms in the square of the matrix ele-

ment, which is then compa, red to the result of the ex-

plicit trace calculation. In Sec. IV we estimate the

values of those strI&cture-dependent form factors which

we expect to be most important, and then 6nally in

Sec. V we give our results. In Appendix A we list the

complete square of the matrix element actually used in

our computation, and in Appendix B we give the
technical details of the phase-space integrations and the

corresponding decay rates for the nonradiative KE30

modes.

II. DERIVATION OF Kig~o MATRIX ELEMENT

Our main task in this section is the derivation of the

T matrix for the radiative K~3' decay. We know that
the terms in T of order k ' and ko can be completely
determined in terms of the nonradiative matrix ele-

ment using the Low-Adler-Dothan procedure as wa, s

done explicitly in I. Ra, ther than simply repeat that
calculation here, we propose to outline the derivation of

these terms for a more general process. The resulting

formula will serve as a starting point for our discussion

of the applica, tion of the Burnett-Kroll theorem. Hope-

fully it will also be of value to those wishing to apply
soft-photon techniques to processes other than %~37

decays. In the process we want to collect in one place a
number of corollaries and comments regarding soft-

photon theorems which are at present widely scattered
through the literature. Once the general formulas have

been obtained, it is a relatively simple exercise to ob-

tain the specr6c results we require fol E(3p decay.
Thus we consider a general radiative process u+c ~

b+d+y shown in Fig. 1.Here a and b are incoming and

outgoing states containing an arbitraI~ number of spin-

' This statement must be qualified a little. Even when a process
involves only soft photons, there are. problems with the Iow
theorem when the matrix elements have resonances, particularly
if they are narrow resonances. This situation has been commented
on by 1'. E. Low, Ref. 2; by S. Barshay and T. Yao, Phys. Rev.
171, 1708 (1968); and by H. Feshbach and D. R. Yennie, Nucl.
Phys. 37, 150 (1962).
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FIG. 2. Electromagnetic vertex with P
an incoming boson or fermion and P' an
outgoing boson or fermion.

Tg=T '+AT. (2 1)

We want now to study the application of this recipe
to the general process of Fig. 1. Let T represent the T
matrix for the 1V-particle nonradiative process c+c~
b+d and de6ne Tp(. . .) by

T=+(P.)To(. )~(p.), (2.2)

where p, and pd are the moments of the two fermions.
Tp(. . .) is the off-mass-shell amplitude (a matrix)
with all spinors factored out. Tp(. . .) may involve such

zero bosons, while c and d are states containing a single
incoming and outgoing spin-one-half fermion, respec-
tively. (We limit ourselves to one fermion line to
simplify the notation. Additional fermions present no
difficulties, in principle. ) For such a process the con-
tributions to T of order k ' and k', which we call Tl., can
be obtained using a simple recipe due to Low' and Adler
and Dothan, ' which we now state:

(1) Write down T. , the sum of the contributions in
which the photon is radiated from an external charged
line.

(2) Expand T. with respect to the explicit k de-
pendence about k=0 and drop all terms in the result
which are explicitly independent of k or which are of
order k or higher. Denote the result of this step by T.„'.

(3) Add to T ' a contribution hT, independent of k
so as to make T '+AT gauge invariant. Then

quantities as y.p;, y p,y p, , etc. , and will contain
scalar functions, or form factors, which depend on the
A invariants PP (i=1, . . . , cV) and the AX(lV —1)—.V
other possible scalar invariants p,'p;, e.g. ,

To(" )=To(P'' Pj' P' Pi, v P* ).
Note that we consider all momenta p, , i = 1, . . . , lV, as
independent, because we will eventually want to con-
sider them as radiative variables satisfying p +p.
=Pp+Pq+k rather than P,+P,=Pp+Pq. In general,
Tp(. . .) will involve a part which has the same form as
the on-mass-shell nonradiative amplitude plus off-mass-
shell parts which can be taken to be proportional to
p,'+m, p in the spin-zero case andi' p, +m; in the spin-
one-half case. Let the electromagnetic vertex be given
by I'„(p,p') with p= p'+k as in Fig. 2. For spin-zero
particles,

r„(p,p') = iQ(p+ p')„F(p,p', k ),
while for spin-one-half particles,

(2 4)

p.(P,P') = —
L Qv. Fr( P', P", k')

+a„„k„(14/2m)pp(p', p",k')], (2.5)

where o„,= ,'i(y—„y—„y„y„—), 14 is the anomalous mag-
netic moment of the spin-one-half particle, and Q is
the charge of the particle (in units of e)0). The form
factors F, Fj, and F2 are normalized so that in each case
F(—m', —m', 0) =1, where iii is the mass of the cor-
responding particle. With these preliminaries and
using the Feynman rules in the Pauli metric where

p„=(p, p4=ipp), we can execute steps (1)—(3) of the
recipe.

Step 1.Write the contribution of radiation from the
external lines of Fig. 1:

+p„ii(pg) Tp(p, k)i—
2k p,

iy (pg+k)+—mg
+&pit(p~)I' (Pa+k, pa)( —i) Tp(pd+k)44(p, ) . (2.6)

2k pg

4

z Z

T..=..r. P.(p;, p;-k) —.-(p,)T.(p;-k) (P.)+.Z ~.(p,+k, P;) —.(P.)T.(p+k) (P )

i've

2P ' Ps j+5 2k'p~

iy (p, —k)+m. —
-I'(p. , P. k)~(p.)—

In this equation the notation Tp(p, &k) means replace
the variable p; in Tp(pp, pjp, . . . , p; p, , . . .q p;. . .) by
p;&k, leaving the other momenta untouched.

Step Z. Expand T, in powers of k, dropping those
terms which are independent of k. Before proceeding
with the expansion of Eq. (2.6) in powers of k, it is
useful to make several comments. (a) Note that the
expansion is made with respect to the explicit k de-
pendence only, i.e., the p; and k are considered as in-
dependent variables and the conservation of four-
momentum equation relating tt to the other momenta

p, is not used at this stage. (b) Note that the terms
arising from the expansion of p,' terms in I'„(p',p",k')
and Tp(pp, p,'. . .p,"pj. . .q p;. . .) make no contribu-
tion to TJ, Thus we can effectively let p,'= —m,' in
1'„and Tp(. . .) before writing Eq. (2.6). To see this
consider a general function of p', say f(p'). After re-
placing p ~p&k for the off-mass-shell line and ex-
panding about k = 0, we get f((p&k) ') = f( ir4')—
&2P k(8f/8P')

~
„~ 4+0(k'). However, the 2P k

in the second term will be canceled by the propagator
factor (2p k) ' associated with the off-mass-shell line.
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Thus the 8f/Bp' term is independent of k )or of 0(k) or
higher) and according to our recipe is to be dropped. As
immediate consequences of this argument, we note
that the electromagnetic form factors F(p',p",k')
do not contribute to TI. and the OQ-mass-sheH part of
To(p, pti. . .p; p, . . .y p, . . .) for the spin-zero case
also does not contribute, since it is proportional to
p i+md. (c) Note that in the spin-one-half case the
o6-mass-shell part also does not contribute to TI, for
similar reasons, i.e., the iy (p;&k)+m; factor of the
OA-mass-shell part, when multiplied by the associated
propagator [ iy—(p,&k)+@i;j/2P,"k, leads to terms
independent of k or 0(k) or higher which are to be
dropped according to our recipe.

We are now able to expand Eq. (2.6) in powers of k.
In accordance with the observations above we replace
all form factors F(p',p",k') in I'„by unity and expand

To(p;ak) as

To(p;+k) = Tg&k.

where To with no arguments is

To( m, , nz, .. .p, p;. . .y p, . . .).
Thus T is the on-mass-shell nonradiative amplitude,
considered as a function of the independent rad~utk e
variables p;, i= 1, . . . , E.Note that BT0/Bp; may con-
ti dri t'es fthes la fu tiosi T with e-
spect to the remaining independent scalars p; p, as
well as terms coming from derivatives of possible ex-
plicit p; dependence, e.g., derivatives of y p; terms
which may in general appear. With these substitutions
and some Dirac algebra, Eq. (2.6) becomes

s=g1 1 pa, rti cles

6'p~ BTO Icy 'r'k'r'6
u(p, ) Q; q, T,+k n(p. )+u(p )TdD Q,+( iq —p, +m.)- — ti(p, )

kp, Bp, 2m, , 2k p,

y ey. k Kg

+ii(pi) — Qg+( iy p—g+mg) 2'ON(p ) . (2.7)
2k pg 2ssg»

In this equation it;=+1 (—1) for outgoing (incoming) particles and Q; is the charge of the ith particle.
Step 3. Add a hT independent of k, which makes Tz= T, '+AT gauge invariant. Replacing e„by k„everywhere

in the equation for T, , we see that the last two terms automatically vanish since k =0, and the term proportional
to g; vanishes by charge conservation since

Thus the hT we need to make T, '+ AT gauge invariant is

a)To»= —E Q'~(p~)~ ~(p.),
where the summation extends over all particles. Thus we obtain for the general radiative amplitude

6'p~ BTO
TL=T,'+»=r. ~'Q'—~(p.)TON(p )+r. O'D~(p')~(p~) &(P )

i k

Ko P'kP' 6 P 6P'k Kg

+u(pd)TO Q +( i~ p.+m.)— ——it(p, )+u(pg) QJ+(—iy. p~+m~)
2il, 2k p, 2k pg 2m'

TON(p, ), (2.9)

D~(p') = -4—e
k.

(2.10)

Equation (2.9) gives the expression for the radiative
matrix element for our general process c+c—+ b+d+y
up to but not including terms of order k. The next terms
ln the cxpRnslon of thc 1RdlRtlvc IIlRtI'lx element ln

powers of k are necessarily of order k or higher and
represent the so-called "structure-dependent" e6ects.

A number of comments regarding the general formula
are now perhaps in order.

(a) Recall that To is essentially the nonradiative
matrix element on the mass shell, but considered as a
function of the radiative variables, i.e., those satisfying
p p;„=p p.„,+k. Thus to obtain To for a particular
process~ onc Just wrltcs down Rn cxpllclt form fol
thc nonl RdiRtlvc matrix clement ln tcI'Dls of the
—,X(X—1)—X possible scalar invariants p;.p; (iN j)
and the appropriate quantities y p;, etc. , and uses that
form in Eq. (2.9).

(b) In many cases several expressions for To exist
(related to each other by Dirac algebra) which are
identical for the nonradiative process but which may
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FIG. 3. DlagraIQ for the decay E~ m'l~.

differ by ter'ms O(k) whcli tile Ilionlcllta arc considered
as radiative variabj. es. It has been shown, however, by
Ferrari and Rosa-Clot' and Bell and Van Roym. ' that
diGcrcnt choices of To lead to radlatlvc matrix clclTlcnts
which di6cr only by terms of order k oI' hlghcI'. Thus
various choices of To are csscntiaHy equiva1cnt.

(c) Because two diferent choices of To are equivalent,
onc ls fice to choose thRt folIIl of To %'hlch 1Tlakcs Tg Rs

simple as possible. It is clear from the 6nal result,
Eq. (2.9), that the appropriate choice for To will
norInaHy bc the onc in which as rQuch of the czpjicit
momentum dependence (y p;, etc.) as possible is given
in terms of rnomenta of eem~rak particles, since this
miniInizcs thc nuinbcr of contI'lbutlons fI'oIQ thc
Q Dl(p.) I»jo/Bp g, tC1111.

(d) Observe that when JV= 3, e.g., A. -+ PIr, there are
only three independent scalar invariants, pio, poo, and
poo, wlllch IIl accordance wltll tllc plcvloils Rlgllnmllts
must be replaced by —mq'» —m2'» and —m3'. Hence any
Invariant fuHctlons» l.c.» follrl fRctox's» appearing ln To
are constants, and thus in this case no terms involving
dcI'lvatlvcs of these foI'Il1 fRctoI's RppcRI' 111 TL,. This ~as
originaHy noted by Chew'0 and independently by
Pestieau. "

The matrix element in Eq. (2.9} was derived on the
assumption that radiation v as emitted by particles and
not antiparticles. When there are antipartides in the
initial (Anal) state with momentum, charge, and
anomalous magnetic moment p, Q, and ~ we treat them
for the purposes of Eq, (2.9) as particles in the final
(initial) state with momentum, charge, and anomalous
Iliaglietlc rliolllellt p~ Q~ Rlld K. To 1S tllCI1 cal-
culated bv the usual Fcynnlan rules for Rntiparticles,
with the appropriate replacements II(p) -+ I (p), etc.

I ct us nova apply our general formula to radiative
E~3' decay. Wc first discuss nonradiative KE3' decay,
so as to establish notRtlo11 Rnd norlrlallzation conven-
tions, and then proceed to the derivation of the radia-
tive matrix element. Consider the decay Eo(P) —+

Ir+(Q)+E (p)+I (q), where P, Q, p, and q are the foui.-
momenta of thc lcspcctlvc particles. The naatrl ele-
ment for this process is given by

"H. Chevy, Phys. Rev. U3, 377 (1961)."J.Pestieau, Phys. Rev. 160, 1555 (1967).

DR=..g(Ir+l vlEo},.
mm,

=- —I(2m.}'8'(P—Q —p —q)
4&oQopoqo&'

6 sin8
X ——T'(«I'), (2 11)

V2

where T(E'Ioo) is defined by

~«")=(4~.Q.~) "(-.(Q}l ~' -(0) l~ (n}1.
= Lf+(&)(P+Q).+f-(t)P' —Q).jf, (2.12)

with 4=I'N(p)y, (1+y„)1(It) and t= —(P—Q)~. In Fq.
(2.11) the Fermi constant G= 1.435+10-"erg cmo, and
8 is the Cabibbo angle, @herc sin8~0. 2$."We use M,
p» sf » Rnd st»I to dcnotc thc IDass of thc kaon» pion»
lepton (e or p), and neutrino, respectively. (As usual,
the limit ns„~o at the end of the calculation is well
defined. ) The DS= 1 polar-vector current V„'+*"(a)
and the 85=1 axial-vector current A„'+*'(a) (which
coll'trlblltcs to tile radlatlvc nlRtllx clclncllt) Rrc glvcll
by

&.'+*'(*)= S,'(a)+or„o(~),
~.'+"(*)= ~o.'(*)+o~,.o(*),

P s Rle assuxned to obey the usus, l Sp(3)
XSV(3) coinllllltatloli relations given in I.14 Note
t"at &(«I') c» be written in the equivalent forms

2'(E'»') =.-(p)Cfl(~)IV ~+f.(~)'V 8
X(1+go)~(q) (2.13a)

2'(«")=.(p)L2f, (~) ~ ~+ f.(~}j
&&(1+so)I(q) (2.13b)

by use of the Dirac equation. Equation (2.13b), with
fo(~) d«ned by t e .elations 2f+(~) =fig)+f, p) .nd
2f—(&)=fl(&) —fo(&), is more convenient to use than
cath«Eq. (2.12) or Eq. (2.13R) for the derivation of the
radlatlvc Inatrix clenlcnt» since lt involves cxphcltly
only the neutral momentum J'. In the SU(3) hmit,
f+(0)= 1 and f (0)=0. We also define $=f (0)/f+(0)
and f= fo(0)/f„(0), which are related by 1—(=f. The
gencraj. moIQcntuIn dependence of thc forITl factols ls
expressed by

fN =f(0)(1+A~/~'),
where the connection vrith the usual notation is
A=KM'/y, ' and f(t)= f+(t) or fo(t). The relation be-
tween the erst-order quantities is

fAI= A+ —$A

rene M. Roos and A. Sirlin» Nucl. Phys. 36, 255 (1968).»M Gelt-Mann Physics 1 63 (1964).
'~ We alert the reader to a change of conventions from those

employed in I. In the present paper the leptons e and p,
—are

consIdered as particles» %'hIle 8 and p, are consIdered as antI"
particles. The opposite convention was used in I. As the rate forE+—+m0l+vy and E ~m0l vy are equal, as are the rates for+0 —+ ~ l uy and + ~ x 1 ~, lt does not really IIlatter %"hich
convention ls used.
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Expressing the momentum dependence in terms of
f/3f ' rather than f/p' means that we are expanding in a
quantity which is numerically less than unity. This
normalization is more convenient for numerical com-
putation. At the end of Appendix 8, we give the K,3o

and K„3' decay rates as functions of the parameters
f+(0), g, i1+, and ji~.

VA'th these preliminaries, we begin our derivation of
the matrix element for the process K'(P) -+m+(Q)
+f (p)+r(q)+y(k) shown in Fig. 3. We have

m(K' +m+—f ry) =.„i(7r+1 iyIK');
mm„'~' eG sintsI

i'(2') 'B4(P Q p—q
—k)—— — T(Kig„'),

SP QopoqokoV' v2
(2.16)

where e is the electric charge (e)0, e'/47r=n= 1/137). Using the form of T(Ki30) given in Eq. (2.13b), we im-
mediately find from Eq. (2.9)

6'p t9 8
Tr(K'~ ~+t ~v) = ———~(P)L2f+(~)iv P+iiif2(f) j(1+v-)&(q)+ii(P) D~(Q) —»(P)—

Qk pk ~Qi &p~-

yeyk
&& I:2f+(&)iv.P+~f~(~) j(1+&~)~(q)—~(p) — I:&f+(~)iv P+~f2(&) j(1+&")~(q)

2p k

eQ ~p yak=n(p) — — [2f+(/) i7 P+m f2(~) ](1+y5)i'(q)
Qk pk 2pk

8
+2P D(Q)~~(p) 2 f+(&)i~ P—+~ f~(&) (1+—v.-)~(q) (2.1&)

8$ R

It is of interest at this point to con6rm the comment made above that equivalent forms of the nonradiative
matrix element give the same result for Tr.(K&»'). If we had used Eq. (2.13a) rather than Eq. (2.13b),
then Tr, (Ki~~') would be given from Eq. (2.9) by

cQ ep yeyk)
Ti(K'~ ~'t ~v) =~(p) — — II:fi(~)iv P+f~(&)iv Ql(1+v.-)~(q)

Qk pk 2pk&
8 8

+~(p)f (t)iv D(Q)(1+~")~(q)+2P D(Q)~(p) f (t)'v P+ —f.(~)'v Q (1—+v.)~(q) (2.»)

The vector and, axial-vector matrix elements M„„~and
3f„„~may be covariantly decomposed as follows":8—» D(Q)ii(p) —f,(~)iv k(1+v;)i (q)

Bt
M„„»=A fi„„+Bk„k,+CQ„Q„

+DP„P„+Ek„P„+FP„k„+GP„Q„
+HQ„P.+IQ„k„+Jk„Q„, (2.20)which we are instructed to neglect. This establishes the

equivalence of Eqs. (2.13a) and (2.13b) for the purposes
of deriving Tr, (Kia& ).

What we have done so far is equivalent to the evalua-
tion of leading terms in k of the I"eynman graphs in
Fig. 4, which correspond to radiation emitted by the
external charged lines plus a seagull graph necessary to
maintain gauge invariance. It remains now to discuss
the structure-dependent terms of order k and higher.
We refer the reader to I, where a lengthy discussion was

given of the structure-dependent terms and their rela-
tion to TI, Below we briefly summarize the principal

~., =.„,( P.Q,+bP.k,+.Q.k,)
+~i 8vP k8Qv(dP +&k +fQ)

+~-s~P-ksQv(gPu+k4+ jQ,) (2.21)

In Eqs. (2.20) and (2.21) the coe%cients are in general

"In Paper I we limited ourselves to structures bilinear in the
particle momenta and retained only the 6rst three terms in the
axial-vector matrix element. A more general form for these
amplitudes has been discussed independently by G. W. In.temann,
Phys. Rev. 181, 1866 (1969). His expressions, however, involve
amplitudes which are not all independent.

Thus with this choice of To, we get an extra term in the results. We dedne these structure-dependent terms
radiative matrix element. It is easy to show, however, through the relation
using the relation fi(/) =2f+(f) —fs(f) and some Dirac
algebra, that Eqs. (2.17) and (2.18) differ only by a
term of order k, i.e.,
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y(k)

v(q)

&{k)

which allows us to express the d, e, and f terms as linear
combinations of the a, b, c, g, h, and j terms. Thus we
are left with twelve independent terms, seven in 3E„„~E,
and 6ve in 3/I„„~l,. These terms mustnow be made
gauge invariant (remember Tz, is separately gauge in-
variant). To do this in such a way as not to introduce
spurious kinematic singularities, we use the procedure
developed by Bardeen and Tung. " Thus we first
multiply (cV„„v+M„„")l„bythe projection operator
Ipp= ()pp Ppkp/P— 'k. Then wc cllmlnatc thc (P'k)
singularity from I» by taking linear combinations of
various terms or, if this is not possible, by multiplying
by I' k. Thus we obtain the general gauge-invariant
result

(c) K(p)

y(k)
k(P)

e„(M„„r+M„„")l„=e„(Cr[b„„P k —P„k„]
+C2[b„,e k Q„k,]+—[Q„P k P„Q k]—
X[C,e„+C,P,]+ „„„,[C,P.k,+C,Q.k,]
+C,.s,P.Q IX,Q k-e.k,h

+Cs~-svP-Q([@vP k P.kv—)l. (2 23)

' 7r(Q)

Fro. 4. (a) Inner bremsstrahlung from the lepton line. (b)
Inner bremsstrahlung from the pion line. (c) Seagull term neces-
sary to maintain gauge invariance.

tunctlons of thc varrablcs t= (P—Q) P'k Rnd Q'k
and are assumed to be free of kinematic singularities.
Observe 6rst that the terms 8, E, J, and h do not con-
tribute, since e k=0. Also, when M„„~ is contracted
with l„, the terms d, e, and f are no longer independent
of the others by virtue of the identity, valid for arbitrary
four-vectors A „, .Bp, and C~,

"-i v~ -&()Cvh C)= ~"-'()v.[(~ C)&-Cp (& C)~-C—s
+C'A Bpj+C„p., (37',A BsC~, (2.22)

where the C; are free of kinematic singularities or zeros. '~

Note that there are a total of eight independent quanti-
ties, just as there are eight independent helicity
amplitudes.

As we have no reason to believe that any of the co-
eS.cients C; are abnormally large, and as our experience
indicates that the presence of each additional momen-
tum in a structure-dependent term suppresses its con-
tribution to the decay rate, we will for the purposes of
this calculation neglect the C3, C~, Cv, and Cs terms
which involve four powers of the momenta. If at some
future date one 6nds reason to believe that their in-
fluence could be important, they can be included. Thus
in this approximation the Anal form for the complete
matrix element is

&(& .') =~..V« ')+& (« ')

ce op yeyk
=u(p) ——— —[2f+(/)iy P+mfg(t)](1+y5)()((I)

Qk pk 2pk

'Q e' (~) e (~)—2P(P)I P PP 2—--4 P+m (—1+v,) (q)+ (/P P P—)P)——
Q k 8$ 8$ M'

8 C D
+ ep„,()p.„l.P,kp+ —(c le—k —e Ql k)+ ep„se„l„e,kp, (2.24)

3E'

'6 'A. A. Bardeen and W. K. Tung, Phys. Rev. 17'3, 1.423 (1968).
"In I, Eq. (2.35) we made a different choice of the scalar invariants which are essentially different combinations of the

ones chosen here. Note that we can add and subtract the term (I'/3P)(e. Q'k —~ P/ k)Q k to Kq. (2.35) and 6nd the result

I A'/3P+(I'/3II')Q kj(c.P'. k —e 8/ k)+(I'/M')8*k(e Ql k —e LQ k)

which has the same invariant structure as Eq. (2.23) above. The choice made here ensures that all of the scalar invariants are free
of kinematic singularities, which was not the case in I. This does not affect the results of Paper I because these terms vanish in the
soft-pion limit.
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wherewehaverede6nedA=C~3f' 8=C53f' C=C23E'
and D=Co'Jif. o to make our final notation conform more
closely to that of I. We will refer to these terms as the
main term, the derivative term, and the four structure-
dependent terms, respectively.

polarizations m

(m)~ (m)
V PV ~ (3.1)

The sum over lepton spins may be carried out by use of
the usual trace theorems and is a, tedious but straight-
forward calculation. In I the trace calculation was done
by hand and checked against the results of the program
scHooNScHIP, which gives a symbolic evaluation of the
trace in terms of the scalar products of four-vectors. In
this section we discuss a. theorem due to Burnett and
Kroll4 which allows one to obtain the k ' and k ' terms
in the square of the matrix element with much less
effort than that required. for explicit evaluations of the
trace. As in Sec. II, we will erst discuss a general process
and then specialize to the particular decay of interest
here.

III. SQUARE OF MATRIX ELEMENT

To obtain the photon spectrum and the decay rate
from the matrix element of Eq. (2.24), we must square
the matrix element and sum over the lepton spins and
photon polarizations. Once the square of the matrix
element is written down, the sum over photon polariza-
tions is trivially performed using

&'pi
0=X:n.Q'

k
(3.2)

where ot, and Q, appear in Eq. (2.7). From Eq. (2.9)
we have

spin s
IOR—iI'=Q' P Iu(Pa)Tou(P ) I'.

splns
(3 3)

For the terms of order k ', we write

Consider the matrix element Tr,+T,s corresponding
to the general process, and call it for simplicity Sl.
We can write BR symbolically in the form 5K=5K &

+ORO+BR~, where 5R ~ and BRO are of order k ' and k',
respectively, and are known exactly from Low's
theorem. 5R~ is of order k and represents the additional
unknown structure-dependent contributions. Thus
~ORo~ summed over spins will involve terms of order
k o coming from p ~OR—i~' and terms of order k '
arising from P (OR—iORo*+ORoOR i*), both of which
involve only known quantities. The terms in +~OR~'
of order k arise from two sources, as we have noted
previously. One contribution which arises from P ~

ORp
~

'
is known from Tl, and can be calculated directly. The
other contribution arises from the interference terms
P(OR iORi*+ORiOR i*) and involves the unknown
structure-dependent part T~. Burnett and Kroll
derived a relatively simple formula for +[~OR i~'
+(OR iORp +ORpOR i )]. For completeness, we sum-
marize below the derivation of this formula.

Define the quantity Q by

Tp
0(k ) = g (OR iORp*+ ORpOR i*)= g Qu(pd) Epu(ps) Q QiDi(p;)u(pa) u(ps)

SP111S SP lns

y ky e 'y ey 4 Kd

+u(p„) T, Q, +( oq p, +—m, ) + Q„+( oq p„+m„—) T, u(p, )
2m, 2k p, 2k po 2ma

+complex conjugate. (3.4)

contribution can be written a,sWith some simple Dirac algebra given explicitly in
Ref. 4, one immediately obtains the important result
that all terms involving the magnetic moments exactly
cancel, and thus do not contribute to the 0(k ') or
0(k ') parts of the radiative amplitude. Following
Burnett and Kroll, we use the identities

8
Q 2 Q'Di(p*) — 2 lu(P. )Tou(P.) I' (3 7)

iX SPins

Combining Eqs. (3.3) and (3.7), we obtain the final
result of Burnett and Kroll:

y ey. l~

(m oy p)————(m —iy p)
2p k 2p k

(3.3) 2 IORl'= 0'+QZ O'D. (P')
SP I rig ~p )-

= —iy D(p)

X P I
Tl'+0(k'). (3.&)t9

(m iy p)=2—m- L P u(p, s)u(p, s)j (3.6)
p) Otpi spins

SP1118

As discussed above and in Refs. 4 and 5, T in Eq. (3.8)
to write the charge parts of the last two terms in Eq. is to be interpreted as the nonradiative amplitude con-
(3.4) in terms of derivatives. Thus the entire 0(k ') sidered as a -function of particle momenta satisfying
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the momentum-conservation equation

p, —Q p, =k
initial final

rather than
Z p*—Z p:=o

(3.9)

(3.10)
initial final

Thus although P I Tl
' has the same form as the un-

polarized nonradiative cross section, it is a, function of
the radiative momenta. The significance of this dis-
tinction is evident if we consider a two-body decay
such as A ~ p7r, which is conventionally described by an
amplitude TO=A+By~, where A and 8 a.re constants.
Thus

For the nonradiative process, pq ——p„+p, which en-
ables us to write (p~ p~)/mimi, =(m—i,2+m„' m')/—

& ITI'=(I~l' —I1ll') ———(I&I-'+l2~i'). (3 «)
sp1 n s

2mi, mii. Thus, for the nonradiative process, I Tl' is a,

constant. For the radiative process, however, we must
substitute Eq. (3.11) directly into Eq. (3.8), considering

I
2'I ' as a function of the (independent) radiative varia. -

bles p~ and pii. As discussed earlier, since 1@=3, the A

and 8 are still constants, and no derivatives of A and 8
enter. The term p;Q,Di,(p;)8(p~ pi, )/imp, i, does pro-
duce a contribution, however, and must be included.
Finally, we note that the operator part of Eq. (3.8)
is independent of whether radiation wa, s emitted by
particles or antiparticles.

Given the result (3.8), the sum over photon polariza-
tions can be carried out immediately using Eq. (3.1).
To illustrate the application of Eq. (3.8) to the present
problem, we remember that the particular form chosen
for the nonradiative amplitude makes no diRerence to
orderk 'and k 'in+ I5RI', so we choose the expression
given in Eq. (2.13b), since it involves explicitly only
the neutral momentum I'. Then, writing

& I

2'(«3') I'= & l&(p)L2f+(t)t~ P+mf (t)3(1+~-)&(q)I'
splns splns

=(2/mm„)(4f~'(t)[2P pP q+N'p qj —f'(t)m'p q+4m'f+(t)f&(t)P q}.(3.12)

and using Eqs. (3.8) and (3.1), we'find for the sum over spins snd polarizations

spins, pol

Q. p. '
/ Q.

I
T(E'~ ~tip) I'=

Qk pk &Qk pki
p„k), ) 8 Q„ki, i7

X — ——&,il + p IT(z, 3O) I2+O(ko).
p k 1 ripe Q k BQy spina

Carrying out the explicit differentiations indicated, we hnd

', mm„P-IT(K' &7r+t vy) I

'= —— —
spins, pol.

2 2p Q+ + $4f '(t)(2P pP q+M'p q).
(Q k)' (p. k)' p. kQ k

P.Q m' P Q P P
f'(t)m'p q+—4m'f+(t) f~(t)P q] 8f+'(t)P q

— —+ —P k —+ —L4M'—f+'(t) —m'f (t)]
pkQ. k (pk)' Qk pk

PQ m' qQ pq PQ t' Pp PQ
X ——+ -qk + —2 — + Pk — +

pkQk (pk)' Qk pk pkQk (Qk)' pk Qk

~f+(t) ~f.(t) ~f (t) ~f (t)
X 8f+(t) (2P pP q+M'p—q) 2m'f, (t) pq—+4m' f —(t)- —+f2(t) P q +O(k ) (3'14)

R at Bt Bt

The utihty of the Burnett-Kroll theorem as a computa-
tional tool should now be evident, as the procedure for
obtaining this result from Eq. (3.8) was certainly much
simpler than the explicit evaluation of the square of
Eq. (2.17).In Appendix A we list the result for the com-
plete square of the main term of the matrix element in
Eq. (2.24) toget. her with the terms arising from inter-
ference between the main term and the other terms
after having eliminated q using four-momentum con-

servation. One can check ths, t the O(k ') and O(k ')
terms in Eqs. (A2) andlI(A3) are identical to those in

Eq. (3.14).

IV. EVALUATION OF STRUCTVRE-DEPENDENT
FORM FACTORS

i,et us now estimate values for the coefficients 3, 8,
C, and D in Eq. (2.24). We assume partial conservation
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of axial-vector current (PCAC) in the form

~sg psf
~»sx'(a) = -4 '(*)= 0'(a), j= 1,2,3 (4 1)

V2

where p is the pion mass, a =0.94, and. P'(x) is the 6eld.
operator which creates a pion with isospin j. By
a Lehmann-Symanzik-Zimmermann (LSZ) reduction
of the charged pion 6eld, we can express the matrix
element as

(2Qo V)'"&w'~
I
J ""(o)IE'&

d'y e 'o'"(—CI„+p')

Xb I
T(4' "(y)~.'+*'(0))IE')

d y.-'o'Q„h
I
T(s„-' (yP„+' (0)) IEo)

t(Q'+~')
+ — — d'ye ""~(y)

p Gg

X&~I L&'-o' "(y},J '""(0)l[E'), (4.2)

where J„ls either V„or 3,. We drop the surface telDls

arising from the partial integration in deriving Eq.
(4.2). Taking the limit Qx —& 0, we note that the first
term has no pole because we have extracted the brems-
strahlung contribution. "Thus we 6nd

(2Qs V) '"(w+y
I J,'+"(0) I

E')
=(t/~o. )&Ilies' "(o),~""(0)j[E'), (43)

where

~s'(yo) = d'y 5'«'(y).

The usual commutation rules of Gell-Mann" now yield

(2Q V) '"(rr+y
I
V.'+"(0) I

E'&
= ('/~o-) 6 I ~.""(0)IE'&

(2Qs V) "s&n.+y
I A.'+*'(0)

I
Es&

(4.4)

= (t/~o-) &v I
V "*'(0)I&'&,

i.e., a relation between radiative E~3 and radiative
"E~2" decays. " These equations are the analog of
Eqs. (3.3) of I.Unfortunately, the photon does not have

'~ Most authors wouid write (ski J„4+s(0) [Eo) as the matrix
element for g'-+ m+1 p7 decay after the lepton bremsstrahlung
has been extracted. %e have already extracted more than this,
i.e., the pion pole term and the seagull term necessary to make
the k ' and k0 terms gauge invariant. Hence we identify
(~+yI J„'+a(0) [E') as only the unknown structure-dependent
part of the decay amplitude.

'QThe bremsstrahlung parts of the amplitudes for radiative
Ef3+ and Ef2+ decays depend only upon the ordinary E»+ and
K~2+ decay amplitudes and are related in the soft-pion limit by
the usual Callan-Treiman relation; see C. G. Callan and S. B.
Treiman, Phys. Rev. Letters 16, 153 (1966).There is a correspond-
ing relation for the bremsstrahlung terms in gg30 decay and m~~+

decay in the soft-kaon limit which was first derived by R. Oehme,
ibid. 16, 215 (1966).

~If one generalizes CVC to strangeness-changing processes,
then the right-hand side of Eq. (4.4) can be related to the decay

E '-+ 2y.

well-dined isospin, so we cannot make an isospin rota-
tion in Eq. (4.4) to relate the neutral-E matrix element
to that of the charged E. If, however, we assume that
the photon is a U-spin scalar, use charge conjugation
and SU(3) invariance, and dominate the neutral cur-
rents A, '+'~, V,'+'7 by E*'resonances, then the coupling
constants G(E*sEsy) and. G(E*+E y) are related by a
Clebsch-Gordan coefficient of —2."We can therefore
take the values for A and 8 from the pole dominance of
thc E+~ 3+ay matrix clement glvcn ln I. This ylclds

I
see I, Eq. (3.21)]

[a(0) I-=(m/&a. ) I
f (o) I,

1,C
0.5& IB(0) I

&6. (4.5)

The ratio of A to 8 is not determined very accurately
through E~(1320) dominance as discussed in I. We
derived there that 0.1& IA(0)/B(0) [&0.9, ~hi~h we

also assume to hold in this paper.
We now attempt to calculate the form factors C and

D, which vanish in the soft-pion limit, by making a soft-
kaon approximation. Although it is widely recognized
that PCAC is not as good an approximation for kaons

as it is for pions, we are only using it to estimate form
factors whose net contributions to the decay rate are
small. This justihes the rather poor theoretical model.

We assume PCAC for kaons in the form

cl»x&(x) = (Nsf Jr/V2)yr (x), J='4,5,6,7 (4.6)

where fir is defined by

&o I
~x""(0)IE'&= I:s/(21's V)"'1fx~x

for charged E decays. By an isospin rotation, the same

fir describes neutral E decays, because

(0[Ax'+"(0)
I
E )= —(0 I

Ax'+"(0) IE'&. (4.7)

Next we make an LSZ reduction of the matrix element

jD2+~2
(2P V)' '( +

I
J„'+'(0)IK'& = — — d'

%2C~

XPx&w+y I T(r xs-"(x)J '+"(0)) I 0)

t'(p'+Ms)
d'x e' *S(ao)

%2C

where
Cx = M'fx/v2-

Now we take a soft-kaon limit I'g ~ 0 so that" "
(22'o V)"'( 'v

I ~.~"(0) I
&'&

iM'
(- elL~.-"(0),~."' (0)3[0& ('9)

&2C~

~~ M. Gourdin U'nkury Symmetry (North-Holland, Amsterdam,
1967), p. 100.
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(Q)

R(p)

p(765) ~
( )

Similarly, we And the corresponding formula for D,

de cot|I
(4.14)

l(p)

A)(I070)
v(q)

FzG. 5. (a) p-pole contribution to the structure-dependent vector
matrix element in m —+ l P& decay. (b) AI-pole contribution to
the structure-dependent axial-vector matrix element in ~- -+ )-p~
decay.

The commutation relations of Gell-Mann" now yie]d

(2I'oV)'"( +pl V,'+"(0) jK')

The estimation of c and d is now made by assuming p
and A~ dominance of the vector and axial-vector matrix
elements describing zr —+i zy (see Fig. 5). It is not
necessary to describe these calculations in detail be-
cause they parallel the corresponding calculations for
E+ —+ i+my in I. A treatment of radiative ~&2 decay has
also been given in the recent book of Marshak. ,
Riazuddiny and Ryan. "We find

d(o) f.G"v
(4.15)

p ,'gap p

where the numerical values of the coupling constants
are

fp %2(imp——'/fp ) 0 26M—p', .
Gp ~ Grr. zrv 0.3——7/SI. —

The only unknown is now fir, for which we accept the
usual value"

(2POV)'i'(zr+7
l
A„4+"(0) lK')

f~=1.28f .
(4 10) Substituting these values into Kqs. (4.14) and (4.15)

we find

i31'
-( 'v

I
v ""(0)

I 0)
v2C~

with

X
(mm„'" eG cos8

T, (4.11)
4QopoqokoV4 V2

The matrix elements on the right-hand side of these
equations are the structure-dependent terms in the
vr —+ l up decay, which we define by

BR=, z(( z/lzr );„=—i(2ir)'P(Q —p —
q
—k)

2fAz fAz~z
)

( ~' —z')'
(4.17)

where from Fayyazuddin and Riazuddin'4 we have

f~ f~z-v/(~~' z') = f-. —

Hence, using SI~,=0235„"we Gnd

(4.16)

Similar considerations hold for the value of C. U we
assume A~ dominance and follow the discussion given
in Marshak, Riazuddin, and Ryan, '~ then we find

ep eQ yeyk
T=izzzf, zz(p) =— + (1+"rz)z'(q)

pk Qk 2pk This yields the result

(4.18)

+i(c/p)(e (Q k eQk ()—
+z(d/zz) e„„pe„(„Qks. (4.12)

M' c
sing -cos9 =

l V2C~ p

c cos8

(Note that we do not know the sign of c.) Hence

c3f' cot8

xp
(4.13)

Obviously, in the soft-kaon limit the terms involving A
and 8 in Eq. (2.24) vanish and the terms involving C
and D are related to the c and d terms in Kq. (4.12) by
Eqs. (4.10). Hence

l Cl = (M'f /M, 'fir) cote=1.55. (4.19)

The value given in Kq. (4.19) depends on specific
analyticity properties for form factors and can vary

"R.E. Marshak, Riazuddin, and C. P. Ryan, Theory of 8'eak
Interactions in Particle Physics (Wiley-Interscience, New York,
1969), pp. 359—363. We note that the fg, ~ coupling has a kine-
matic zero in its definition, whereas the h~„~~ coupling defined in
I was free of kinematic singularities. This accounts for the extra
power of MgP —p~ in the denominator of Eq. (4, 17) as compared
with Eq. (3.23) of I."J.Bernstein, E/ernentary Particles and Their Currents (W. H.
Freeman and Co., San Francisco, 1968), p. 272. Slightly smaller
values of this ratio have been derived using spectral function sum
rules; see H. T. Nieh, Phys. Rev. Letters 19,43 (1967);and S. L.
Glashow, H. J. Schnitzer, and S. Weinberg, ibid. 19, 139 (1967).

"Fayyazuddin and Riazuddin, Phys. Rev. Letters 18, 715
{1967)."S. Weinberg, Phys. Rev. Letters 18, 507 (1967).
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appreciably. Specific models are discussed in Ref. 22,
all of which yield. smaller values for ~C~.

Ke would like to stress that the values for A, 8, C,
and D derived in this section are not intended to be
taken literally, but only as a rough order-of-magnitude
estimate. To give some idea of the inQuence of these
terms, we shall plot the photon spectrum in the next
section for a typical set of values' =8=2.5, C= D= 1.0.
The signs are taken positive to yield constructive inter-
ference with the other terms in the matrix element.

V. CONCLUSIONS

Let us erst give the Qnal numbers which determine
the rates. Our procedure is to evaluate the direct square
of the main term in the radiative decay amplitude,
Eq. (2.24), up to and including terms linear in A. This
gives seven terms, i.e., f+'(0), f+(0)f2(0), f2'(0),
f+'(0)&+, f22(0)Ag, f~(0)f2(0)+, and f+(0)fg(0)A~. The
square of the derivative term of order ko (as well as
the square oi the structure-dependent terms) was found
to be so small that it could be safely neglected. The
remaining terms come from the interference between
the main term and the other terms. Here we are justided
in keeping only f+(0) and f&(0) in the main term, and

we thus generate the terms

8
f+(&) f+—(~) ~ f+'(0)~+

a1

8
f~(t)—f~(/) ~ f+(0)fg(0)Ap,

8$

8
f2(~) f+(—~) ~ f+(o)f2(0)~+

8$

8
f2(t)—f&(t) ~ f2'(0)&2

Bt

f+(0)" f2(o)A f+(0)» f2(o)» f+(o)C
f.(0)C, f+(O)D, and f,(0)D.

In summary, we have kept all terms in Tl,' except those
of order A' and those terms in TsX Tz (which is already
at least of order k') which are of order zero in A.. The
rate therefore is a double integral over the sum of these
nineteen terms. Details of the necessary phase-space
integrals are given in Appendix B. In practice, the
decay rate for the electron mode has only seven terms
because all the coeKcients of the form factor f2(0) are
suppressed by an extra power of (m/3l)'. The results
are as follows:

1'(K' ~ n+e vy, E„).30—MeV) =
6' sin'0M'

X10 '$1.1152f '(0)+0.3646f '(0)h+ 0 0390f—'(0.)A
64m'

+0.0037f (0)A+0.0012f (0)B+0.0028f (0)C+0.0012f (0)D]. (5.1)

As noted above, the two terms proportional to f+ (0)A+ in Eq. (5.1) have different origins and thus have not been
combined in order to exhibit their relative magnitudes. The erst term in f+ (0)h+ comes from the t expansion of the
f+' term and the second f+'(0)A+ comes from interference between the main term and the derivative term. We
follow the same procedure for the muon decay mode:

G' sin'OM~
I'(K'~ m+p vy, E~)30 MeV) = — — X10-'$7.5452f+'(0)+0.1406'(0)—1.0346f+(0)f,(0)

64vr3

+4.2380f+'(0)A++0.0973f22(0)A.,—0.3261f~(0)f,(0)(A++42) —1.3354f~'(0)A+ —0.0162fp(0)A,

+0.0832f+(0)fg(0)A++0. 1015f+(0)fg(0)32+0.0840f+(0)A+0.0055'(0)A+0.0341f+(0)B—0.0054f2(0)B

+0.0589f+(0)C+0.0011f,(0)C+0.0224f+(0)D —0.0024f,(0)D]. (5.2)

Taking now the rate for Ko ~ ~+e u from Appendix 3, Eq. (89), we 6nd

(K' —& m+e ry, E~)30 MeV)
Ry=

1(go~m+e v)

(
1.1152+0.3646K~ —0.0390A~+0.0037A/f+(0)+0. 0012B/f+(0)+0.0028C/f+(0)+0. 0012D/f+(0) )

(X10 '.
4(1.1738+0.3191Ai)

(5 3)

The usual model of K*(890) dominance of the vector
form factor yields h+=M'/3frr*'=0. 31. If we assume
sing= 0.21, then f+(0) = 1.04, from the Kz' rate'

"See the article by J. W. Cronin in Proceedings of the Fourteenth
International Conference on IIi gh-energy Physics, Vienna, 1968,
edited by J. Prentki and J. Steinberger (CKRN, Geneva, 1968),
p. 284.

I'(Kz ~ vr+e+v) = (7.65&0.30)X10' sec '.

The corresponding number in I came from the charged
K decay rate and gave f~(0) = 0.76. Our new value of

f+(0) differs slightly from f+(0)=0 76v2, which .it
would be if the

~
AI~ = ~ rule were exact, primarily be-
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APPENDIX A

In this appendix we give the results of the evaluation
of the sum over s ins and
o te om

p' polarizations for the square

id
h A. ~3~ matrix element given in E 2 24 . Baslc

'
entities and conventions are th

it up into several parts. First we t k th d'

of the main term in Eq. (2.24); then we add the interfer-
ence etween the derivative term d thrman e main term.

ese terms are listed accordin to tho eir power in k.
ex we a d the interference between th ten e structure-

terms 0 k
pen en terms and the main term. W ll he ca t ese

hi her
even though they include a few ta ew erms wit

g=I—
ig er powers of k which arise from the be su stitution

g= —Q —p —k or from interference with the y. ey. k/
2p k term which as a m~ ', matter of convenience, we in-
c nded a,s part of the main term. Note that the 0(k)'
part also includes a few terms of order k. Thus

,'mm. Q —~T( ' —+ n+l uy) ( '=-0(k-')+0(k-')+0(k')+Os k', (A1)

where

2

0(k-')= — + — — 4 '& 2P.(4f '(t)[2P p(M'+P Q+P p)+M'( Pp+p Q — ')]—

+
p kg k

+m' ' 3 P.+m, ~ P p pg+m')+4—m'f (t)f2(t)(M'+P Q+P p)), (A2)

2(P P)' 2(P Q)' M'P M'P.p Q 2P.pP Q 2P pP Q M'm' 2M'

k Qk pk Qk k .k

Q p M'p' M'm'P k 4m'P kP 2m'P kQ
'' ' '

p mPkPQ 2p'PkPp M'p'pk M'P k

Qk Qk (pk)' (.k)' ' k .kp. ' (p k)' (Q k)' (Q k)' k .kp kQ. k

tu'P k p'P k 2P kQ.

p. k ' (p k)' (Q k)' p kg k

p Q p p' m'P. k p'p k P kQ nz' kP.P PQ m'-2Q 2 2 2 . ~2 k-

pk k k -k k' k k k'pk pk Qk Qk (pk)' (gk) k k p. k

16 8f+(t) 2(P P)' M'(P P)' 2P P ' 2 2 Pp(P I' 2(P p)'P Q 2(P p) P Q

M' Bt pk pk Qk pk Qk Qk,:
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(Q k)

M'm'P. p M'P pQ. p 3IPm'P Q M'P QQ p 2p'P k(P p)' tj,'M2P' kP. p+ -+
p k pk Qk Q k (Qk)2 (Q k)'

2p'P kP PP Q M'P kP PQ P 2P kP PP Qg P M'm'p'P k M'tj, 'P kQ P+
(Qk)' Qkpk pkgk (Q.k)' (Q k)'

M'P k(Q. p)' 2P k(P. p)'Q p M2m2P kg p- Bf2{t) (P p)' P pP Q m'P p+- —4m'f2(t) +--
p kg k p kQ k p kQ k Bt pk Qk pk

P.pQ p m'P Q P QQ p p'P kP p P kP pQ p m'p'P k p'P kQ p P k(Q p)'
+ + -+

p k Q k Q.k (Q k)' p. kQ k (Q k)' (Q k)' p kg. k

m'P kQ p Bf2{t) Bf~{t) (P p)' (P Q)' M'P. p M'P Q P.pP Qf.(t) +f.(t) ' — + — +
p kg. k Bt Bt pk Qk pk Qk pk

P pP Q p'M'P k p'P kP p p, 'P kP Q M'P kQ p . P.kP pg. p P.kg pP. Q
, (A3)

Qk (Qk)' (Qk)' pkQk pkQk pkQk

f(
p k

(P k)'Q p p'(P k)'
+

M2p. k 4P.kP p 2P kP. g 2P kP g M~g k 2m'(P k)' 2(P k)'p Q
0(k') =4''(t) M'+ — + + + + +-

pk pk pk Qkp k (p.k)' pkQk
2(Pk)' Pk Qk Bf(t) 6P k(P p)'

+ — +m'f2'(t) — —1 8f (t) — M'+4M'P p+M'P Q+-
pk pk pk Bt p k

2P k(P Q)' M'P kP p M'P kP Q 2P.kP QP p 2P kP pP Q 2M'P Qp. k
+ + +

Q k Qk pk Q k Q k

M2P pg k M. 'P kQ p 2M'P kQ p M'p'P k 4p'(P. k)'P. p 2M'p'P kp k
+

p k p k Q k Q'k (Q k)' (Q k)'

M'{P k)'g p 6(P k)'P pg p 2(P k)'P gg. p 2(P k)'P g 2(P k)'g p—+2M'P k+
pkQk pkgk p kQ k Q k p kQ k

I

2(P k)'P p Bfy{t) P kP p 2P kP Q 3P kP Q M'Q k 2p'(P. k)'
+ —+4m' 2 t)

+ M' -+— + +
Bt pk pk Qk pk (Qk)'

Bfg{t)- 3P kP p 2P kP Q P kP Q M'Q k
+ —4m'f+(t) M'+ — + +

pkgk pkgk Bt pk pk Qk pk
2p'(P. k)' 3(P k)'Q p p'(P. k)' Bf2(t) P kP p P kP Q—2m'f2(t) — M' 2P p+P Q+- +

(Q.k)' p kQ k p. kQ k Ot pk Qk
2PQpk Ppgk PkpQ 2PkQp p'Pk 2p'Pkpk (P.k)'pQ+- + + + -+=

Qk pk pk Qk Qk (Qk)' pkgk
(A4)

We expand f(t) in the above equations as f(t) = f{0)(1+At/3/I2) with t= M'+p, '+2P Q and retain all terms
through erst order in A..As mentioned in the text, this expansion generates an additional set of terms proportional
to A. from the square of the main term, but for the derivative terms, which are already proportional to A, amounts
to the replacenMnt f(t) ~ f(0).

Interference bebveen the structure-dependent terms and the main term yields the result

(P Q)'p k (P p)'Q. k M2P. Qp k 2P pP Qp. k M'm'P k
Os(k')= 4f (t) 2(P p)'+M'P —p — +—— +

3E' Q k pk Qk Qk p k

M'P kp Q 2m'P kP p P.kP pp. Q 2P kP pp. Q m'P kP Q P kP Qp Q

Qk pk pk Qk p k Q k
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2(p k)' (p'k) 'PQ
k+3P.kP.P+2P kP e+M p k+M'e k+

p.ep. k p.pe. k m'P k P'kP'Q
2(pk) -2f.(~) ', pp p-e -.

k k pkQ.k

k

p. k

8 (PQPp kp Q 142p ~ k (p k) e
4tf (]) 2p. pp ~ Q+2M p 'Q—p.k+ —

k
+ ~

~

pkQ',
p kp. p 2M2P. k m'M'Q k),Q. k p.kp. pp Q m'P kP Q P'kP Qp' ~" '

+" —+

(p k)' (p k)'P. e p'kp Qp'
~ ( . )+M,p.k+3p. kp. p+2p kp Q+M'P k+M Q'k

P.k Q.k Q k

(pk)' pkQk
2f,(t)i'' p k — + 2M2p. Q+4p ~ pp ~ Q+t5 p'Q+p'QP e

—p'P k+

,2p. k ~e k (Q )'+' + -e k-
ek pk Pk-

p peek ~'p QQ. k
M2e. k+2p. pe k 2p Qp k+2—p'kP'Q

M, 2e.k ~2p pe k p pQ. kP Qp k(p Q)& M2142p k 214 p'PP ~ e +. + ++ -Q
k pk p k P'kpk Qk Qk

pkpe peke " 'p' "' "e+Mek+»Pek »Qk-p+'p'pe+ .k Qk Qk
P ke k P Pe k

+2p. kQ. k —2f2(l')5$2P'Q p e
k p. k p k

D- p k(P Q)'
4f+([) 14'p. p p' QP—' Q+-

M'-

p k

D- (Q k)'

~ k

+2p ke k —2f (&)~', Q k+
pk

(AS)

PPPE+DIX 8
In this appendix we discuss the s p

1

te s leading from
re of the matrix element giventhe expression for the square o

)&n Eq. 4

d (S 2g and in particular, the proceduredure iised 'to

I te the integrals over the four-body p a phRsc s Rcc.cvRuR c c1
f the nonradiativeWe also give numerical values .or e

decay rate in terms of the Ei40 form factors.
The radiative decay rate is given by

d'k 8(k')8(ko)I'(E' —+ n.+l-4 y) =~—

~herc

871 Sg 1D p Pol'
f
T(Z' ~ n.lay)

/
',

d'Q ~(e'+~') (e8o) I(8~ —Q)'18C:(~—Q).jf(Q)

with Q ~
T~' defined by Eq. (A1). We have used the

re lace d' / 0 by 2d4P8(P'+m')8(PO). First we use
the four-dimensional 0 functton o ei
pletely. Now define the basic Q integral Iq/f j over an
arbitrary function f of Q by

d'p 8(p'+ ')84(Npo) d'Q 8(Q'+~')8(eo)

d'C 8(C') 8(Co)~'(P Q P V k)T'————

=-', ir8(AO) dx b(A'+x) 8(x I4')Iq[jj, (82)—

where A =P—k —P, and where the definition x=-
b

'
orated, via the 8 function 8(A'+x.has been incorpora e via
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th hssic pynteg« lj bSimilarly, de ne e btain f« the rate

l (E..o +t-vy)
~2—23'&0G2 sin'8E(& p)—'+~]8L(& p)—oh'(pd4p B(p'+m')8(po 8

dx X"'(3l',O,y)

G' sin'8
P(E' —+ m.+t vy) =—

I T']].X8L(I'——k)'+ ]8L(P—k)o]Ivt Io[

xI.u.L.&']]—(~+v'~)']Ivy], 83)

the ra e I and Ig alge-

=-,'7r8(Bo) dy 8(B'+y) [y-

350t, ...T,'
n of . braica y

ures to evaluate e

= —8&an gl
G d te shall use aus

=M' —2 in
i th se integrals, we s

been over x an
1 essentially an6nal integra isthese d 6 't ons we obtaifactored out. Using these e ni i, n

d dx 8(x—p')

ocedure

y

y
d the general proce ure

t}1 l
e outine

ofpoX8 —(m+Qx)'] d'k 8( ) ( ok' 8 ko)

g
'

te ral i.e.,
d h 1' th

the two b function

k has the same
esults

. First we use e

g

. This lea s, a
the

li i Qo d
below by using some simp e su s

lo
— ' 8 (P—k)o]

hi h gi p t o t

d4k

cl lted
4" P

pica e
Finally, genera

r contractions wit
io th t l I,'

gputting
maining 8 functions e ne

IaL&]=Q~, Ia(Q.]=QoA. ,

O'LQ. Q.Q.]=QoA.A A.+ o " ~I LQ„Q,]=Q,A„A,+Q,8„„ I,

Iq =Qo -+QoI —,g gQ

Qk A.

k A„+A„k„A A„k„k„QvQIg-
Q k

Q.Q.Q
Iq

Q k

Q„A„k„
=Qio +Qoo.k)' (A k)'

~p,v

=Q +Qoo —+Qoo-
(A k)' (A k)' ~-(Q k)'-

Ak' (Ak)

'- "'"""'""')8,A„+b„,A„k„A.A„A,A,

(A k
' "(A k)A k

A k)'(A k)'
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Qi= Qo= Q»= (s '/x)e»= (1—u'/x)

Qo= Qu= o(1—~'/x'),
Qo= Qi4= oei(1+a'/X+~'/X'),
Q4= Qio= g'gxeio,

Qo= i(1—~'/x'),
Qo= s'~x(1+v'/x)ei',

QT ——Qig ——ln(x/p'),

Qo=*Qi —ox(1+i '/x)er,
Qio= —Q»= ox(1+Ii /x)Qi oII Q7 ~

Q»= o(x'+4''+u') Q7 —4x(x+u') Qi

Qio
—— ', (x'+ 9—x-'p'+ 9xp'+ go) Qv

+~ix(11x'+38''111ii')Qi,

Qiv= 4~'x(1+v'/x) Q~—'.(*'+1»u'+i ')Qi,
e„=xe,—Lx(x+p')/2p']e„
e-= -le. =-*e.+!(*+")e.,
Q» = (x/4i ') (x'+ 1oxi '+ii') Qi 4x(x+1—')Qv ~

The terms in Qo and Qo are included for completeness,
although we did not need them in this calculation.

To evaluate the p integrals, we first define some
auxiliary functions corresponding to I~fg] for the
various types of functions g appearing in I@fT']:

TE „=P ( 1)&—(k 8')" &3;"-AP„;,o,

T&-.= Z (o~)" '»"T-,.+, ,

where Ijp is the binomial coefficient n!fj!(oo—J)!] ',
and where AP „is just I' „with x and tn' interchanged.
Thus we need to calculate only the I' 0 which are ob-
tained in exactly the same way as the Iq, i.e., the 8
functions are used to eliminate po and

~ p ~, thus giving
the correct 8 functions, and then the angular integra-
tions are performed explicitly. It turns out that we need
only the seven I' 0 tabulated below:

Poo= X (y,m )rx)/y ~

1 sr+A'"(y, m', x)
Pro= - ln

8 k a) —X'I'(y m' x)

Poo= [y/mo(8'k) o]Poo

Poo ——Lo)y/2m'(8 k)']Poo,

P4o ——Q/12mo(8 k)']L3co'+X(y, m', x)]Poo,

P-i, o= (~/2y)(&. k)Poo,

P o o
——DB k)'/3y](o)'/y —m')Poo,

P o o
——(8 k)'((v/2y')(cv'/2y —m')Poo .

—(p. k)n—
TE „=I„

(A k)"

(p k)"(P p)"
TE „„=I„

(A k)"

About fifty diAerent cases of the above functions are
needed. They are, however, related by a number of
recursion relations which can be derived by using the
relation ~+2p P 2k p=o, with —oo=y x+m' (im-—
plied by the 8 functions in the definition of I~) to
eliminate p P or k p in favor of the other. Thus we
obtain

Kith these ingredients we obtain an algebraic ex-
pression, much too complicated to be reproduced here,
for I„LI@LT']],which can then be integrated over x
and y to obtain the numerical results given in Sec. V.

The rate for the nonradiative process E0—& ~h can
be obtained in an analogous fashion. Using the expres-
sion for T(Eioo) in Zc!. (2.13b) and that for

g ~
T(Eo -+ orle) I

'
SPlllS

given iil Eq. (3.12),

G' sin'8
1'(Ko —+ 7rlu) = d'P 8(P'+mo) g(Po)

4Am'

&«d'e ~(e'+")0(e.) d «(& )~(&.)

»'(P Q p V) T' (»—)——

P-= Z (—o~)" '»"P='.o,
j=0 T'=comm Q tT(Eo~ sip) (o

T = P (—1)&'(P 8)"-JB"AP„.
j=0

One proceeds in exactly the same way as for the radia-
tive process by defining Iq and I~ by Eqs. (82) and (33)
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with &=0, i.e., with A=I' pa—nd 8=I'.Thus

Q2 sjn2g (M—tn)2

r(KO ~ ~i~) = — d* I„LI,LT2jj, (88)
1 6' vr3

which gives the numerical results

6' sin'0 3f'
I'(K' -+ m.+e—v) = f+'(0)

16m-'

1Vote added iu manuscript. In view of the fact that
experimenters are more interested in the K»/K„
branching ratio than in the individual rates, we give
here the results for the charged and neutral branching
ratios in terms of the conventional parameters. These
numbers were obtained directly from Eqs. (2)—(5) of
the Letter in Ref. 1, which follow from Eq. (A7) of the
paper of Ref. 1 and from Eqs. (89) and (810) above by
converting the parameters A+, A, q, t to the conven-
tional set 7+, X, and P.

6' sin'8 3P
I"(Ko~ m+u v) = f+2(0)L0.9255+0.4221A+

16m'

I"(K ~m'e r)

+1.4115K++0.0080P.+—0.0710@+

X(1 1738+03191K+)X10 ', (89) 1,(K- 0 —-)
=0.6457+0.1264(+0.0192/

0 1—900. t 0 0—544. $(A+.+82)+0 0219. 12 +0.4754P. +0.1684)9, (811)

where f=f 2(0) /f+(0). Note that we have factored out
SI' so that the numerical coefFicients are dimensionless
and that we explicitly use exact masses in all
calculations.

+1.3162K++0.0064P.+—0.0644/9. +

+0.4370P. +0.1526/9. . (812)

+0.0141''2A2]X10 ' (810) I'(K' —+ m+p P) =0.6452+0.1246/+0.0186/
I'(K' —+ ~+e r)


