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and ¢, coincides with ¢w within the experimental error
of a few degrees.?? The 7+7— contribution to (12) is
therefore 1.3X1073. There is far greater uncertainty
about 799, but it is consistent with all reported measure-
ments to say that it has a magnitude comparable to
|74—|. The only reported” measurement of ¢g yielded
a value in the first quadrant, which assures a positive
contribution to (12). We can therefore predict a finite

2 D. A. Jensen el al., Phys. Rev. Letters 23, 615 (1969).
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nonvanishing 7" asymmetry [Eq. (10)] of several parts
in a thousand, independent of any symmetry assump-
tions. The expected asymmetry could vanish only in
the unlikely circumstance that || were significantly
larger than |7,—| and had a phase ¢, differing from ¢w
by considerably more than 90°.

I wish to thank Professor K. E. Eriksson and
NORDITA for hospitality at the Chalmers Institute of
Technology, where the basic argument was first pre-
sented at a Seminar.
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The complete gauge-invariant matrix element for the decays K° — xt1=5y (!=e¢ or ) is derived using the
soft-photon theorems of Low and of Adler and Dothan. These theorems, along with several corollaries of
them, are reviewed in detail and their application demonstrated by reference to the radiative Ki° decay
mode. The square of the matrix element is calculated using the theorem of Burnett and Kroll, and is com-
pared with the result of a direct computer evaluation of the appropriate traces. Structure-dependent terms
are discussed, and the dominant terms among those linear in the photon energy are estimated in the soft-
pion and kaon limits. Results for the radiative photon spectra are given, together with the decay rates for a

specific value of the minimum photon energy E,.

I. INTRODUCTION

HE present paper, which is the sequel to a previous
paper! on radiative K5+ decays, has two purposes.

* Work supported in part by the U. S. Atomic Energy Com-
mission, under Contract No. AT (30-1)-3668B.

1 Air Force Office of Scientific Research Postdoctoral Fellow,
1968-1969. Address after Sept. 1, 1970: Los Alamos Scientific
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{ Present address.

1E. Fischbach and J. Smith, Phys. Rev. 184, 1645 (1969);
hereafter called I. A compilation of rates and spectra for both
charged and neutral K decays (with different values of Ey) has
also been published. See H. W. Fearing, E. Fischbach, and J.
Smith, Phys. Rev. Letters 24, 189 (1970). With regard to the
comment made in this Letter on the first number in the branching
ratio I'(K — mwuv)/T(K — wev) published by N. Cabibbo in
Proceedings of the Thirteenth International Conference on High-
Energy Physics, Berkeley, 1966 (University of California Press,
Berkeley, 1967), p. 34, we would like to thank Dr. Cabibbo for
confirming the fact that this number was misprinted and should
read 0.6457 (for charged K decays) and not 0.6487. Details of
Dr. Cabibbo’s calculation have been given by C. T. Murphy in
University of Michigan Bubble Chamber Group Research Note
No. 58/66 (unpublished). The correct branching ratios for

One is to discuss in detail the matrix element for the
radiative decay K°— x5y (I=e¢ or u), and then cal-
culate results for decay branching ratios and photon
spectra. The other is to use this calculation as a vehicle
for reviewing a number of soft-photon theorems and
corollaries which are useful for discussing radiative
processes in general. Of particular interest are the
theorems of Low? and Adler and Dothan?® for the radia-
tive matrix element, and Burnett and Kroll* and Bell
and Van Royen?® for the square of the radiative matrix
element. Additional references to radiative decays are
given in I.

charged and neutral K decays can be obtained from Egs. (2)-(5)
of 1the Letter referred to above, and are given in Appendix B
below.

2F. E. Low, Phys. Rev. 110, 974 (1958).

3S. L. Adler and Y. Dothan, Phys. Rev. 151, 1267 (1966).
( 4g.) H. Burnett and N. M. Kroll, Phys. Rev. Letters 20, 86

1968).
5J. S. Bell and R. Van Royen, Nuovo Cimento 604, 62 (1969).



2 CURRENT ALGEBRA K;;°

Although soft-photon theorems have been applied
to many radiative processes,® radiative K;; decays are
of particular interest since the corresponding nonradia-
tive modes have been studied extensively both experi-
mentally and theoretically. Thus these modes provide a
unique opportunity for checking the predictions of
soft-photon theorems (which relate the radiative modes
to the corresponding nonradiative modes) and, in
particular, the presence of derivative terms, which are
absent in two-body radiative decays and usually dif-
ficult to observe in scattering processes owing to the
lack of a simple theory of the elastic scattering matrix
element. Although radiative K;° decays are formally
similar to radiative K;s* decays considered before,
there exist some additional technical problems due to
the fact that in this case both of the charged particles
are in the final state. This necessitates the calculation of
many additional phase-space integrals. There is, in the
K3,° decay mode, the additional question of a possible
CP violation which we would expect on the basis of the
known CP violation in the corresponding nonradiative
modes.” Throughout this paper, we will, however,
assume that CP is conserved and reserve for a future
paper a discussion of CP violation. We will assume, in
addition, the usual ¥V —4 theory, u-e universality, and
the | AI| =% rule.

On the experimental side, a recent experiment by
Evans et al.® found a few events consistent with radia-
tive leptonic K;° decay and quoted a preliminary
branching ratio

I'(K1® — 7%eTry) /T(K 1 — 7teTv)

=(0.7540.4)X1072. (1.1)

However, their results have not yet been fully analyzed.
In particular, the branching ratio depends logarithmi-
cally on the energy Eo, below which the apparatus does
not detect photons, and E, is not given by the authors.
In our paper, we calculate the branching ratios

Ri=T(K° — ntevy; E,> Eo) /T(K°— wtes)
and
Ro=T(K°— wtu=py; Ey> Eo)/T(K°— wtu7)

for a typical value of Eo=30 MeV.! We also plot the
photon spectrum for representative values of the K5

8 Some recent examples are: p-+p— p+p-+v, E. Nyman,
Phys. Rev. 170, 1628 (1968); n — = n~x%, R. Ferrari, Nuovo
Cimento 484, 898 (1968) ; K — 3wy, R. Ferrari and M. Rosa-Clot,
ibid. S6A, 582 (1968).

7 J. Steinberger, in Proceedings of the Topical Conference on
Weak Interactions, CERN Report No. 69-7, 1969, p. 291
(unpublished) ; D. Dorfan, J. Enstrom, D. Raymond, M. Schwartz,
S. Wojcicki, D. H. Miller, and M. Paciotti, Phys. Rev. Letters
19, 987 (1967); S. Bennett, D. Nygren, H. Saal, J. Steinberger,
and J. Sutherland, sbid. 19, 993 (1967) ;19,997 (1967) ; S. Bennett,
D. Nygren, H. Saal, J. Sutherland, J. Steinberger, and K. Klein-
knecht, Phys. Letters 27B, 244 (1968).

8 G. R. Evans, M. Golden, J. Muir, K. J. Peach, I. A. Budakov,
H. W. K. Hopkins, W. Krenz, F. A. Nezrick, and R. G. Worthing-
ton, Phys. Rev. Letters 23, 427 (1969).
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c d

Fic. 1. Feynman diagram for the process a+c¢ — b+d+v; a and b
refer to bosons, while ¢ and d are fermion lines.

form factors. This spectrum diverges as £~* for small
photon momentum k.

The outline of the present paper is as follows. In
Sec. II we discuss soft-photon theorems in general and
then apply our results to the specific mode K- ntevy.
In Sec. IIT the Burnett-Kroll method is used to derive
the k2 and k! terms in the square of the matrix ele-
ment, which is then compared to the result of the ex-
plicit trace calculation. In Sec. IV we estimate the
values of those structure-dependent form factors which
we expect to be most important, and then finally in
Sec. V we give our results. In Appendix A we list the
complete square of the matrix element actually used in
our computation, and in Appendix B we give the
technical details of the phase-space integrations and the
corresponding decay rates for the nonradiative Kis°
modes.

II. DERIVATION OF K;;,° MATRIX ELEMENT

Our main task in this section is the derivation of the
T matrix for the radiative K;»° decay. We know that
the terms in 7 of order £~ and k° can be completely
determined in terms of the nonradiative matrix ele-
ment® using the Low-Adler-Dothan procedure as was
done explicitly in I. Rather than simply repeat that
calculation here, we propose to outline the derivation of
these terms for a more general process. The resulting
formula will serve as a starting point for our discussion
of the application of the Burnett-Kroll theorem. Hope-
fully it will also be of value to those wishing to apply
soft-photon techniques to processes other than Kisy
decays. In the process we want to collect in one place a
number of corollaries and comments regarding soft-
photon theorems which are at present widely scattered
through the literature. Once the general formulas have
been obtained, it is a relatively simple exercise to ob-
tain the specific results we require for K3, decay.

Thus we consider a general radiative process a+c¢ —
b+ d-++ shown in Fig. 1. Here a and b are incoming and
outgoing states containing an arbitrary number of spin-

9 This statement must be qualified a little. Even when a process
involves only soft photons, there are. problems with the Low
theorem when the matrix elements have resonances, particularly
if they are narrow resonances. This situation has been commented
on by F. E. Low, Ref. 2; by S. Barshay and T. Yao, Phys. Rev.
171, 1708 (1968); and by H. Feshbach and D. R. Yennie, Nucl.
Phys. 37, 150 (1962).
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k Fi1c. 2. Electromagnetic vertex with p
an incoming boson or fermion and p’ an
outgoing boson or fermion.
P P

zero bosons, while ¢ and d are states containing a single
incoming and outgoing spin-one-half fermion, respec-
tively. (We limit ourselves to one fermion line to
simplify the notation. Additional fermions present no
difficulties, in principle.) For such a process the con-
tributions to 7" of order 27! and %°, which we call 7'z, can
be obtained using a simple recipe due to Low? and Adler
and Dothan,® which we now state:

(1) Write down Ty, the sum of the contributions in
which the photon is radiated from an external charged
line.

(2) Expand T, with respect to the explicit £ de-
pendence about 2=0 and drop all terms in the result
which are explicitly independent of %k or which are of
order % or higher. Denote the result of this step by Tex'.

(3) Add to Tex' a contribution AT, independent of k
so as to make 7'+ AT gauge invariant. Then

To=Tuo'+AT. (2.1)

We want now to study the application of this recipe
to the general process of Fig. 1. Let T represent the T°
matrix for the N-particle nonradiative process a+c—
b+d and define T(...) by

T=a(pa)To(. .. )u(p.),

where p, and p, are the momenta of the two fermions.
To(...) is the off-mass-shell amplitude (a matrix)
with all spinors factored out. T(...) may involve such

(2.2)
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quantities as v-p:, v:piv:pj, etc, and will contain
scalar functions, or form factors, which depend on the
N invariants ;% (i=1, ..., N) and the :N(N—1)—N
other possible scalar invariants p;- p;, e.g.,

To(...)=To(p® ps% ooy bi*Pje s ¥ Piv e )

Note that we consider all momenta p;, =1, ..., N, as
independent, because we will eventually want to con-
sider them as radiative variables satisfying po+p.
= pp+patk rather than p,+p.=ps+ps. In general,
To(...) will involve a part which has the same form as
the on-mass-shell nonradiative amplitude plus off-mass-
shell parts which can be taken to be proportional to
p¥+m? in the spin-zero case and 7y - p;+m; in the spin-
one-half case. Let the electromagnetic vertex be given
by Tu(p,p") with p=p'4+k as in Fig. 2. For spin-zero
particles,

(2.3)

Lu(p,p') = iQ(p+ )l (p%1"%5%) (2.4)
while for spin-one-half particles,
I‘u(P:PI) = [Q7MF1(P2)P’2J€2)
+owki(c/2mFs(p* 057 ], (2.5)

where ou= —%i(ysy,—7v»yu),  is the anomalous mag-
netic moment of the spin-one-half particle, and Q is
the charge of the particle (in units of ¢>0). The form
factors F, Fy, and F, are normalized so that in each case
F(—m? —m? 0)=1, where m is the mass of the cor-
responding particle. With these preliminaries and
using the Feynman rules in the Pauli metric where
Pu= (P, ps=1po), we can execute steps (1)-(3) of the
recipe.

Step 1. Write the contribution of radiation from the
external lines of Fig. 1:

7 —1
Tex=¢eu 2, Tu(pi, pi—k)——0(pa) To(pi—Rk)u(pe)+eu 2 Tulpitk, pi)——i(pa) To(pi+k)u(p.)
i 2k ps icb 2k-p;

1&a

—iy-(pe—k)+m.

P#(Pc; pe— k)%(f’c)

Fedi(pa) Tolpe—h)i

+ €, (pa) Tu(patk, pa)(—1)

In this equation the notation 7'¢(p:2=k) means replace
the variable p; in To(ps?, pi% - .., pi- i, - - ¥ Pi-..) by
pik, leaving the other momenta untouched.

Step 2. Expand Tex in powers of &, dropping those
terms which are independent of k. Before proceeding
with the expansion of Eq. (2.6) in powers of k%, it is
useful to make several comments. (a) Note that the
expansion is made with respect to the explicit k de-
pendence only, i.e., the p; and % are considered as in-
dependent variables and the conservation of four-
momentum equation relating £ to the other momenta

*Pe

T (patk)+ma
2k'ﬁd

To(patk)u(pe). (2.6)

pi is mot used at this stage. (b) Note that the terms
arising from the expansion of p,2 terms in I',(p2,p'2,k2)
and To(ps%, p2...pi pj...v Pi...) make no contribu-
tion to 7'z. Thus we can effectively let p,>= —m,? in
Ty and To(...) before writing Eq. (2.6). To see this
consider a general function of p2 say f(p?). After re-
placing p — pk for the off-mass-shell line and ex-
panding about k=0, we get f((p£k))= f(—m?)
+2p-k(3f/ 09| p——m+O(k?). However, the 2p-k
in the second term will be canceled by the propagator
factor (2p-k)~' associated with the off-mass-shell line.
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Thus the df/9p? term is independent of % [or of O(k) or
higher ] and according to our recipe is to be dropped. As
immediate consequences of this argument, we note
that the electromagnetic form factors F(p2p'2k?)
do not contribute to 7'z, and the off-mass-shell part of
To(pd, pi*..pipj...v pi...) for the spin-zero case
also does not contribute, since it is proportional to
p2+m? (c) Note that in the spin-one-half case the
off-mass-shell part also does not contribute to 7'z, for
similar reasons, i.e., the #y-(p;==k)+m; factor of the
off-mass-shell part, when multiplied by the associated
propagator [ —iy-(pi£k)+m;]/2p:-k, leads to terms
independent of 2 or O(k) or higher which are to be
dropped according to our recipe.

We are now able to expand Eq. (2.6) in powers of k.
In accordance with the observations above we replace
all form factors F(p%p'%k?) in I', by unity and expand

Texl = Z

1=all particles
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To(pitk) as

aT,
To(Pl:l:k) = To:l:ka— s

.5

where T with no arguments is

To(—m3, —m3...pi iy Pin..).

Thus 7% is the on-mass-shell nonradiative amplitude,
considered as a function of the independent radiative
variables p;, t=1, ..., N. Note that d7,/dp; may con-
tain derivatives of the scalar functions in 7'y with re-
spect to the remaining independent scalars p;-p; as
well as terms coming from derivatives of possible ex-
plicit p; dependence, e.g., derivatives of v-p; terms
which may in general appear. With these substitutions
and some Dirac algebra, Eq. (2.6) becomes

€ pi T ke Ty ky-e
ﬂ(Pd)[Ql—-(an0+k —>]%(Pc) +7Z(Pd) TO[Q0+(—7/Y * Pc+mc) ]_‘"‘_‘u(pc)
k- i 0pi

2med 2k P,
voey-k Ka
g = Qb (=i partma = [Tau(p). @)
2k . Pd Zmd

In this equation 7;=-41 (—1) for outgoing (incoming) particles and Q; is the charge of the ith particle.
Step 3. Add a AT independent of k, which makes T, = T'ex'+ AT gauge invariant. Replacing €, by %, everywhere
in the equation for T, we see that the last two terms automatically vanish since £2%=0, and the term proportional

to u; vanishes by charge conservation since

Z_ 77¢Q1,=Z Qout"'z Qin=0.

Thus the AT we need to make 7o'+ AT gauge invariant is

7

0T,
AT=-3] Qiﬁ(;i’d)é'giﬂ(?c):

(2.8)

where the summation extends over all particles. Thus we obtain for the general radiative amplitude

e pi aTy
Ti=Te'+AT=3 ink ; #(pa) Tou(pe)+22 Qz‘Dx(Pi)ﬁ(Pd)a—‘%(Pc)
v P K 2N
] ke Ty ky-€ v-ey-k ) Ka
+i(pa) TOI:Qc+(—17'Pc+mc) :| w(pe)+i(pa)- [Qa-i-(—w-Pd-%-md)——]T w(pe), (2.9)
2med 2k- De 2k- pa 2ma
where (a) Recall that T, is essentially the nonradiative
€ pi matrix element on the mass shell, but considered as a
Dy(p:) = ;.“_kk‘f)\- (2.10)  function of the radiative variables, i.e., those satisfying

2

Equation (2.9) gives the expression for the radiative
matrix element for our general process a-+c¢ — b+d-+vy
up to but not including terms of order k. The next terms
in the expansion of the radiative matrix element in
powers of %k are necessarily of order & or higher and
represent the so-called ‘“‘structure-dependent” effects.

A number of comments regarding the general formula
are now perhaps in order.

2. Pin=2_ pousrtk. Thus to obtain 7 for a particular
process, one just writes down an explicit form for
the nonradiative matrix element in terms of the
$N(N—1)—N possible scalar invariants p;-p; (15 7)
and the appropriate quantities v ;, etc., and uses that
form in Eq. (2.9).

(b) In many cases several expressions for 7'y exist
(related to each other by Dirac algebra) which are
identical for the nonradiative process but which may
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Fic. 3. Diagram for the decay K — #lpy.

differ by terms O(k) when the momenta are considered
as radiative variables. It has been shown, however, by
Ferrari and Rosa-Clot® and Bell and Van Royen? that
different choices of 7% lead to radiative matrix elements
which differ only by terms of order % or higher. Thus
various choices of 7'y are essentially equivalent.

(c) Because two different choices of 7' are equivalent,
one is free to choose that form of 7y which makes 7'z, as
simple as possible. It is clear from the final result,
Eq. (2.9), that the appropriate choice for 7', will
normally be the one in which as much of the explicit
momentum dependence (- p;, etc.) as possible is given
in terms of momenta of zeutral particles, since this
minimizes the number of contributions from the
Q;'D)\(Pi) T/ dpin term.

(d) Observe that when N=3, e.g., A— pm, there are
only three independent scalar invariants, pi2, p»?, and
$s?, which in accordance with the previous arguments
must be replaced by —m1?, —m,?, and —ms?. Hence any
invariant functions, i.e., form factors, appearing in T
are constants, and thus in this case no terms involving
derivatives of these form factors appear in 7'z. This was
originally noted by Chew!® and independently by
Pestieau.!

The matrix element in Eq. (2.9) was derived on the
assumption that radiation was emitted by particles and
not antiparticles. When there are antiparticles in the
initial (final) state with momentum, charge, and
anomalous magnetic moment p, Q, and k we treat them
for the purposes of Eq. (2.9) as particles in the final
(initial) state with momentum, charge, and anomalous
magnetic moment —p, —(Q, and —«. T is then cal-
culated by the usual Feynman rules for antiparticles,
with the appropriate replacements #(p) — v(p), etc.

Let us now apply our general formula to radiative
K130 decay. We first discuss nonradiative K;;° decay,
so as to establish notation and normalization conven-
tions, and then proceed to the derivation of the radia-
tive matrix element. Consider the decay K°(P)—
7H(Q)+1(p)+9(g), where P, Q, p, and g are the four-
momenta of the respective particles. The matrix ele-
ment for this process is given by

10 H, Chew, Phys. Rev. 123, 377 (1961).
11 J, Pestieau, Phys. Rev. 160, 1555 (1967).
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M =oul{m 5| Ky

~i(27r)464(P—Q—1>—q)(-

mm,

1/2
4P0Q0P0(10V">
Gsing _
X ~—\/E—T(K13") , (2.11)

where T(K;;°) is defined by
T(K 5% = (4PoQo V) VX H(Q) | V,4+5(0) | KO(P))L,
:[f+(t)(P+Q)v+f—(l)(P—Q)V]lv;

with J,=i(p)y,(14+vs5)v(g) and i=—(P—Q)% In Eq.
(2.11) the Fermi constant G=1.435X 10~ erg cm?, and
6 is the Cabibbo angle, where sin~0.21.12 We use M,
u, m, and m, to denote the mass of the kaon, pion,
lepton (e or u), and neutrino, respectively. (As usual,
the limit m,—0 at the end of the calculation is well
defined.) The AS=1 polar-vector current V,*(x)
and the AS=1 axial-vector current A4,%#%(x) (which
contributes to the radiative matrix element) are given

by

(2.12)

V,i5(x) = F,4 () +15F,5(x) ,
AMH5(x) = Fs, () +1555(x)

where the §’s are assumed to obey the usual SU(3)
XSU(3)_commutation relations’® given in I.14 Note
that 7'(K;°) can be written in the equivalent forms

T(R") =a(p)L f1(D)iy- P+ fo(t)iv- Q]
X(14+7ys5)v(g) (2.13a)
or

T(Ki®) =a(p)[2f (i P+mfa(t)]
X (A+ys)(g) (2.13b)

by use of the Dirac equation. Equation (2.13b), with
[2() defined by the relations 2f,(#)= fi(t)+ f»(t) and
2f-(t)= f1() — f»(¢), is more convenient to use than
either Eq. (2.12) or Eq. (2.13a) for the derivation of the
radiative matrix element, since it involves explicitly
only the neutral momentum P. In the SU(3) limit,
/+(0)=1 and f-(0)=0. We also define £= f_(0)/f,(0)
and {= f5(0)/£,(0), which are related by 1—g=¢. The
general momentum dependence of the form factors is

expressed by
JO=10)A+A/M?), (2.14)

where the connection with the usual notation is
A=\M?*/p? and f()=f,(f) or fo(t). The relation be-
tween the first-order quantities is

CAo=A,—EA_. (2.15)

> N. Brene, M. Roos, and A. Sirlin, Nucl. Phys. B6, 255 (1968).

8 M. Gell-Mann, Physics 1, 63 (1964).

14 We alert the reader to a change of conventions from those
employed in 1. In the present paper the leptons ¢~ and u~ are
considered as particles, while et and u* are considered as anti-
particles. The opposite convention was used in I. As the rate for
K+ — 7%y and K~ — 7% vy are equal, as are the rates for
K®— 77I*»y and K°— 717y, it does not really matter which
convention is used.
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Expressing the momentum dependence in terms of
t/M? rather than ¢/u? means that we are expanding in a
quantity which is numerically less than unity. This
normalization is more convenient for numerical com-
putation. At the end of Appendix B, we give the K ;°

MK — 1t 5y) = gu{m 5y | Kin

= —iCn) 8P —0—p—g—h(
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and K,;° decay rates as functions of the parameters
f+(0)) .{.’ A-J-) and As.

With these preliminaries, we begin our derivation of
the matrix element for the process K°(P)— x+(Q)
+1=(p)+9(q)+~(k) shown in Fig. 3. We have

T(Kl370) )

mm, 12 (G sinf
) (2.16)

8PoQopoon0 Ve \/Z

where ¢ is the electric charge (¢>0, e2/4r=a=1/137). Using the form of T(K;;°) given in Eq. (2.13b), we im-

mediately find from Eq. (2.9)
eQ ep

— aJ ad
TR — w+5) =(~- - }—k)ﬂ(p)[Zch(t)iv‘P+mfz(t)](1+%)v(q) +ﬁ(ﬁ)[Dx(Q)£ —Dx@);ﬂ
N A A

Q-k

ey -k
><[2f+(t)i7-P+mf2(t)](1+7s)v(q)—MP)%[ZMDM'P+mf2(t)](1+7s)v(q)

eQ ep yeyk
Q-k pk 2p-k

)E2f+(t>iv~P+mf2<t>1<1+vs>v(q>

el 9
+2P-D(Q>zz(p)[25f+<z>w-P+m5;fz<z)]<1+w>v<q>. @.17)

It is of interest at this point to confirm the comment made above that equivalent forms of the nonradiative
matrix element give the same result for 7'.(K;s,°). If we had used Eq. (2.13a) rather than Eq. (2.13b),

then 7'7,(K3,°) would be given from Eq. (2.9) by

_ eQ ep
(RO — mtpy) =a(p) — — —— —
T1(RY— w5) u<P><Q«k v

v-ey-k
2p-k

)[fx(t)iv~P+fz(t)iv-Q](1+75)v(q)

9 ad
+a(p) f2(D)iy- D(O)(1 +75)v(9)+2P'D(Q)ﬂ(P)[5f 1y - P+ Ef 2(l)i7‘Q:|(1+‘Ys)v(9) . (2.18)

Thus with this choice of Ty, we get an extra term in the
radiative matrix element. It is easy to show, however,
using the relation f1({)=2f,(f)— fo(f) and some Dirac
algebra, that Eqgs. (2.17) and (2.18) differ only by a
term of order %, i.e.,

)
—2pP. D(Q)ﬁ(p)gt fa(t)iv - k(1+y5)0(q),

which we are instructed to neglect. This establishes the
equivalence of Egs. (2.13a) and (2.13b) for the purposes
of deriving 7'1.(K3,°).

What we have done so far is equivalent to the evalua-
tion of leading terms in % of the Feynman graphs in
Fig. 4, which correspond to radiation emitted by the
external charged lines plus a seagull graph necessary to
maintain gauge invariance. It remains now to discuss
the structure-dependent terms of order % and higher.
We refer the reader to I, where a lengthy discussion was
given of the structure-dependent terms and their rela-
tion to T'z. Below we briefly summarize the principal

results. We define these structure-dependent terms
through the relation

Ts':éu(Mqu"{-MpyA)ly. (219)

The vector and axial-vector matrix elements /,,7 and
M .4 may be covariantly decomposed as follows!®:
M Y = Abu~+ Bl ke, +CQLQ,

+DP,P,+ Ek,P,+FP,k,+GP,Q,

+HQP,A-1Q,k+Jk,Q,, (2.20)
M,,,.A= Gyvaﬂ(dPaQﬂ+bPakﬂ+CQakﬂ)
+Gyag»,Pang'y(dPrl-ekrf—ny)
+ evapy P akpQy (gPut-hkut-7Q,) . (2.21)

In Eqgs. (2.20) and (2.21) the coefficients are in general

15 In Paper I we limited ourselves to structures bilinear in the
particle momenta and retained only the first three terms in the
axial-vector matrix element. A more general form for these
amplitudes has been discussed independently by G. W. Intemann,
Phys. Rev. 181, 1866 (1969). His expressions, however, involve
amplitudes which are not all independent.
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(b) K(P) -
\\r_,.r" y(k)
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7N e
© K Ha)

\\\ X (Q)

I1c. 4. (a) Inner bremsstrahlung from the lepton line. (b)
Inner bremsstrahlung from the pion line. (c) Seagull term neces-
sary to maintain gauge invariance.

functions of the variables {= —(P—Q)?, P -k, and Q-k
and are assumed to be free of kinematic singularities.
Observe first that the terms B, E, J, and % do not con-
tribute, since e-k=0. Also, when M ,,4 is contracted
with /,, the terms d, e, and f are no longer independent
of the others by virtue of the identity, valid for arbitrary
four-vectors 4., Bg, and C,,

euapr A aBsCr (v C) = €uragy (4 -C) BaCs—(B-C) AL
+C24 o Bg 1+ CresapyyoeAaBsCy, (2.22)

7‘(]21370) = TL(KZS'yO)","TS(KlsyO)

Q ep 7vev
u<p)<ﬁ_;_/—42p-k
eQ )
_21;(?)<6.p_ 6__k]) >(2‘{;it(_.,

FISCHBACH, AND SMITH 2

which allows us to express the d, ¢, and f terms as linear
combinations of the a, b, ¢, g, &, and j terms. Thus we
are left with twelve independent terms, seven in M ,,Vl,
and five in M,,4l,. These terms mustnow be made
gauge invariant (remember 7', is separately gauge in-
variant). To do this in such a way as not to introduce
spurious kinematic singularities, we use the procedure
developed by Bardeen and Tung.'® Thus we first
multiply (M ,,V+M,,4)l, by the projection operator
Ipu=0,u—P,ku/P-k. Then we eliminate the (P-k)™!
singularity from 7,, by taking linear combinations of
various terms or, if this is not possible, by multiplying
by P-k. Thus we obtain the general gauge-invariant
result

eu(M 1V +M )= e, {C1[ 6P -k — P k,]
+CoL8wQ  k—Quks 1+-[QuP -k —P,Q k]
X [Cst+C4Pv]+ Epuaﬁ[C5Pakﬂ+ CﬁQakﬂ]
+ C7€vaﬁvP°‘Qﬂ[6u7Q' k— Quk*/]
+Csevapy P aQs[ 84y P - k—Pky} 1, ,

where the C; are free of kinematic singularities or zeros.!
Note that there are a total of eight independent quanti-
ties, just as there are eight independent helicity
amplitudes.

As we have no reason to believe that any of the co-
efficients C; are abnormally large, and as our experience
indicates that the presence of each additional momen-
tum in a structure-dependent term suppresses its con-
tribution to the decay rate, we will for the purposes of
this calculation neglect the Cs, Cs, Cy, and Cy terms
which involve four powers of the momenta. If at some
future date one finds reason to believe that their in-
fluence could be important, they can be included. Thus
in this approximation the final form for the complete
matrix element is

(2.23)

)[2f+(l)iv-P+Mfz(t)](1+75)v(q)

ml;-)><1+75>v<q>+~(e IP-k—e-Pl-F)

(2.24)

B C D
+ Ee,‘mge,‘l,,l’akg—# ]‘—/[;(e . ZQ . k —€" Ql . k) + ﬁeﬂvdﬂéull'@akﬂ y

16 W. A. Bardeen and W. K. Tung, Phys. Rev. 173, 1423 (1968).
7In I, Eq. (2.35) we made a different choice of the scalar invariants which are essentially different combinations of the

ones chosen here. Note that we can add and subtract the term (I'/M?) (e-IP-k—e-Pl-k)Q-k to Eq. (2.35) and find the result
[A'/M2+ T /MHQ k] (e 1P -k—e-Pl-k)+ (I' /M) P-k(e-Ql-k—e-1Q k),

which has the same invariant structure as Eq. (2 23) above. The choice made here ensures that all of the scalar invariants are free
of kinematic singularities, which was not the case in I. This does not affect the results of Paper I because these terms vanish in the

soft-pion limit.
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where we have redefined 4 =CM2 B=C;M?2, C=C.M?,
and D=CeM? to make our final notation conform more
closely to that of I. We will refer to these terms as the
main term, the derivative term, and the four structure-
dependent terms, respectively.

III. SQUARE OF MATRIX ELEMENT

To obtain the photon spectrum and the decay rate
from the matrix element of Eq. (2.24), we must square
the matrix element and sum over the lepton spins and
photon polarizations. Once the square of the matrix
element is written down, the sum over photon polariza-
tions is trivially performed using

Z 6”(7n)ey(m)=5m.

polarizations m

(3.1)

The sum over lepton spins may be carried out by use of
the usual trace theorems and is a tedious but straight-
forward calculation. In I the trace calculation was done
by hand and checked against the results of the program
SCHOONSCHIP, which gives a symbolic evaluation of the
trace in terms of the scalar products of four-vectors. In
this section we discuss a theorem due to Burnett and
Kroll* which allows one to obtain the 272 and 2! terms
in the square of the matrix element with much less
effort than that required for explicit evaluations of the
trace. As in Sec. IT, we will first discuss a general process
and then specialize to the particular decay of interest
here.
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Consider the matrix element 7"z+ 7' corresponding
to the general process, and call it for simplicity 9.
We can write 91T symbolically in the form 9=91_,
+ 9o+ 91y, where Ny and M, are of order £~ and &9,
respectively, and are known exactly from Low’s
theorem. 91; is of order % and represents the additional
unknown structure-dependent contributions. Thus
|92 summed over spins will involve terms of order
k=% coming from } [9M—|? and terms of order k7!
arising from Y (M- OM* 4NN _1*), both of which
involve only known quantities. The terms in > |90|?2
of order k¢ arise from two sources, as we have noted
previously. One contribution which arises from > |91,]*
is known from 7'z and can be calculated directly. The
other contribution arises from the interference terms
2O 4-9_1*) and  involves the unknown
structure-dependent part 7's. Burnett and Kroll
derived a relatively simple formula for X [|9M_4|?
+ (MMM ON_*)]. For completeness, we sum-
marize below the derivation of this formula.
Define the quantity Q by

. € pi
Q=Z, inkff )

K3

(3.2)

where 7; and Q; appear in Eq. (2.7). From Eq. (2.9)
we have

. oT,
Ok = 20 (M4 Me*+MeIM_1*)= 3= Qua(pa) Tou(pe) ZQz‘DA(PiW(Pd)“’_"%(Pc)

spins spins

Ke \'y-k*y-e

+7Z(Pd)|:T0<Qc+(“i7'Pc"i’mc)zmc/ 2kpc

With some simple Dirac algebra given explicitly in
Ref. 4, one immediately obtains the important result
that all terms involving the magnetic moments exactly
cancel, and thus do not contribute to the O(k~2%) or
O(k™) parts of the radiative amplitude. Following
Burnett and Kroll, we use the identities

) y-ey-k  y-ey-k )
(m—iyp) = T iy p)
2p-k 2p-k )
——iyD(p) (33)

and

l¢] a
—7:7)\: *‘“(m_1’717)=2m"“"[ Z ”(P;s)ﬂ(%s)] (36)
Ipx d

P\ spins

to write the charge parts of the last two terms in Eq.
(3.4) in terms of -derivatives. Thus the entire O(k™)

S [oia|t=0r ¥ |a(pa T2 (33)
spins spins

For the terms of order £, we write

i pz)\

voey-k / . Ka ] *
Qat(—iv- Pd'i‘md)—) To]u(ﬁc)

2k - Pa \ Mg [

~+complex conjugate. (3.4)

contribution can be written as

. 1)
QZ QiDr\(pi)— X |a(pa)Tou(pe)|®.  (3.7)

Pi)‘ spins

Combining Egs. (3.3) and (3.7), we obtain the final
result of Burnett and Kroll:

2 |o|z= [Q+Q Xz: Qli(Pi);a'_-]

spins Pl)\

X 2 |T[*+O0(k).

spins

(3.8)

As discussed above and in Refs. 4 and 5, 7" in Eq. (3.8)
is to be interpreted as the nonradiative amplitude con-
sidered as a function of particle momenta satisfying
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the momentum-conservation equation

2 pi— 2 pi=k

initial final

> pi— 2 pi=0.

initial final

(3.9)

rather than
(3.10)

Thus although >~ |7'|* has the same form as the un-
polarized nonradiative cross section, it is a function of
the radiative momenta. The significance of this dis-
tinction is evident if we consider a two-body decay
such as A — pm, which is conventionally described by an
amplitude 7y= A+ By;, where A and B are constants.
Thus

LA (I DN P DRt (FIERAVIEIERES

spins M pMA

For the nonradiative process, pa=p,+ p~, which en-
ables us to write (pp- pa)/mpma= — (ma2+myt—m,)/

FEARING, FISCHBACH,

AND SMITH 2

2mymy. Thus, for the nonradiative process, |72 is a
constant. For the radiative process, however, we must
substitute Eq. (3.11) directly into Eq. (3.8), considering
| T|? as a function of the (independent) radiative varia-
bles p, and pi. As discussed earlier, since N=23, the 4
and B are still constants, and no derivatives of 4 and B
enter. The term > ; Q:Di(ps)d(pp: pa)/dpan does pro-
duce a contribution, however, and must be included.
Finally, we note that the operator part of Eq. (3.8)
is independent of whether radiation was emitted by
particles or antiparticles.

Given the result (3.8), the sum over photon polariza-
tions can be carried out immediately using Eq. (3.1).
To illustrate the application of Eq. (3.8) to the present
problem, we remember that the particular form chosen
for the nonradiative amplitude makes no difference to
order k2and k~1in )~ |91|2, so we choose the expression
given in Eq. (2.13b), since it involves explicitly only
the neutral momentum P. Then, writing

X TE)|2= X |ap)2f+Oiv-P+mfa(0)I(1+ys)0(9)]

spins spins

=(2/mm){4f2OL2P - pP - q+M>p-q1— [2(O)m*p - q+4m* [L.() f-()P - ¢} (3.12)

and using Egs. (3.8) and (3.1), we'find for the sum over spins and polarizations

- Ql‘ p 2 Qu Pu
P [T(K"—nrlwy)]?:{( _«.p_) .|_<‘ __/L>
spins, pol. Qk pk Qk [)k

pll»k)\ 6>6+Qll’kk a)aJ}ZITKU2O/0
X[ (p.k 28 o (Q-k Y 0] o2 (K% [ 240(k°) .

Carrying out the explicit differentiations indicated, we find

(3.13)

2 m2

2p-Q

gmm, 2.

spins, pol.

SRR |
[7( V)| 05

Q
— f2(Om*p- g+4m* f.() f(OP - ¢ ]=8 f12()P-q H:L—
p-kQ-k

s b
p-kQ-k  (p-k)?

f+(0)

The utility of the Burnett-Kroll theorem as a computa-
tional tool should now be evident, as the procedure for
obtaining this result from Eq. (3.8) was certainly much
simpler than the explicit evaluation of the square of
Eq. (2.17). In Appendix A we list the result for the com-
plete square of the main term of the matrix element in
Eq. (2.24) together with the terms arising from inter-
ference between the main term and the other terms
after having eliminated ¢ using four-momentum con-

+
(p-k)?

_£+QF%PQ+
Qk pk pRQk

af(t af2(t)
X {8f+(t)—al—“(2P‘PP‘Q+M2P'9)‘2m2f2(t)—;P"J+4m2[f+(l)

e e

+ e

ul
]P k
(Q-k)?

afs(t)

PQ Py
b ) 0]
Q-k p-k

A
P'k Qk

af (1
) f+()
ot

]P-q] +O(RY). (3.14)

servation. One can check that the O(k~2) and O(k™")
terms in Eqs. (A2) and§(A3) are identical to those in
Eq. (3.14).

IV. EVALUATION OF STRUCTURE-DEPENDENT
FORM FACTORS

Let us now estimate values for the coefficients 4, B,
C, and D in Eq. (2.24). We assume partial conservation
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of axial-vector current (PCAC) in the form

#Zf .

V2

where u is the pion mass, a.=0.94, and ¢(x) is the field
operator which creates a pion with isospin j. By
a Lehmann-Symanzik-Zimmermann (LSZ) reduction

of the charged pion field, we can express the matrix
element as

(20oV) M2ty | J,4+55(0) | K°)

301‘_
axs5xf<x>=”77—¢f<x>= o), j=123 (4.1)

dty e Qv (—[] _I._“z
V3 Yy ( v )

X (v | T(¢=2(y)T,4+5(0)) | K°)

Q*u? . . I
N [ dby e @O\ (y | T(Fanl=2(y)T,4+5(0)) | K°)

wax

+ 1o / d*y 7195 (yy)
uwax
X (v | [Fs0=2(9),7,42(0) ]| K%, (4.2)

where J, is either V, or 4,.13 We drop the surface terms
arising from the partial integration in deriving Eq.
(4.2). Taking the limit Q) — 0, we note that the first
term has no pole because we have extracted the brems-
strahlung contribution.!® Thus we find
(2Q0V) 13ty | J,4+55(0) | K°)

= (i/uas)(y|[Fs=2(0), J,*(0)]| K%, (4.3)
where

Fsi(yo)= / d®y Fso’(y) .

The usual commutation rules of Gell-Mann'® now yield
(20 0V)"2(7r+'y| V,4+i5(0) I Ko)

= (i/ﬂar) (’Y | Al'6+i7(0) IK()) ’
(ZQOV)”2<7F+'Y] A,““"“‘(O) |Ko>

= (i/uaz)(y| V,+7(0) | K°)
i.e., a relation between radiative K;3 and radiative

“Ki” decays.? These equations are the analog of
Egs. (3.3) of I. Unfortunately, the photon does not have

(4.4)

18 Most authors would write {(z+y|J,4+%(0) |K?) as the matrix
element for K°— n*l~vy decay after the lepton bremsstrahlung
has been extracted. We have already extracted more than this,
ie., the pion pole term and the seagull term necessary to make
the 2! and A° terms gauge invariant. Hence we identify
(wty|J,475(0)|K°) as only the unknown structure-dependent
part of the decay amplitude.

19 The bremsstrahlung parts of the amplitudes for radiative
K3+ and Kot decays depend only upon the ordinary K™ and
K5+ decay amplitudes and are related in the soft-pion limit by
the usual Callan-Treiman relation; see C. G. Callan and S. B.
Treiman, Phys. Rev. Letters 16, 153 (1966). There is a correspond-
ing relation for the bremsstrahlung terms in K, decay and mpst
decay in the soft-kaon limit which was first derived by R. Oehme,
ibid. 16, 215 (1966).

2 Jf one generalizes CVC to strangeness-changing processes,
then the right-hand side of Eq. (4.4) can be related to the decay
K0— 2.
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well-defined isospin, so we cannot make an isospin rota-
tion in Eq. (4.4) to relate the neutral-K matrix element
to that of the charged K. If, however, we assume that
the photon is a U-spin scalar, use charge conjugation
and SU(3) invariance, and dominate the neutral cur-
rents 4,57, V,%+7 by K*0 resonances, then the coupling
constants G(K*°K%) and G(K*+*K—y) are related by a
Clebsch-Gordan coefficient of —2.2! We can therefore
take the values for 4 and B from the pole dominance of
the K+ — Itpy matrix element given in I. This yields
[see I, Eq. (3.21)]

, | B(O)|22(2M/ua) [5O)]
ie.,
0.55|B(0)| <6. 4.5)

The ratio of A to B is not determined very accurately
through K 4(1320) dominance as discussed in I. We
derived there that 0.15[4(0)/B(0)| $0.9, which we
also assume to hold in this paper.

We now attempt to calculate the form factors C and
D, which vanish in the soft-pion limit, by making a soft-
kaon approximation. Although it is widely recognized
that PCAC is not as good an approximation for kaons
as it is for pions, we are only using it to estimate form
factors whose net contributions to the decay rate are
small. This justifies the rather poor theoretical model.
We assume PCAC for kaons in the form

"Fr(x)= (szK/\/i)‘ﬁ](x) , J= 4,5,6,7
where fx is defined by
(0] A\1=£35(0) | KF)=[1i/(2PoV) ] fx Px

for charged K decays. By an isospin rotation, the same
fx describes neutral K decays, because

(0] 4x#(0) | K~)= —(0] H:*+7(0) | K%).  (4.7)

Next we make an LSZ reduction of the matrix element

M2 )
X Pr(rty | T(Fa*(2)J,4+5(0)) | 0)
i(P2HM?)
V2Cxk
Xty | [Fst7(%),J,47%(0)]]0), (4.8)
Cr=—M?fx/V2.
Now we take a soft-kaon limit P, — 0, so that!®:?

(2PV) /3ty | J,445(0) | K°)

(4.6)

(2PoV) 2ty | T, #+5(0) | K°) = —

f dx e"P=§(x0)

where

iM?

Gty | F=7(0),7,4455(0)]]0). - (49)

K

21 M. Gourdin, Unitary Symmeiry (North-Holland, Amsterdam,
1967), p. 100.
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F16. 5. (a) p-pole contribution to the structure-dependent vector
matrix element in #— — =7y decay. (b) Ai-pole contribution to
the structure-dependent axial-vector matrix element in 7~ — [Py

decay.

The commutation relations of Gell-Mann!® now yield

(2PoV) ¥ty | V,4+35(0) | K°)

(wty | 4,1+2(0) | 0),
(4.10)

\/—CK
(2PoV)V3(mty | 4,45(0) | K°)

L V)0
=T ol (0)[0).

The matrix elements on the right-hand side of these
equations are the structure-dependent terms in the
~7y decay, which we define by

T —>

Snzout<l“i’7 I 7r—>in= —1(27'-)464(Q—p—q—k)

mm, 1/2 oG cosf

X( ) T, (4.11)
4QopoqokoV* V2
with 0
=1mf —_—— 145
it = b R RO
+i(e/w) (e 1Q-k—e-Qk-1)

+'L’(d~/[l,)6“yaﬂ€“lyQak/3. (4.12)

Obviously, in the soft-kaon limit the terms involving 4
and B in Eq. (2.24) vanish and the terms involving C
and D are related to the ¢ and d terms in Eq. (4.12) by
Egs. (4.10). Hence

c € cosf
—sinf| =

M2 fru
(Note that we do not know the sign of Z.) Hence

CM?2 cotl

—cosf| =
V2Cx u

'M“’Z

[C] = (4.13)

Srn
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Similarly, we find the corresponding formula for D,

dM? cotf

|D|=|- (4.14)

fK.U

The estimation of ¢ and d is now made by assuming p
and 4; dominance of the vector and axial-vector matrix
elements describing 7~ — =5y (see Fig. 5). It is not
necessary to describe these calculations in detail be-
cause they parallel the corresponding calculations for
K+ — I*yy in 1. A treatment of radiative m;; decay has
also been given in the recent book of Marshak,
Riazuddin, and Ryan. 2 We find

dO)| | JiGors

K Mp?—p?
where the numerical values of the coupling constants
are

(4.15)

’

Jo=V2Z(M 2/ fors)=20.26M 2,
G‘ur‘yz GK*K7%0-37/M .

The only unknown is now fx, for which we accept the
usual value?
fr=1.28f,.

Substituting these values into Egs. (4.14) and (4.15)

we find
|D|=1.37. (4.16)

Similar considerations hold for the value of C. If we
assume A4, dominance and follow the discussion given
in Marshak, Riazuddin, and Ryan,?? then we find

[ 2A1 1Ty
¢ ’_f_f___ (@.17)
ul (M a2 —p?)?

where from Fayyazuddin and Riazuddin? we have
fAlfA17r‘r/(MA12_l‘2) = f’r'
Hence, using M 4,=V2M,,* we find
T/ fo/ M1
This yields the result
|Cl=@%f/M2fx) cotf=1.55. (4.19)

The value given in Eq. (4.19) depends on specific
analyticity properties for form factors and can vary

(4.18)

2 R. E. Marshak, Riazuddin, and C. P. Ryan, Theory of Weak
Interactions in Particle Physzcs (Wiley- Intersc1ence New York,
1969), pp. 359-363. We note that the fary couphng has a kine.
matic zero in its definition, whereas the Zx %, coupling defined in
I was free of kinematic singularities. This accounts for the extra
power of M 4.2—pu? in the denominator of Eq. (4.17) as compared
with Eq. (3.23) of I.

28 J. Bernstein, Elementary Particles and Their Currents (W. H.
Freeman and Co San Francisco, 1968), p. 272. Slightly smaller
values of this ratio have been derived using spectral function sum
rules; see H. T. Nieh, Phys. Rev. Letters 19,43 (1967); and S. L.
Glashow H. J. Schmtzer and S. Wemberg, tbid. 19, 139 (1967).
(1246 F;s.yyazuddm and Rlazuddm Phys. Rev. Letters 18, 715

967

% S. Weinberg, Phys. Rev. Letters 18, 507 (1967).
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appreciably. Specific models are discussed in Ref. 22,
all of which yield smaller values for |C]|.

We would like to stress that the values for 4, B, C,
and D derived in this section are not intended to be
taken literally, but only as a rough order-of-magnitude
estimate. To give some idea of the influence of these
terms, we shall plot the photon spectrum in the next
section for a typical set of values 4 = B=2.5,C=D=1.0.
The signs are taken positive to yield constructive inter-
ference with the other terms in the matrix element.

V. CONCLUSIONS

Let us first give the final numbers which determine
the rates. Our procedure is to evaluate the direct square
of the main term in the radiative decay amplitude,
Eq. (2.24), up to and including terms linear in A. This
gives seven terms, ie., f:2(0), f+(0)f2(0), f22(0),
F+20)Ay, f22(0)As, f1(0)f2(0)A4, and f1.(0) f2(0)As. The
square of the derivative term of order %° (as well as
the square of the structure-dependent terms) was found
to be so small that it could be safely neglected. The
remaining terms come from the interference between
the main term and the other terms. Here we are justified
in keeping only f,(0) and f»(0) in the main term, and

_ G2 sin20 M5
T'(K°— ntevy,E,>30 MeV) =

g
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we thus generate the terms

I¢]
F@Q—f+@ — f12(0)A4,
ot
d
f+(t);tf2 () = f+(0) f2(0)As,
l¢]
: 2(f)£f+(t) — fr(0)f2(0)A4,

l¢]
fo(O)—f2() = f*(0)Az,
at

f2(0)A1 f+(O)B’ f2(O)B’

f2(0)c’ f+(O)D’ and f2(0)D
In summary, we have kept all terms in 7'22 except those
of order A% and those terms in T'gX T', (which is already
at least of order k%) which are of order zero in A. The
rate therefore is a double integral over the sum of these
nineteen terms. Details of the necessary phase-space
integrals are given in Appendix B. In practice, the
decay rate for the electron mode has only seven terms
because all the coefficients of the form factor f»(0) are
suppressed by an extra power of (m/M)?% The results
are as follows:

f+(0)A: f+ (O)C:

— X 10-3[1.1152f,2(0)0.3646 £, 2(0)A. —0.0390 £, 2(0) A,

+0.0037 £, (0) 4 -+0.0012,. (0) B--0.0028 f, (0)C+0.0012 £, (0)D]. (5.1)

As noted above, the two terms proportional to f.2(0)A. in Eq. (5.1) have different origins and thus have not been
combined in order to exhibit their relative magnitudes. The first term in f;.2(0)A4 comes from the ¢ expansion of the
f+2 term and the second f,2(0)A; comes from interference between the main term and the derivative term. We

follow the same procedure for the muon decay mode:

_ G? sin20M5
I'(K°— wtu—y, E,>30 MeV) =

4

X 10-5[7.5452 f,2(0)4-0.1406 £,2(0) —1.0346 £, (0) /2(0)

14.2380f,2(0)A 4 +0.0973 f2(0)As —0.3261 £,.(0) f2(0) (A +A5) —1.3354 £,2(0) A, —0.0162/,2(0)A,
1-0.0832/,(0) f2(0)A4 +0.1015 £, (0) £2(0)A2+0.0840 f, (0) A 4-0.0055 £,(0) A +0.0341 £, (0) B—0.0054 £,(0) B
+0.0589 £, (0)C+0.0011 £2(0)C+0.0224 1, (0)D—0.0024£,(0)D]. (5.2)
Taking now the rate for K° — n+e—5 from Appendix B, Eq. (B9), we find

(K — wreiry, E,>30 MeV)

Ri=
(K — rte s

y <1.1152+0.3646A+—0.0390A++0.0037A/ £,(0)+-0.0012B/ £,.(0)4-0.0028C/ £,.(0)+0.0012D/ £,.(0) »

01

4(1.17384-0.3191A)

The usual model of K*(890) dominance of the vector
form factor yields Ay =M?/Mg*?*=0.31. If we assume
sind=0.21, then f,(0)=1.04, from the K.° rate®

26 See the article by J. W. Cronin in Proceedings of the Fourteenth
International Conference on High-Energy Physics, Vienna, 1968,

edited by J. Prentki and J. Steinberger (CERN, Geneva, 1968),
p. 284.

(5.3)

T(K 10— 7eTr) = (7.6540.30) X 10 sec™!.

The corresponding number in I came from the charged
K decay rate and gave f,(0)=0.76. Our new value of
f4+(0) differs slightly from f1(0)=0.76v2, which it
would be if the |AI| =% rule were exact, primarily be-
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cause the particular experimental values for the rate
used here and in I are not quite in the ratio 2 :1. Note
that in R; and R., f,(0) enters explicitly in the terms
involving 4, B, C, and D. With these values, we find

Ry(E,>30 MeV) = (2.38940.0074+0.002B
+0.005C4-0.002D) X 10~2.  (5.4)

The experimental number quoted in Eq. (1.1) cannot
be directly compared with this because we do not know
the value of the photon cutoff. However, our result for
this mode will yield a rough check on the presence of
the 4, B, C, and D terms once R; is better known.

Now let us turn to the branching ratio involving
muons. Using the rate for K — 7tu~7 decay from Ap-
pendix B, Eq. (B10), and Eq. (5.2), we obtain the
branching ratio

Ry= (K — wtuwy, E,>30 MeV)/T(K® — nti5) (5.5)

as a rather complicated function of many parame-
ters. Assuming, for example, that f,;(0)=1.04 and
A, =A»=0.31, we find

Ry (E,>30 MeV, £=0)=(2.163+0.0264+0.008B
+0.017C+0.006D) X 1072,
(5.6)

Ry(E,>30 MeV, £=—1) = (2.356-+0.0334+0.008B
+0.021C+0.006D) X 103,
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In principle, a knowledge of the branching ratio R’
could be used to set limits on the other parameters but,
as no experimental data are available, we only quote
these two results.

We complete our analysis by plotting the photon
spectra for different values of the coupling constants.
Figure 6 shows the photon spectrum S=[dI' (K 13,)/dk]/
T'(K ;) for the decay Ko—gtepy with A =B=C=D=0.
The correction due to a small finite value of these con-
stants is almost unobservable and has not been in-
cluded. By “inner bremsstrahlung part 1”’ we mean the
contribution from the square of the main term in
Eq. (2.24) with f4(5)=f+(0) and f2(2)=f2(0). “Inner
bremsstrahlung part 2’ refers to all the terms propor-
tional to Ay or A, in the square of the matrix element.
This curve includes an infrared-divergent part, which
is suppressed by the extra power of £, but still divergent
at the lower end of the photon spectrum. The finite,
order-%° terms proportional to A, or A, are of the same
order as the corrections due to the inclusion of the
structure-dependent terms, so no effort was made to
plot part 2 as a finite part and a divergent part. For the
muon mode the inner bremsstrahlung is suppressed and
thus the contribution of the smaller terms is relatively
enhanced. In Fig. 7 we plot the photon spectrum for
£=2.0 (¢=—1.0),A;,=A2=0.31,and A=B=C=D=0.

5
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Fi1c. 7. Photon spectrum in K°— wtu~py, with {=2 (¢=—1),
Ay=A2=0.31, and 4 =B=C=D=0, normalized by dividing by
the K°— n*u~¥ decay rate with the same values for the form
factors. The significance of the separation into parts 1 and 2 is
explained in the text.
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+
(©Q-k)?

m2

(p-k)?

20-p

) =[

2AP-p)? 2P-Q)?
0 =47,20)] wf _AEOr

| T(K* — w+i-wy) |2 =0(k=2)+0(k) +0 (k) +0 5(k%)
spins, pol.

+m2 2 (P p—p-Q+m?)+4m? £, (1) fo() (M2+P-Q+P-p)},
M2P-p  M2P-Q
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Again the separation into parts 1 and 2 refers to the
square of the main term and the terms proportional to
Ay and A,. Figure 8 shows the same photon spectrum
for {=1.0 (¢=0), A,=A,=0.31, and A=B=25,
C=D=1.0. The effects due to the presence of the struc-
ture-dependent terms are small and we would need to
know more accurately the values of theK;;? form factors
before their presence could be precisely determined.
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APPENDIX A

In this appendix we give the results of the evaluation

of the sum over spins and polarizations for the square
of the Ki3,° matrix element given in Eq. (2.24). Basic
identities and conventions are the same as in Paper I.
The final answer is very complicated and we have split
it up into several parts. First we take the direct square
of the main term in Eq. (2.24) ; then we add the interfer-
ence between the derivative termand the main term.
These terms are listed according to their power in &.
Next we add the interference between the structure-
dependent terms and the main term. We call these
terms O 5(k°) even though they include a few terms with
higher powers of & which arise from the substitution
g=P—Q—p—Fk or from interference with the vy-ey-%/
2p-k term which, as a matter of convenience, we in-
cluded as part of the main term. Note that the O(k)°
part also includes a few terms of order k. Thus

(A1)

+ ]{4f+2(t)[2P~1)(M2+P-Q+P-P)+M2(—P-1>+1>'Q—m2)]
RO

(A2)

2P-pP-Q 2P-pP-Q  M?m® 2M2Q-p

Q-k
M*m*P-k

bk Q-k
. IMQ-p M 4m2P-kP-p

bk 0-k Pk
2m*P-kP-Q 2u*P-kP-p M%u?p-k

Pk
M2P-kQ-p

Q-k Q-k
6P kP pQ-
N pQ-p

p-kQ-k

(p-k)?
2P-kP-QQ-
4 QQ-p

p-kQ-k

(p-k)?
mAMQ-k
(p-k)?

pk Q-
16 Sf(Or2AP-p)?

——f+l

bk Q-k

:|+4m2f+(t)fz(t)[
P- P 2 90. 20-
O LR T T

+
Q-
MAP-p) 2P-p(P-Q)

(p-k)? Q-k)* Q&)
m2P-k+u2P-k 2P-kQ-p:|
(p-B)*  (Qk)? pkQ-k
o mPk wpk +P-kQ-p _m2Q-k]
(p-B)?* QK2 pkQEk (p-k)
2(P-p)*P-Q _2(P'P)2P'Q _M2P'PP'Q

p-EQ-k

2 e Lopek bk

Q-k

bk Q-k Q-k
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M°m*P-p  M?P-pQ-p M°m?P-Q M2P-QQ-p 2uP-k(P-p)> u*M2P-EP-p

Pk Pk Q-k Q-k (Q-F)? (Q-k)?
2utP-kP-pP-Q  MEP-EP-pQ-p 2P-kP-pP-QQ-p+M2m2u2P-k M22P-kQ-p
Q-k)? Q-kp-k p-kQ-k (Q-k)? (Q-k)?
M2P-EQ-p)2 2P-E(P-p)Q-p  Mm2P-kQ- ()P (P-p)2  PpP- 2p.
_MCPHQ P 2PMEpYQp | Mom Qﬁ:l_m%(l)af(t)r( PP _PpPQ mry
p-EQ-k pkQ-E pkQ-k at L pek 0k bk

B PPQP 3 mzp.Q PQQ? 3 ,u2P'kP'j7 3 P'kP'PQ'P 3 m2u?P -k + I‘2P'kQ'P + P'k(Q‘P)2
pE Ok QF  QRF pROE Q@B QB pRQE
2P-kQ- A fa(t af(¢ P-p)? P-Q)? M?P- M?*P- P-pP-

m QP]_W[f+(t)f()+f2(t) f+()][( PP (BQF Mp MPQ PP
pkQ-E ot ot bk 0k bk 0-k bk
P-pP-Q  uM?P-k  u?P-kP-p u2P-EP-Q M2P-RQ-p P-kP-pQ-p P-kQ-pP-Q

0k @B @B Q@B pRQE pRQE pkQ:E

M2P-k+4P~kP'p+2P-kP-Q 2P-kP-Q M?2Q-k 2m*P-k)> 2(P-k)*-Q

Y pk Ok kR pkQk
2(P-k)? P-k -k ) 6P k(P p)?

( ):I+m2f22(t)[——— _ok —1:|—8f+(t) / +(t)[M4+4M2P-p+M2P-Q+— (-2)

k bk pek ot bk
2P-k(P-Q)2 M?®P-kP-p M2P-kP-Q 2P-EP-QP-p 2P-EP-pP-Q 2M2P-Qp-k
0k P 0-F P Y
+M2P-pQ~k M2P-kQ-p 2M2P-EQ-p M%P-k  4u(P-E)2P-p  2M%uP-kp-k

P P 0-k 0k -k (Q-hy

M3*(P-k)*Q- 6(P-k)*P-pQ- -k)*P-QQ- 2(P-k)2P- 2(P-k)%Q-

MR SPRP POy APRPOCp L APHPO APRO S
pkO-k Iy pkQ-k 0k pkQ-k
2(P-k)*P- i) P-kP- 2P-kP- 3P-kP- M2Q-k  2u2(P-k)?

+ (P-) p] ) f+,(t)[M2_ ? Y Q 0 AP k)

o pko pk 0k | pk (@B

o 3P-kP-p 2P-kP-Q P-kP-Q MQ-k

] @s)

O(k%) = 4f+2(t)[M >+

+

(P-R)Qp  wi(P-R)? af0)r
_.42 \
pkQ-k +p-kQ-k] O
2u2(P-k)?2  3(P-E)Q-p wu(P-k)? af2() P.kP-p P-kP-Q
— — ]—2m2f2(t)
©Q-k)? pkQk  pkQ-E a pok 0k
2P-Qp-k  P-pQ-k  P-kp-Q 2P-kQ-p wP-k  2u’P-kp-k (P-k)2p~Q] AD
Q-k bk pek 0k Q-k ©Q-k)? pkQk 1

We expand f(f) in the above equations as f(¢)= f(0)(14A{/M?) with t=M?+pu?+2P-Q and retain all terms
through first order in A. As mentioned in the text, this expansion generates an additional set of terms proportional
to A from the square of the main term, but for the derivative terms, which are already proportional to A, amounts

to the replacement f(£) — f(0).
Interference between the structure-dependent terms and the main term yields the result

A P-Q)*p-k (P-p)2Q-k M2P-Qp-k 2P-pP-Qp-k  M>m*P-F
Os(ko)=_4f+<t)_[2(P.p)2+M2P.P_( Qpk | (P-pPQ-k  MP-Qpk  2P-pP-0p m
M2 0k Pk 0k 0-k Pk

M2P-kp-Q  2mP-kP-p  P-kP-pp-Q 2P-kP-pp-Q m2P-kP-Q P-kP-Qp-Q
Q-k Pk Pk Q-k p-k Q-k

I:Mz—ZP-p+P-Q+
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APPENDIX B where
mmye _
In this appendix we discuss the steps leading from T2= > | TK—> why) |2,

the expression for the square of the matrix element given

in Eq. (A1) to the final numerical results of Egs. (5.1)

and (5.2) and, in particular, the procedure used to

evaluate the integrals over the four-body phase space.

We also give numerical values for the nonradiative

decay rate in terms of the K;3° form factors.

The radiative decay rate is given by

(&S o) (G sin0>2

—arry)= ———
V2

d*k 8(k2)0(ko
4M7rsj )6 (ko)

X ] a9 5(pFm?)0(p0) / 440 5(Q*+4)6(00)

X / 2 )0 P—Q—p—q—B)T*,  (B1)

87  spin, pol.

with 3 |T'|2 defined by Eq. (A1). We have used the
standard trick for obtaining a four-dimensional integral
to replace d®p/po by 2d*ps(p*+m?)6(po). First we use
the four-dimensional § function to eliminate ¢ com-
pletely. Now define the basic Q integral Io[ f] over an
arbitrary function f of Q by

/ 40 5(Q*+u)0(Q0)L(A —0)* (A~ Q) 1/(©)
—1rh(4o) f d 8 )0(s—u9IaLf], (B2)

where A=P—k—p, and where the definition x= —A4?2
has been incorporated via the & function §(42+x).
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Similarly, define the basic p integral 7, by
[t 862 m0poL B2 LB = piler

—1n0(By) / dy 3(B 4300y — (mt-v/ =) 1L, [g], (B3)

where B=P—Fk, y=—B? and g is some function of .
When we explicitly evaluate these integrals, we shall
justify the particular 6 functions which have been
factored out. Using these definitions, we obtain

& o) G? sin?f dy [d o )
T — rtlpy)= / / x 0(x—u?
32M = 4

X 00y —(m-+/2)"] / a*% ()0 (k)

XO[(P—k)+y0L(P—k)o I [Io[T*]].  (B4)

The integral on & has the same form as the integral
defining 7,[1] and so can be obtained from results
below by using some simple substitutions. Thus

/d“k 8(k2)0(ko) o[ (P —Fk)2 4y 10[(P—Fk)o]

N2(M2,0,y)
=gm(M*—y) —, (BS)
M?2

where \(w,y,2)= 2+ y?+22—2xy—2xz—2yz. Finally,
putting all of this together, and noting that the re-
maining 6§ functions define the region of integration, we

IQ[]-]:QI; IQ[QM:]=Q2AIH

FEARING, FISCHBACH, AND SMITH 2

obtain for the rate
(K — nti-5y)

GZ Sin20 M2—-2MEy (*/1/-—7%)2
- / dy f dxN(00,)
(

64 M *n? mtu)? 2 .
XI[1e[T*]]. (B6)

Thus to obtain the rate we calculate 7, and Iq alge-
braically for each of the some 350 terms in 72 and then
use Gaussian quadratures to evaluate the two integrals
over x and y. Note that y=M?2—2Mk in the rest system
of the K° and thus the final integral is essentially an
integral over the photon spectrum. Note also that the
infrared divergence forces us to cut the integral off at a
minimum energy Eo, which means that we restrict the
yintegration to y< M2—2M E,.

Now that we have outlined the general procedure
used to obtain the rate, we proceed to the evaluation of
I, and I for the particular functions appearing in 72
Consider first the Q integral defined in Eq. (B2). We
use the standard trick for evaluating invariant integrals,
i.e., evaluate the integral in a particular frame, in this
case the rest frame of 4, and then generalize the result
to an arbitrary frame. First we use the two ¢ functions
to eliminate Qp and |Q]|. This leads, after a slight re-
arrangement, to the two 6 functions factored out in the
definition of 7. The remaining angular integrations,
which give up to constant factors just Io[ /], can be
calculated explicitly for particular functions f. Al-
ternatively, as proved simpler in some of the more com-
plicated cases, we can expand the result in its most
general tensor form and evaluate the coefficients by
examining traces or contractions with A4,, etc. The
results for the particular 7o’s we need are listed below:

IQ[Q#Q"] = Q3A I‘AV+Q46W ) IQ[QP«QVQT] = QEA #A VA1+Q6(3uvAr+6quv+8vrA u) y

Il:l:l Q7 I[QM] QA"'f- k#
Loed ax "Lord “ar Qg(A-k)z’
Q“Q,] B A4, bk, kA, Ak,
I =V +Qu +Q12 +Q1s ,
Q[Q-k Q% T T A O (4-F)?
I [QI‘Q"QT:I_ AI-‘AVAT k#kl‘k‘r (6MVA7+6n1Av+6wAu kyAvAr+AukvA1+AnAvkr>
Lor I a4 U py Ak (4-F)?
6uvkr+6;‘rkv+6vrku z(kukvA1+kpAvkr+Aukka)
oo i )
(4-k)" (A1)
1 Q Qu A4 k
IQI: ]: ° ) IQI: ] = Q19 ‘ +Q2u : s
-k (4-k)? (0-k)? (A-k)? (4-k)?
0.0, Sy A,4, kot A, Ak,
IQ[ £ :]:Q'u +Q2z - 23 - ‘ ’
(Q-k)* (4-k)? (4-k)* (4-k)" (4-k)?
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where

01= Q8= Q2= (u*/%)Q1s= (1 —p*/),
Q2=Qu=3%(1—p*/2%,
Os= Quu=301(1+4*/x+u?/2?)
Q4= Q1=152Q1°,
Os=1(1—p/%),
Qs=zgx(1+1*/x)Q1%,
Qr=Q19=1In(x/u?,
Qo= 01— 5x(1+u%/%)Qr,
Q1= — Q= 1x(1+p*/%)Q1—3u%Qr,
Q= (> + 4o+ u")Qr—fa(w+ )01,
Qus= —F(x*+ 922+ 9ut~+-1%) 0y
+ (11024 382+ 114401 ,
Qur= 12 (141%/x) Q1 — 2 (#*+ 1022+ 9 Q1
Q20=2Q7—[x(x+4?)/2u*]01,
Qo= —3Qu= —aQu+3(x+u?)Qr,
Q= (a/4%) (o 10+ ) Qs — R+ )0
The terms in Q5 and Qs are included for completeness,
although we did not need them in this calculation.
To evaluate the p integrals, we first define some

auxiliary functions corresponding to 7,[g] for the
various types of functions g appearing in 7o[72]:

Pm=lp'(P-ﬁ)"],
L (p-k)™
(P p)"
_(A-k)m]’

TKmn=1I,

:g:z:j ’

TKmnr=1p

'(p-k)"(P-p)’:I
L e A

About fifty different cases of the above functions are
needed. They are, however, related by a number of
recursion relations which can be derived by using the
relation w+2p-P—2k-p=0, with w=y—x+m? (im-
plied by the & functions in the definition of I,) to
eliminate p-P or k-p in favor of the other. Thus we
obtain

Prn=3 (—%‘*’)n—jBi" m—3,0

7=0

L= Z (— 1)j(P'B)”'—7.Bj"Aij,

=0

K.:3° FORM FACTORS:.-.
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TKnn=3 (—1)i(k-B)*iB*rAPp_jo,

7=0
" .
TKmnrz z (%w)n_JBjnTm,T+i ’
7=0

where B, is the binomial coefficient #![ j!(n— 7)1,
and where 4 P, is just Py with x and m?2 interchanged.
Thus we need to calculate only the P, which are ob-
tained in exactly the same way as the Iq, i.e., the §
functions are used to eliminate po and |p|, thus giving
the correct § functions, and then the angular integra-
tions are performed explicitly. It turns out that we need
only the seven Py, tabulated below:

Poo=N"2(y,m*x)/y,

1 w+AV2(y,m2x
T v
Pyy=[y/m*(B-k)*]Poo,
Pyo=[wy/2m*(B-%)*1Poo,
Pao=[y/12m5(B - k)* ][ 30>+ (y,m?x) 1Poo,

P_y,0=(w/2y)(B-k)Poo,
P_s,0=[(B-£)*/3y](w?/y—m?)Pu,
P_s,0=(B-k)*(w/29%)(w?/2y—m?) Py .

)

With these ingredients we obtain an algebraic ex-
pression, much too complicated to be reproduced here,
for I,[7[7*]], which can then be integrated over x
and y to obtain the numerical results given in Sec. V.

The rate for the nonradiative process K° — nly can
be obtained in an analogous fashion. Using the expres-
sion for T'(K5%) in Eq. (2.13b) and that for

> IT(K"-—Mrlu)l2
spins
given in Eq. (3.12),
G? sin%f

'K’ — nly)= ——
4Mxd

d*p 6(p*+m?)6(po)

x f 40 3(Q*+416(0s) / a4 5(4)0(s)

X (P—Q—p—9)T?, (BY)

where now

T2=Lmm, > lT(K"-—Mrlv)lz.

spins

One proceeds in exactly the same way as for the radia-
tive process by defining /¢ and I,, by Eqgs. (B2) and (B3)
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with =0, i.e., with A= P—p and B=P. Thus

7 G?sin?g pM—m? .
I( °——->7rlv)=~——————-/ dx I,[Io[1T%]], (B8
o [, RO, o9

which gives the numerical results
I‘(K"’ bep) G? sin%0 M® }0)
—rreTv)= ———————
tom "
X (1.1738+0.3191A,) X 10~2, (B9)
G? sin20 M5
————£,2(0)[0.92554-0.4221A ;.
1678

—0.1900¢ — 0.0544 (A, +A2)+0.0219¢2

+0.0141¢24,]X 1072,

'K — rtu—5)=

(B10)

where = £5(0)//,(0). Note that we have factored out
M so that the numerical coefficients are dimensionless
and that we explicitly use exact masses in all
calculations.
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Note added in manuscript. In view of the fact that
experimenters are more interested in the K,3/K.
branching ratio than in the individual rates, we give
here the results for the charged and neutral branching
ratios in terms of the conventional parameters. These
numbers were obtained directly from Egs. (2)-(5) of
the Letter in Ref. 1, which follow from Eq. (A7) of the
paper of Ref. 1 and from Egs. (B9) and (B10) above by
converting the parameters Ay, A_, 9, { to the conven-
tional set Ay, A_, and &.

(K> 7% 5
T (K~ — 7% %)
+1.41150;40.0080£0 . —0.0710£2\ 1.

=0.645740.1264£4-0.0192¢2

‘ +0.4754E0_4-0.168482\_, (B11)
I'(K°— ntu—7)
————————=0.6452-0.1246£+4-0.0186 £*

(K> 7tep
+1.31627 +-0.0064 £\ . —0.0644 £2) ;.
+0.4370EN_4-0.152682\_.  (B12)



