2 POMERANCHUK THEOREM AND THE SERPUKHOV DATA-...

symmetry group is found that contains both 4 and p in
the same multiplet.

Further measurements of the phase of forward
amplitudes would help reduce the theoretical uncertain-
ties that have been mentioned, and they would assist
in resolving the most interesting dilemma raised by
the Serpukhov data on total cross sections.
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The dispersive sum-rule method, originally developed by Fubini and Furlan, is applied to #-K elastic
scattering. Sum rules are derived for the /=% and 7 = § scattering amplitudes, and the isospin-antisymmetric
combination of the s-wave scattering lengths is calculated. These expressions contain terms involving the
off-mass-shell kappa-kaon-pion coupling constant. By following a procedure introduced by Dashen and
Weinstein, and assuming that the SU(3) XSU (3) symmetry-breaking part of the strong-interaction Hamil-
tonian transforms according to the (3,3*)4- (3*,3) representation of SU (3) XSU (3), we evaluate the off-shell
corrections. In the evaluation of the off-shell corrections, we obtain expressions for the postulated x-meson
mass and decay width, consistent with a recent experimental indication. The s-wave scattering lengths are
consistent with other current-algebra and phenomenological-Lagrangian calculations, but smaller than those
recently reported from calculations based on the leading term Veneziano model.

I. INTRODUCTION

INCE its initial proposal,! current algebra has had

a great deal of success in dealing with low-energy
processes involving the weak and electromagnetic
interactions.? However, in most of its applications to
processes involving mesons, for example, one is forced,
through ignorance of certain terms, to take a soft-
meson limit. One must then make certain smoothness
arguments in order to relate the final result to the real
world. Through a great many current-algebra calcu-
lations, the idea has generally evolved that the soft-
meson limit gives reasonable results when the mass of
the meson is small in comparison to other masses in the
process. In the case of w-IV scattering, for example, the
good agreement with the calculated and experimental
scattering lengths is presumably due to the fact that
the neglected terms are of order (m./M)? and, therefore,
small. However, for processes in which this is not true,
such as w-w scattering where, the soft-meson limit is
not valid, a recourse to other methods is necessary.’

* Work supported in part by the U. S. Atomic Energy Com-
mission. Prepared under Contract No. AT(11-1)-1545 for the
Chicago Operations Office, U. S. Atomic Energy Commission.

+ The work reported here forms part of a thesis submitted by
J. M. McKisic to The Ohio State University in partial fulfillment
of the requirements for the degree of Doctor of Philosophy.

1M). Gell-Mann, Phys. Rev. 125, 1067 (1962); Physics 1, 63
(1964).

2 See, e.g., S. L. Adler and R. F. Dashen, Current Algebras and
A pplications to Particle Physics (Benjamin, New York, 1968).

#S. Weinberg, Phys. Rev. Letters 17, 616 (1966).

In this connection it has been recently pointed out* that
there are also processes, such as 41— p+m decay, in
which the pion is “hard” rather than ‘“soft,” and in
which the use of the soft-meson limit leads to results
which are in severe disagreement with experiment.
From this initial observation there has grown a vast
literature on “hard-meson” processes*? leading to good
agreement with experiment. Recently, Fubini and
Furlan® have developed a dispersive sum-rule formula-
tion within which the results of current algebra stated
for zero-mass pions can be extrapolated to those for real
pions, in addition to giving conditions under which the
uncorrected soft-pion results are valid. In the author’s
opinion this approach represents an alternative, yet
simpler, method than the previously mentioned hard-
meson methods.

In this paper we shall apply the method of Fubini
and Furlan to elastic m-K scattering. In Sec. II we
derive the sum rules for 7-K scattering and briefly
illustrate the method of Fubini and Furlan. In Sec.
IIT we evaluate the sum rules retaining the connected
and semidisconnected contributions, where the con-
tinuum contributions are approximated by retaining

4H. J. Schnitzer and S. Weinberg, Phys. Rev. 164, 1828 (1967).

5 Here we quote only some particular references, in addition to
Ref. 4. A more complete list can be found by consulting these
papers. I. S. Gerstein and H. J. Schnitzer, Phys. Rev. 175, 1876
(1968); R. Arnowitt, M. H. Friedman, P. Nath, and R. Suitor,
2bid. 175, 1820 (1968).

6 S. Fubini and G. Furlan, Ann. Phys. (N. Y.) 48, 322 (1968).
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F16. 1. Channel conventions for 7~(q) —K*+(p) elastic scattering.

only the contribution of an 7=1%, JP= 0%, strange (S=1)
x meson. The relations obtained involve the /=% and
I=1% scattering amplitudes evaluated at threshold plus
corrections involving the off-shell kappa-kaon-pion
coupling constant, and a third relation connecting the
off-shell corrections to masses and leptonic decay ampli-
tudes. In Sec. IV, in order to evaluate the off-shell
corrections to the amplitudes, we approximate the
kappa-kaon-pion coupling by an expansion in the square
of the momentum transfer. Under the assumptions of
current algebra, pole dominance, partial conservation
of axial-vector current (PCAC) applied to both the
pion and kaon, partially conserved vector current
(PCVC) with which we associate a strangeness-carrying
scalar meson, «,7 and under the assumption that the
part of the strong-interaction Hamiltonian which breaks
the chiral SU(3)X.SU(3) symmetry transforms ac-
cording to the (3,3*)+(3*%3) representation of the
group,® we calculate the first two coefficients of the
expansion using a method introduced by Dashen and
Weinstein (DW)? in their derivation of a theorem on
K3 form factors. We find that the second coefficient
vanishes, and if we keep only terms up to O(¢*), where
¢? is the square of the momentum transfer, we can use
one of the results obtained in Sec. III to calculate the
third coefficient in the expansion. Therefore, we can
explicitly evaluate the off-shell corrections in the
relations for the scattering amplitudes. In Sec. V we
present and discuss our results. We obtain, in addition
to expressions for the mass and width of the postulated

7 Such an approach was made previously by Y. Nambu and J.
J. Sakurai, Phys. Rev. Letters 18, 507 (1963), and subsequently
by several other authors.

8 See, e.g., Ref. 1; S. L. Glashow and S. Weinberg, Phys. Rev.
Letters 20, 224 (1968); and M. Gell-Mann, R. J. Oakes, and B.
Renner, Phys. Rev. 175, 2195 (1968).

( 9R5 Dashen and M. Weinstein, Phys. Rev. Letters 22, 1337
1969).
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x meson consistent with a recent experimental indica-
tion, s-wave w-K scattering lengths consistent with
other calculations based on phenomenological-Lagran-
gian methods and current algebra, but smaller than
those recently reported based on the leading term
Veneziano model.

II. DERIVATION OF SUM RULES

In this section we illustrate the method of Fubini
and Furlan® for deriving ‘“on-mass-shell” sum rules
relevant to #—-K* elastic scattering. We confine our-
selves to forward scattering with the s and ¢ channels
defined as in Fig. 1 and closely follow the notation of
Carbone et al.1° in their application of the method to
w-m scattering.

We begin by taking the kaon as the target particle
and define the amplitude

Tyw= —i/d“x €'e-®

XK T(AF (), 4,7(0) [ KH(p)),
where in the above the axial-vector currents are de-
fined as A4,*(x)=A4,'(x)%14,%(x). Forming the scalar
product ¢*7,, and using the equal-time commutation
relations of Gell-Mann!!!

8(xo)[Ao*(x),4,7(0) 1= 2V,%(x)8*(x) ,

(2.1)

(2.2)

we find

T / dix e (KCH(p) | T(DA*(x), A(0))| K*(3)
(1200120028, (23)

where we have defined D4*(x)=0*[ A, (x)=414 .2(x)].
Using the translational invariance of the matrix element
in (2.3), we write the generalized Ward identity for
Ty as

g*qTuwr=W —25(1/2m)*(1/2p°)

+2p-q(1/27)%(1/2p°), (2.4)
where we have defined
W= —ifd4x et
XKt (p)| T(Da*(x), Da—(0)) | K*H(p)), (2.5)

have assumed the equal-time commutation relation
8(x))[D4™(0),A¢~(x) 1= 2iS(x)0%(x),  (2.6)

10 G, Carbone, E. Donini, and S. Sciuto, Nuovo Cimento 584,
688 (1968).

11 We use the metric g00=1, gll=g?2=g%=—1, so that p?= (p%)?
—p2. Our currents are normalized to satisfy 8(xo)[Vo*(%),V?(0)]
=487V 7(x)64(x), where in a quark model V,*(x) = 3¢ () v, A ().
In addition, we assume that the Schwinger terms occurring in
commutators of space-time components are c-number constants
as suggested by the algebra of fields. See T. D. Lee, S. Weinberg,
and B. Zumino, Phys. Rev. Letters 18, 129 (1967).
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and have defined
(KH(p)|SO)| K+(p))=(1/2m)*(1/2p%)S. (2.7

We shall not make any assumptions on the quantity
S(x) or the constant .S.
We now follow Fubini and Furlan,® specialize to the

collinear frame, and work in the kaon rest frame where
we set

g=p-x. (2.8)

Equation (2.4) then becomes

wprp* Ty =W (x) —25(1/2m)*(1/2p°)
+2mx?(1/27)3(1/2p0).

Since there is only one independent four-momentum in

this frame, we set

(2.9)

P"PVT,“,= P”(Tu) =p”p“T= WLKZT(OC) (2.10)
so that Eq. (2.9) becomes
my22T (x) =W (x) —25(1/2m)%(1/2p°)
+(1/2m)%(1/2p%2mk?x.  (2.11)

Following the example of Carbone et al.,'° we can obtain
an immediate simplification by going to the ¢ channel.
In the notation of Carruthers,'? the isospin amplitudes
for the s and ¢ channels are related as

M(3)=(1/v6)M (0)+M (1), (2.12)
Mo(3)=(1/v/6)M(0)—3M (1), (2.13)

where in the above M ,(v’) is the amplitude for scatter-
ing in channel v in the isospin state »’. Therefore, in
the ¢ channel we are led to the relations

w2mg?T, O (x) =W, O (x) —2(1/2m)3(1/2p%)S,©
and
w?me?T, O (x) =W, D (x)+ 22mx?(1/27)3(1/2p%, (2.15)

where T, is an /=0, t-channel amplitude, etc. Because
of the fact that 7, and 7. do not have poles at
x=0, we are led to the identifications

W@ (x=0)=W,@(0)=25,(1/2m)*(1/2p%) (2.16)
and
W D (x=0)=W,D(0)= —2mx2(1/27)3(1/2$°), (2.17)

where we have defined W,0(x)=2W,"(x) and
T.W(x)=«T,®(x). Under the assumption that W,®(x)
and W,®(x) satisfy unsubtracted dispersion relations
in the variable x, we obtain from Egs. (2.16) and (2.17)
the sum rules

1 dx ImW,©(x) 1\ 1
_/______ =ZS:‘°)<—) -
T x 2n/ 2p°

12 P, Carruthers, Introduction to Unitary Symmetry (Wiley,
New York, 1966); P. Carruthers and J. P. Krisch, Ann. Phys.
(N. Y.) 33, 1 (1965).

(2.14)

(2.18)
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and

1 doe ImW,D(x) 133 1
! f v W _mez<_) . (219
7 a2 2w/ 2p°

The advantages of going to the kaon rest frame and
choosing x as a dispersion variable have been thoroughly
discussed by Fubini and Furlan.® For completeness we
cite here two of the advantages relevant to the present
situation. (1) The analytic properties of the amplitude
in the x plane are very simple. In particular, the ampli-
tudes are free from anomalous singularities. (2) Most
importantly, the assumption of unsubtracted dispersion
relations for W in the collinear frame can be justified
by appealing to Bjorken’s limit.!3

As was pointed out by Carbone et al.,'° the sum rules
in Egs. (2.18) and (2.19) are unsuitable if we wish to
use single-pole methods. The difficulty follows from the
observation that W,©@(x) and W, (x) receive double-
pole contributions from the pion. This results in the
introduction of not only threshold amplitudes but in
addition their derivatives with respect to x. To alleviate
this difficulty, an appeal is made to Bjorken’s limit,?
which, when applied to W (x) in the collinear configu-
ration, gives

1
W(x) ~ /d3xe‘iq"
T—00 Mg

X(K+(p) | [D4*(0,%), Da=(0) ]| K*(p))+

i

x2m .2
5 / dv =K+ (p) | [D+(0,x), Da=(0) ]| K+(2))

1
R

23,8
X(K*(p)|[Da*(0%), D4~ (0) ]| K*(p))+- - -

In terms of the {-channel amplitudes, (2.20) carries the
implications

'd3x e—-iq'x

(2.20)

W) ~ CD/z, 2.21)
W.O%) ~ CO/x2, (2.22)
W@ ~ CO/a, (2.23)

where in the above we have defined the constants
through the commutation relations

3(x0)[Da*(x),D4~(0) ]= 8*(x)CV, (2.24)
8(xo)[Da*(x),D4~(0)]= —id*(x)C®@,  (2.25)

d
an 8(@o)[Dat(x),D4=(0)]=64x)CD. (2.26)

13 J, D. Bjorken, Phys. Rev. 148, 1467 (1966).
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Under the assumptions of unsubtracted dispersion
relations for W,W(x) and W,®(x), Eqs. (2.21) and
(2.22) lead to the sum rules

1
- /dx ImW, O (x)=—CD | (2.27)
™
1
- /dx xImW (O (x) = —C©, (2.28)
™

In any model in which the divergence of the axial-vector
current is rigorously proportional to the pion field,

CcCw=Cw=0. (2.29)

Because C© will only contribute to the disconnected
graphs, which are always understood to be subtracted
off, Egs. (2.27) and (2.28) lead immediately to

1
- /dx xImIWV @ (x) =0 (2.30)
™
and
1
- /dx ImIV, @ (x) =0. (2.31)
™
In addition, from (2.23) and (2.29) we find
1
- /dx 2?2 ImW, 9 (x) =0. (2.32)
™

Then by combining Egs. (2.18) and (2.30), (2.19)
and (2.31), and (2.19), (2.31), and (2.32), we are led,
respectively, to the sum rules

1 rdx mr?
—f—(l— x2> ImV @ (x)
T X My?

1 7 dx ImF,9(x) 1\3 1
_ _/____ =25t<°><~> (233
T X 27r PO
1 rdx mg?
—/—(1— x“’) ImW, @ (x)
TJ «? My
1 /de ImF,D(x) 1\3 1
- / g =—me2(~> —, (2.34)
T x2 2m 2?0
and
1 rdx mr? \?
—/—<1— x2> ImW, ™ (x)
TJ «x? M’
1 rdx ImG,®(x) 1% 1
_! / ~_=_me2<~> ., (235)
T X2 2n/ 2p°
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where in the above relations we have defined the ampli-
tudes

F= —-NQF,,/d‘*x ele®
X(E+(p) | T(j=-(x), Da—(0)) | K*(p)) (2.36)

and

G= —2iF,,2/d4x el

XKD T (Ga (), Jx+O)) [ KH(p)), (2.37)
with j,(x) defined as
(O+ms?) oz 2(w) = j=*(x). (2.38)

In the following we shall work only with the sum rules
(2.33)-(2.35). Equations (2.33) and (2.34) now con-
tain only a single pion-pole contribution and introduce
the pion-kaon scattering amplitudes at threshold.

III. EVALUATION OF SUM RULES

In this section we turn to an evaluation of the three
sum rules (2.33)-(2.35) developed in the preceding
section. From the definition of F in (2.36), we insert a
complete set of intermediate states and obtain the
absorptive part as

ImF=—7Q27)V2 Y 64(p+q—n) <K+<P) [ J==(0) !”>

X{n|Da=(0)| Kt(p))+ct., (3.1)
where c.t. refers to the crossed term. In evaluating (3.1),
we shall retain only the w-K and « intermediate-state
contributions. In the collinear configuration the =K
contributions are!

1\ 1 F.m,
ImF,©| = —w(—«) —
2w/ 2p° mk

><6<x— ﬁl)M,“’)(x) (3.2)

mk
and

1 )3 1 F.m,

2

ImFg(l) I K= _7l'(
ZPO Mg

><5<1— ﬁ)M;‘”(x). (3.3)

MK

4 We define the T matrix by the convention Sypi=8s:
+i(2m)%(pr— pi) Tp= 87i+1Q2w) 18 (ps— pi) WXL M ;.
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The contributions of the « are

2r) \2p0/

and

1
riot e L)
2w/ 2p°

In obtaining the above we have used PCAC as
DA‘"(x) =9*4 ,‘“(x) = I"wmr%"ra(x)r

where F is defined as

535
I =W<—1_>3<_L\ (VO)Fr2ma2g2(mu%?) 6((1+x)2— (m.2/mx?)) e(14x) 54)
2mg (mgx—m,?)
81 FPmag (mg®s®)6((142)°— (m/mx?)) (1) 3.5)
mg?(mr*e?—m.?) ’ .
Substitution of (3.12) into (2.35) gives
Q= 1)2>3 (36) dmmxk gz((mx_mK)z) g2((mx+mK>2) (3 13)
Ir7r2 - (mx_mK)2 (mx+mK>2 . ’

0] 4,2(0) [wP(p)) =il xpudF(1/2m)}(1/2p°)},
and have defined
(K*(R)| j=~(0)|«%(p))= —iV2g(¢) (1/27)*(1/2p°) . (3.8)

Substituting Eqs. (3.2) and (3.4), (3.3), and (3.5) into
(2.33) and (2.34), we obtain, respectively,

3.7

—25,®
M,©®=—
F,?
n (\/6)"”#2 { 82((’”:( —mk)?)
dme  (me—mg)[(me—mx)?—m.*]
g ((m+mx)?) ] (3.9)
(met-me)[(mA-mi)?—m,*]
and
2M My
M,®=
F,?
Mg g((me—mx)?)
2m (me—mg) [ (me—mg)?—m,>]
g ((mctmx)?) (3.10)

(metm) [ (metme)?—m2])

In a similar fashion we return to the definition of G in
Eq. (2.37), insert a complete set of intermediate states,
and obtain the absorptive part as

ImG = —(2r)*F+?2 3 6*(p+q—n)(K*(p)| j=~(0) | )

X (1| j+0)| K+(p))+c.t.

By retaining only the « contribution and going to the
collinear configuration, we have

133 1
ImG<1>=—1r<—> —
2w/ 2p°
g (mr%?)F26((1+42x)2 — (m2/mx*))e(1+x)
X

sz

(3.11)

. (3.12)

As is apparent from inspection of the above expressions,
the form factor g(¢?) is evaluated at two different off-
shell points: ¢*= (m—mxg)? and ¢*= (m+mx)? The
reason for this circumstance has been thoroughly dis-
cussed by Fubini and Furlan and arises from the con-
tribution of the connected and Z graphs shown in Fig. 2.

By following the same procedures outlined above, we
can treat the case in which the pion is taken as the
target particle with the kaon incoming, and similar
expressions to (3.9), (3.10), and (3.13) are obtained with

K+(p) K*(p)

Q) =@

=-(q

(b)

7-(q)

K+p K (p)

Fi16. 2. Graphs which contribute to the sum rules. Graphs (a)
and (b) give rise to g(¢?) evaluated at two off-shell points. Graph
(a) is the connected contribution, (b) is the so-called Z graph, and
{(c) introduces the threshold amplitudes.
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the = and K labels interchanged. Here we state only
the obvious analog to (3.13), namely,

_ 2((me—mz)?) _ Z((me+mz)?) . (3.14)
(m,(—m,,)Z (mx+m7r)2

Amn,

Fg?

where in the above we have defined
(mt(k) | jr- @] (p))=1V2(1/2m)*(1/2p")&(¢?)- (3.15)

As was mentioned above, the occurrence of form
factors evaluated at two separate points is inherent in
the method of Fubini and Furlan. A simple evaluation
of the above results would be to completely neglect the
off-shell dependence and approximate

g((me—mi)®) = g((metmx)?) =g((me—m=)?
=g((m+mz)?)=g=const. (3.16)

If this is done, the g’s can be eliminated from Egs.
(3.13) and (3.14) with the k mass determined as

(FK/Fw)sz_m‘lr2

, 3.17
(Fg/Fr)—1 ( )

which expresses the x mass entirely in terms of known
quantities. The relation (3.17) and the approximation of
(3.16) are interesting in that for the choice of Fg/F
=1.28 they lead to the predictions m,21020 MeV,
and I'(k = K+m)=~740 MeV, consistent with a recent
experimental indication.’® These results have been
obtained by several authors.!6:17 Although one would
like to retain (3.17), it leaves one rather puzzled in
that, if the x mass is indeed ~1 BeV, the approximation
of (3.16) requires g(¢?) to be roughly constant over a
range of ¢ extending from the physical decay point of
¢==140 MeV to ¢=<1500 MeV. In an attempt to under-
stand the above circumstance, we shall approximate
£(g% by a polynomial in ¢? as

2(¢") = got+g19°+g2¢*. (3.18)

The above is reminiscent of the proper-vertex expansion
used in the hard-meson calculations first introduced by
Schnitzer and Weinberg. In the following section we
shall apply the method of DW, used in deriving their

% T. G. Trippe, C. Y. Chien, E. Malamud, J. Mellema, P. E.
Schlein, W. E. Slater, D. H. Stork and H. K. TlChO Phys. Letters
28B 203 (1968). These authors report experlmental evidence for a

K-r enhancement of mass =~1100 MeV and width ~450 MeV.
The « width of =750 MeV calculated from (3.16) and (3.17) is
consistent with this experiment (private communication from
Professor Malamud to Professor Wada). More recently, evidence
of a K-r enhancement of mass=11604+10 MeV and width
=90+30 MeV has been reported. See D. J. Crennell, U. Karshon,
K. W. Lai, J. S. O'Neall, and J. M. Scarr, Phys. Rev. Letters 22,
487 (1969). We are not in agreement with the quoted decay width
from this experiment.

16 D. W. McKay, J. M. McKisic, and W. W. Wada, Phys. Rev.
184, 1609 (1969). The quoted x widths in this paper are for the
neutral x decay mode [Phys. Rev. D 1, 957(E) (1970)].

17 See, e.g., S. P. DeAlwis and D. A. Nutbrown, Nuovo Cimento
58, 876 (1968); D. H. Dahmen, K. D. Rothe, and L. Schiilke,
Nucl. Phys. B7, 472 (1968).
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theorem on the K;; form factors, to calculate the
coefficients go and g, appearing in (3.18). We find that
the k mass is determined by (3.17), and, under some
additional assumptions (see below), that g;=0. Since
2o is known, the demand that (3.18) satisfy (3.13) then
determines the coefficient go. Therefore, we can evaluate
the off-mass-shell corrections to the sum rules (3.9)
and (3.10). Before discussing our results, however, we
first turn to the calculation of the coefficients go and g;.

IV. EVALUATION OF ¢(g?

In this section we apply the method of DW to calcu-
late the first two coefficients of g(¢?). For notational
convenience we work with Cartesian variables rather
than in the charged notation. We define the form factor

8(¢%) as'®

(KB(R)] j==(0)|x(p))
= —(1/2m)%(1/4p%°) 1% f67g(g?)
= —(1/2m)*(1/4p°%kO) [0 7 (go+g1g*+g20%) ,  (4.1)
where (O+m.2) ¢.*(x)= j+%(x), @, B, and v are SU(3)
indices, and ¢= p—k. In order to avoid any assumptions
on the commutators involving the pion source operator
7=%(x), and to apply the method of DW, we introduce
PCAC and use the definition of j,%(x) in terms of the
pion field to write
(KP(R)| j==(0)| K’(P))
=
= (K"(k) (D) [k (p)), (4.2)

o

where D 4%(x) = 9*4 ,%(x) =F xm20.%(x). Following DW,
we expand the matrix element involving the divergence
as

(KP(R)| D 4(0) [k7(p))= (1/2m)*(1/4p%0) /2
X(ao+a1*+axg*+--+).

By combining (4.1)-(4.3) and equating coefficients, we
are led to the identifications

foB7g0=—ao/Fx

f8rg1= (1/Fx)(ao/ms*—ay). (4.5)

Following DW and appealing to the LSZ reduction
technique, we define

(4.3)

(4.4)
and

M= fd“x d*y ett-vg=iry

X (0| T(D4#(x), Dv(y), D4%(0))|0)

—FxFKmK2mK2(ao—|—aqu|_ . )
= , (4.6

(P =me2) (k2= mac)

18 Here, as in Sec. III, we are assuming a kappa-kaon-pion
interaction density of the form 3C(%) = guren foBrm(x) KP ()7 ().
This implies, for example, that under charge conjugation, the
|x*) state goes into — ln“).
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where in the above we use kaon PCAC and PCVC in
the forms

A4 ,B(x)=Fgmg?oxf(x), B=4,56,7 (4.7)
YV, (x)=Fmlo(x), v=456,7. (4.8)
Integrating the left-hand side of (4.6) by parts three

times yields
M= —ikpg / d4xdty e*zeip Y

X(O| T(4,5(x), V. (3), Ax*(0))[0)

—ifebekkp” [ dty 70| T(V,#(0), V. (y))]0)
d*x ¢™®*(0] T(4,°(0), 4,°(x))|0)

+M+Mo+Ms+M,

where in the above we have defined

Fiferrhp /
(4.9)

M= — | d*xdy et =e= (0| T(5(x0— 7o)
X[AF(*),Dv7(y)],D42(0))|0), (4.10)
M= — | d*xd*y et ze=29(0| T(8(x0)
X[A4#(2),D42(0)1,Dv* () [0), (4.11)
Mszik"[d“xd“y e zg=i2v(0 | T(8(yo—0)
X[V (3),4,8(*)1,D4%(0))|0), (4.12)
and
M4Eik“/d4xd“y etkze=i2-v(0| T(5(yo)
+LVo(3),D04%(0)],4,5(x))|0). (4.13)

In order to evaluate the contributions of the M’s, we
need to know the various equal-time commutators
indicated in (4.10)-(4.13). As is well known, one can
obtain information on current-divergence commutators
if one makes a definite assumption on the form of the
symmetry breaking. Here we follow Gell-Mann ef al.!:8
and assume that the Hamiltonian describing the strong
interactions can be decomposed into two pieces, one
of which is invariant under the chiral SU(3)XSU(3)
group and the other of which transforms according to
the (3,3%)-(3*3) representation of the group. Thus,
we assume

H=H+u+cus,

where H, is invariant under the transformations which
generate SU(3)X.SU(3), and the #’s are scalar densities
defined in a quark model as

ur(®) =AY (), «=0,1,...,8.

(4.14)

(4.15)
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By analogy with the above, we also introduce a set of
pseudoscalar densities as

v () = 3P ()N y s () . (4.16)

From (4.14)-(4.16), assuming free-field anticommuta-
tion relations for the quark fields, ¢/(x), and specializing
to a, 80,8 relevant to the present case, we find

8(2o)[Vo(x),uP(0) =i f*Prur(%)8%(x) ,
a,B,y=1,...,7 (4.17)

8(wo) [V (%) ,8(0) ]= i f*Frv7(x)8%(x) , (4.18)
8(xo)[ A 0*(x) ,uP(0) ]=id*Prv7(x)6%(x) , (4.19)
and

8(x0)[A*(x),08(0) ]= —id*Prur(x)84(x) , (4.20)

with the divergences of the vector and axial-vector
currents given, respectively, by

OV, 2(x) = cf*Brur(x) (4.21)

and
o*A 2 (x)= (1N (V2+-c)v*(x), «=1,2,3
aMAMD‘(x) = (1/\/3—)(\/7—%6)”0‘(“:)’ o= 47 5: 6) 7'

From (4.17)-(4.22) we obtain, for example, the com-
mutation relations!®

(4.22)

8(x0)[4 P (x),Dv7(0)]
= —ifBYo(Fm,2/Fxmy?) D ()84 (%),
B=4,5(6,7), v=6,7(4,5), p=12 (4.23)
8(x0)[4%(x),D4>(0) ]
= —i f8«Y(F ym,%/F om,) Dy*(x)5%(x),
Bp=4,567, a=123 (4.24)
8(xo)[A0*(x),Dv7(0) ]
=i fer?(Fom/Frmg?)Da?(x)84(x),
a=123 py=4,56,7 (4.25)
and
8(xo)[40*(%),D4P(0) ]
= i f*f7(Fgmg?®/F om.*) Dy *(x)64(x),
a=1,23 Bp=4,56,7 (4.26)
where we identify
Fan/F mp2= —3c/2(V2+c) (4.27)
and
Fom2/Frmg?=—3c/2(V2—%c). (4.28)

Equations (4.27) and (4.28) can be combined to predict
cas

—\2 Vgt —ma?
- 2[(Fx/F)mg*—m ]’ (1.29)
(Fr/F)mg*+3ma*

19 The commutation relations (4.23)-(4.26) may at first glance
seem strange in that no d*#7 constants appear. They are, however,
strictly equivalent to those of Ref. 8 provided the identifications
(4.27) and (4.28) are made. We find it convenient to write the
commutators in this form for obvious reasons (see below).
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which for Fg/F,.=1.28, m,=494 MeV, and m,= 140
MeV gives c= —1.28, in good agreement with c= —1.25
as obtained by Gell-Mann et al.® Relation (4.29) and
similar relations to (4.27) and (4.28) have recently
been noted by several authors.2® Substitution of (4.23)-
(4.26) into (4.9), going to the limit p2=0=~k22! and
comparing with (4.3) gives

faﬂy(Fxmﬂcsz—F'lrm‘zr2Fx)
+faﬁ7q2(%Fx2_%FK2~%FT2+Fxmx2FK/m1r2)

= —F Fg(avt+ag*+---). (4.30)
From the relation
ao=— f*Pr(m2—mg?, (4.31)
and by equating coefficients in (4.30), we have
Fo(m2—m.2)=Fg(m’—mg? (4.32)
and
FKQ_sz_Fﬂ’Z P‘ﬂmk2
a1=f"‘57< — ) . (4.33)
ZFKFK FKm,,2

From (4.4), (4.5), (4.31), and (4.33) we then find

go=(m2—mxg?)/F, (4.34)
and
1 PR —F2—F2  Fom
g1=—}3:( 2xF,  Fxmy®
(e —mx’) ) (4.35)
M

Equation (4.32) leads to the k-mass prediction of (3.17).
From (4.35), together with

F,=Fx—F, (4.36)

and (4.32), it follows that g;=0. The relation (4.36)
can be shown to follow from the assumed form of the
symmetry breaking that we are making here,” but it
can also be shown to hold independently of any assumed
form of symmetry breaking provided PCAC, PCVC,
pole dominance, and certain smoothness assumptions
are made.6:22
To proceed, we assume that g(g®) can be represented
as
8(¢")=got 829" (4.37)

20Y. Y. Lee, Nuovo Cimento 644, 474 (1969); N. H. Fuchs and

'(1‘. ;%) Kuo 7bid. 64A, 382 (1969); and J. Cleymans, ibid 65A, 72
1970).

21 No soft-meson limit is implied by setting p?=%2=0. This is
done since we are interested in terms involving ¢® (see Ref. 9).
In this limit, the first term on the right-hand side of (4.9) and M,
defined in (4.13) do not contribute.

22 In this connection we note the work of L. K. Pande [Phys.
Rev. Letters 23, 353 (1969)], who finds that if pole dominance is
applied to commutators involving currents and current diver-
gences, in addition to those involving currents, then one is led
automatically to the (3,3%)4(3%3) form of the symmetry
breaking.
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As previously mentioned, (4.37) is analogous to the
proper-vertex expansion in the hard-meson calculations
first introduced by Schnitzer and Weinberg.* Keeping
higher terms would make it difficult to understand the
successes of these calculations where one retains only
the lowest-order terms. Under the assumption that
g(g®) can be adequately represented by (4.37), we can
easily determine g» by requiring that (4.37) satisfy
(3.13). We then find

82= 2g0/(3m,‘4+ 10m,(2mK2—l—3mK2) ) (438)
so that for g(¢?) we have
(mlE—mxg?)
g(@»=
2¢*
X[:I—F ], (4.39)
3m,‘4—|— IOm,ﬁmK2+3mK4

which will allow us to evaluate the off-shell corrections
to the sum rules (3.9) and (3.10).

V. DISCUSSION OF RESULTS

In order to compare our results with other approaches
we recall the general definitions

Ma )= %[Ms (1I2)+Ma(3/2)] ,
M, O=3M 02—} 627,

where the superscripts 3 and § refer to the isospin and
subscripts s refer to the s channel. These are related to
the ¢-channel amplitudes as

M, =(1//6)M,© .
MO =1M,0,
Thus, from (3.9) and (3.10) we have

(5.1)
(5.2)

(5.3)
(5.4)

A M’ g (me—mx)?)
M, =—
F:2A/6  4m, { (me—mu)[ (me—mi)2—m,2]
lonctme)) } 5.5)
(mt-mz) [ (mtmg)?—mx*]
and
M, = MK + m"s{ g ((me—mx)?)
2 4m, (m,‘—mK)ZE(mK—mKV—mﬂz]

gt
(me-tmx) Lo, mx)—m?]

} . (5.6)

In terms of the M amplitudes, the scattering lengths

are given by
M®m, 1

@ = — 5.7

8w(mr-+my) my ’



2 DISPERSIVE SUM-RULE APPROACH TO »-K SCATTERING

where in direct analogy with (5.1) and (5.2),
a P =3%(al242¢3%), aS=%(al?—a??). (5.8)

The first term on the right-hand side of (5.6) is the usual
current-algebra result and for mg=494 MeV, m,= 140
MeV, and F,2=0.47 m,? yields

0™ =0.066(1/mz). (5.9)

By using Fx/F.=1.28, which predicts a reasonable
k mass and width,'® (3.17) and (4.39) can be used to
evaluate the off-shell corrections in (5.6), and we find

a=0.071(1/m.), (5.10)

which is consistent with several other predictions based
on current-algebra and phenomenological-Lagrangian
calculations,”® but smaller than values obtained by
calculations based on the leading term Veneziano
model.# Owing to the unknown constant S, we are
unable, however, to compute ¢ within the present
framework.

As a final indication of the consistency of our ap-
proach, we can estimate Fx/F, from our sum rules. If
we take the pion as the target and the kaon as the
incoming particle, we derive the analog of (5.6),

mK‘“

2(mi—my)?)

am \(m—m YL (me—m.) —m*]
22((mit-mz)?)

B (mtme) 2L (metm.) —me?])

Using m,=1020 MeV and equating (5.6) and (5.11)
then leads to the prediction Fx/fr=1.24, compatible
with the approximations involved.

In summary, we have applied the dispersive sum-
rule method of Fubini and Furlan to a study of =-K

MEM

Fg?

M=

(5.11)

23 The consistency of (5.10) with other results depends upon
whom one compares with. For example, S. Weinberg (Ref. 3)
obtains a¢)=0.086(1/7,) including the reduced-mass correction;
J. A. Cronin [Phys. Rev. 161, 1483 (1967)] obtains a¢)=0.066
(1/m,); H. Yabuki [Phys. Rev. 170, 1410 (1968)] obtains a¢
=0.129(1/m,) including off-shell corrections; and R. W.
Griffith [Phys. Rev. 176, 1705 (1968)] obtains o =0.086(1/7x).

24 See, e.g., K. Kawarabayashi, S. Kitakado, and H. Yabuki
[Phys. Letters 28B, 432 (1969)], who obtain a¢)==0.093(1/m=);
and R. Arnowitt, P. Nath, Y. Srivastava, and M. H. Friedman
[Phys. Rev. Letters 22, 1158 (1969)], who obtain a©
=0.136(1/m5).
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elastic scattering. By assuming current algebra, PCAC
applied to both kaon and pion, PCVC, single-particle
pole dominance, and the assumption that the SU(3)
X SU(3)-symmetry-breaking part of the strong-inter-
action Hamiltonian transforms according to the
(3,3*)+(3*3) representation of SUB)XSU(3), we
have derived sum rules for the s-wave =1 and =%
scattering amplitudes. By appealing to a method intro-
duced by Dashen and Weinstein, we have evaluated the
off-shell corrections and have found scattering lengths
consistent with previous calculations based on current-
algebra and phenomenological-Lagrangian methods,
but smaller than those predicted from the leading term
Veneziano model. In addition, we have found the «-
meson mass and width consistent with a recent experi-
mental indication. All of the above results depend
essentially only on three fairly well-known parameters:
Fx/F ., mg, and m,. If m=>1020 MeV is taken, the sum
rules for the amplitudes predict Fg/F,=1.24.

In conclusion, it should be stressed that the Fubini-
Furlan dispersive sum-rule method provides a much
simpler method for performing hard-meson calculations,
and serves as a good framework for testing various
models of SU(3)XSU(3) symmetry breaking. In the
particular case considered here, we find that the
(3,3")+(3*3) form is consistent with experiment.2s
We also see that when the off-shell corrections can be
evaluated, by pole-dominance methods, for example,
one is led to interesting relations between masses and
coupling constants.

Note added in proof. After this paper was submitted
for publication, the following papers involving multi-
ple-term Veneziano models came to the author’s atten-
tion: D. Corrigan, Phys. Rev. 188, 2465 (1969); and
D. W. McKay, W. F. Palmer, and W. W. Wada,
Phys. Rev. D (to be published). The models of these
authors lead to ¢=0.073 (1/m,) and a=0.069
(1/mn), respectively. These results are in excellent
agreement with Eq. (5.10).
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