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Equivalence of Perturbation-Theory Techniques and the Bethe-Salpeter
Equation for Summing Feynrnan Diagrams*
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Polkinghorne's exact perturbation-theory equation for the leading Regge trajectory resulting from an
infinite sum of ladder diagrams is shown to be mathematically equivalent to the partial-wave Bethe-Salpeter
equation. Thus, the perturbation-theory equation can be used not only for the leading Regge trajectory,
but for all secondary trajectories as well.

L~(n, s) = r 'L(s, r)dr . —— —

*Supported in part by a grant from the National Science
Foundation.

' B. W. Lee and R. F. Sawyer LPhys. Rev. 12'7, 2266 (1962)j
were the 6rst to show that ladder diagrams generate a Regge pole.

'V. Chung and D. R. Snider, Phys. Rev. 162, 1639 (1967);
R. E. Cutkosky and B. B. Deo, Phys. Rev. Letters 19, 1256
(1967).

' J. C. Polkinghorne, J. Math. Phys. 4, 503 {1963); P. G.
Federbush and M. T. Grisaru, Ann. Phys. (N.Y.) 22, 263 (1963);
22, 299 (1963).

4 J. D. Bjorken and T. T. Wu, Phys. Rev. 130, 2566 (1963);
T. L. Trueman and T. Tao, ibid. 132, 2741 (1963).

2

HERE exist a number of theoretical models which
are used to investigate various properties of

Regge poles. One of the most useful has been the
description of a Regge pole as an infinite sum of
Feynman ladder diagrams in a scalar field theory.
Among its other virtues, the ladder-diagram model is
the most direct relativistic extension of potential
theory, yet it contains many new features such as cuts
and daughter poles. There are two basic methods of
studying the l,adder-diagram model. In one the ladder
diagrams are summed into an off-mass-shell integral
equation, the ladder approximation to the Bethe-
Salpeter equation. ' ' This equation is expanded in
partial waves and continued into the complex angular
momentum plane. Regge trajectories are obtained by
locating the singularities of the partial-wave amplitude.
The integral equation for the partial-wave amplitude
has been solved numerically below threshold for arbi-
trarily strong coupling. ' It can also be solved formally
with Fredholm theory. ' The zeros of the Fredholm
denominator in the weak-coupling limit lead to analytic
expressions for the Regge trajectories. Generally speak-
ing, investigations involving the Bethe-Salpeter equa-
tion have been characterized by a mathematical
preciseness lacking in the perturbation-theory approach
to the study of ladder diagrams.

Originally perturbation theory involved calculation
of the asymptotic behavior (t +~) of the X—-rung
ladder diagram and then summation over E to obtain
an expression of the form (—3) '&.' It has proved more
scient, however, to begin by taking the Mellin trans-
form with respect to r= —t of the E-rung ladder
diagram:

Regge trajectories are given by the zeros of the denomi-
nator of (1); and, to lowest order in the coupling con-
stant, their position agrees with that obtained from the
zeros of the Fredholm determinant of the Bethe-Salpeter
equation. Polkinghorne' has isolated the complete set
of poles at n = —1 and summed them into the:form (1)
to give an exact perturbation-theory expression for the
leading trajectory. The steps leading to t'1) lack
mathematical rigor. No one has investigated the
convergence properties of the series or the behavior of
the neglected terms. The solutions of the equation

n+1 =F(n,s), (2)

when the exact expression for F(n,s) is used, should be
identical to those obtained from the Bethe-Salpeter
equation. However, until recently (2) has been in-
vestigated only in the weak-coupling limit.

In this note we use a recently developed reformulation
of (2) to prove that the leading Regge trajectory ob-
tained from (2) is indeed identical to that obtained from
the Bethe-Salpeter to all orders in the coupli. ng con-
stant. ' The mathematical rigor of the proof is commen-
surate with that used in deriving (2). This result
establishes the perturbation-theory approach on a
firmer foundation. In addition, we show that, although
(2) is an equation obtained by summing poles at n= —1,
where o. is the Mellin transform variable, it contains not
only the leading Regge trajecotry, but all secondary
trajectories. In other words (2), or its reformulation, is
mathematically equivalent to the partial-wave Bethe-
Salpeter equation when it comes to solving for Regge
trajectories if n is identi6ed as the complex angular
momentum. The solutions of (2) are Regge trajectories,
not Mellin trajectories. The leading Regge pole and
Mellin pole necessarily have the same position, but the
leading Regge pole generates an infinite sequence of

~ J. C. Polkinghorne, J. Math. Phys. 5, 431 (1964).' A. R. Swift and R. W. Tucker, Phys. Rev. D 1, 2894 (1970),
hereafter referred to as I.
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In its Feynman-parametrized form, this amplitude is
seen to have an Ãth-order pole at n= —1. Thi'. s pole is
isolated and summed to give an expression of the form

LG(n s)1'
I(n, s) =I'(—n)

n+1 F(n, s)—
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parallel secondary Mellin
in (2).'

To prove our assertion
tion of (2) developed in
writing

poles which are not present

we start with the reformula-
I. BrieQy, it is obtained by

F(n, s)

1+F(n,s)/(n+1)

P(k') = «n+1)/(k'+X') +',

ensionality of the momentum-spaceand. the dimensiona i y o
rais is 1.=2n+4 rather than just

d 2n+3 space dimensions. ) Allone time dimension an n s
ried out in I.dimensions, I.an arbitraryintegrals are carrie out in im

positive integer, and then we set 1.= e
can write

G' d' +'k V(e,s,k)

L(k+ '&)'+ 'jL(k —&)'+ '3

where V(o.,s,k) satisfies the integral equation

Q2

V(n, s,k) =1+—

4

f nd s which generate poles in F(n,s) are
f (2). The expression for F(a,s, insolutions o ~ . e

um of I'eynman integra s is r
notin that the F(a,s) is just anintegral equation by noting t at e o,,

of ladder diagrams with con rac e
we use a special set of Feynman ru es. e pr
for the exchanged particle is

we obtain the following integral equation or „e,s,k .

V (n, s,k) = V„'+
G' )VS

~ +' (2m+X)

q"+'dq P„(k,q) V„(n,s,q)

L(q+~~)'+~'X(q —«)'+~'3
'+~", I'(1+~$) is the area of a hyperspherewhere z = 2m'+ 2

of unit radius. We have used

P„(k,q) =
2"—'e!(N+2e) t «F/2) j'

x(e+Ã)

X ds(1 —s')'~ ""C~"(s)P((k —q)'). (10)

C~~'„(s) obeys the addition theorem:

C""„(cosP)= — -- Q V~(e,m;, Qk)7~ I,C cos =- --, *0m;Q).
2m+X ~'

Since the inhomogeneous term inIn 6 Is a constant3
, , )=0 f 40 Inasmuch as we are interested

in the poles of V(n, s,k), we set V„(n,s,k) =0, n&0, and
use (8) only for n= 0:

P((k —q)') = Q P„(k,q)C~I'„(s).
3t=o

= cos and is theC~i'„(s) is a Gegenbauer function, s= cos,
angle between e spath spatial parts of the vectors q and k
(q. k= qk cosQ).

(6) Vo(a,s,k) = Vo'+
L(q+i~)'+v'3L(q —~&)'+~'j

dqoq' +'dq Po(k, q) V0(n, s,q)

L(q+&P)'+u'jHq ~~)'+~'3

where Po(k, q) is given by

d F.= 's'".' If V(a, s,k-).V is to be set equal to 2n+1, and =—,s
is

' l' d h perspherical harmonicsis expanded in norma ize y
for g+2 dimensions, '

V(n, s,k) = Q V„(n,s,k) V~(e,O, Qi,),

h 6 1472 I'1965); 8. Hamprecht,'A. R. Swift, J. Math. P ys.

fh l
,1966 .

t to ive a rigorous discussion o' We do not attemp o giv

h td i Rf. 6 tif thiusing this unorthodox approac repor e
continuation a Poste riori, . Solutions o q.
scattering agree well witith those o taine y o
methods.

h the h erspherical harmonics canThe formulas associated with t e yper p
nscerjderjga/ I'Nnckoes, e i e yw, , V I II Chap. 11. We have3 0

~

ew York, 1953), o.
changed the notatio h eric

'
n for the ypersp eric

240 E( ) is the Rormahzationis de6ned in Eq. (11.3.3) on p. ; m;
constant ' two =I 0= (gg38g3 ~ ~ 38~3$}.3

«~+$)
(~-)«-+1)—

&(P((ko—qo) '+k'+q' —2kqs), (12)

and V' n s k, =~'i'. If (4) is used for P(k'), we Qnd"and V'0 n, s,

«~+2) Q-(*)
Po(k, q) =

x is a Legendre function of the second ind and
k'+ '+Vj/(2qk). Thus, when V0(n, s,k)

"See Ref. 9, Vol. I, Chap. 33 p. 155.
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is redefined by

Vo(n s k) = (a)"'/k )V(n, s,k),
we obtain

262
V(n, s,k) =k +

dqoqdq Q.(x)V(n, s,q)x
t (q+zE) '+p'j L(q —zE) '+y, 'j

Except for the inhomogeneous term, (15) is the partial-
wave Bethe-Salpeter equation. ' Since the positions of
the poles in V(n, s,k) do not depend on the inhomoge-
neous term, we have our desired result. The Regge
trajectories, secondary as well as leading, obtained from
(2) by means of (6) are identical to those found by
solving the Bethe-Salpeter equation, as expected.

Whether (6) is to be preferred to the Bethe-Salpeter
equation depends on the questions being investigated.
The kernel of (6) is easier to handle than that in (15),
but a price is paid in terms of the continuous-dimensional
integration. A simple separable approximation to (6)
gives quantitatively good results which can be continued
above the elastic threshold, ' while (15) is to be preferred
if exact numerical solutions are desired. ' As a method
of deriving weak-coupling solutions for secondary
trajectories, a sequence of separable approximations
to (6) proves to be simpler than either perturbation
theory applied directly to ladder diagrams to isolate
poles at a= —E,"or weak-coupling approximations to
the Bethe-Salpeter equation. "
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The universality of the slopes of meson trajectories is established in the context of the Veneziano model
from the postulate of asymptotic SU(3) XSU(3) symmetry and without reference to the Adler consistency
conditions.

' 'T has been suggested by Mandelstam' that a Regge-
& ~ pole model with linearly rising n(s) must have all

trajectories parallel: n;(s) =a;+bs, where b is a uni-

versal constant. This conjecture is fairly well supported

by experiment, as is evident from an inspection of the
Chew-Frautschi plot for meson and baryon trajectories.
Recently, Ademollo, Veneziano, and Weinberg' (AVW)
have successfully employed this idea of a universal slope
in conjunction with the Veneziano representation3 and
the Adler partially conserved axial-vector current
(PCAC) condition4 for a soft pion to predict several
mass relations between hadrons. The work of AVW and
others' was motivated by the work of Lovelace, ' who

6rst pointed out the importance of the Veneziano model
and its possible connection with chiral symmetry. The
equality of slopes of various Regge trajectories (as-
sumed linear) of either normality can be derived within
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~M. Ademollo, G. Veneziano, and S. Weinberg, Phys. Rev.
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3 G. Veneziano, Nuovo Cimento SPA, 190 (1968).
4 S. L. Adler, Phys. Rev. 13"I, 31022 (1965).
'H. I. Schnitzer, Phys. Rev. Letters 22, 1154 (1969); R.
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the Veneziano framework by appealing to the Adler
partial-conservation conditions for ~, E, and ~ rnesons. ~

There is also the closely related question of the uni-
versality of coupling of the p meson to other hadrons
such as x, E, A 1, etc. It has been shown' that a universal

p coupling is a consequence of the requirement that the
minimal Veneziano forms for various amplitudes in-
volving the pion be consistent with the low-energy
theorems of Adler and Weisberger' (AW). The concepts
of a universal slope of trajectories and a universal p
coupling have emerged, therefore, as consistency con-
ditions imposed on the Veneziano ainplitudes by
PCAC (PCVC) and charge algebra, respectively.

In the present note, we wish to make an exploratory
study of the possible high-energy constraints, if any, on
the Veneziano amplitudes for meson systems. Since the
structure of the Veneziano amplitude is motivated to a
large extent by asymptotic considerations, it appears
quite natural to look for constraints (on the amplitude)

' C. Lovelace, Phys. Letters 28B, 265 (1968).
7 K. Kawarabayashi, S. Kitakado, and H. Yabuki, Phys.
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