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The various implications of a transformation recently suggested by Kuo in the model of Gell-Mann,

Oakes, and Renner have been investigated.

N a recent paper, Kuo! made a very interesting
observation that in the model of Gell-Mann, Oakes,
and Renner,? the Hamiltonian

H (x,6)=Ho(x)+ €S (x)+ 5@ (x) (1
can be transformed by an operator U into a new form

H(x,e)=UH (x,e) U™ = Ho(x)+ &S @ (x)
+&aS®(x)=H(x,8, (2)

with

€= —%60—- %\/jes , €= "—%\/Zéo-f-%‘és . (3)
In Eq. (1), Ho(x) is the SW(3) [or W(3)] invariant
part, while S©@(x) and S® (x) represent the scalar
portion of an (3,3*) @ (3*,3)-type violation of the SW (3)
[or W (3)] group. The operator U is formally unitary
and given by?

U=exp[&4ni(Y—V5)], 4)

where ¥ and V; are the hypercharge operator and its
chiral counterpart, respectively, and where one can
choose either sign in the exponent with the same

consequence [see Eq. (12)7.
In this paper, we investigate various consequences

of this transformation, especially in connection with
results obtained in our previous papers.*®

Before going into details, it may be worthwhile to
point out that transformation (4) has a very simple
physical meaning if we work within the framework of
the quark model. In that case, parameters e, and es
are expressed in terms of bare quark masses m;, me

(=m,), and ms simply by
co= (3)"22mitms), es= ()" (mi—ms).  (S)

Then, the Kuo transformation is nothing but the
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mission.

1T, K. Kuo, this issue, Phys. Rev. D 2, 349 (1970).

2 M. Gell-Mann, R. J. Oakes, and B. Renner, Phys. Rev. 175,
2195 (1968); see also S. L. Glashow and S. Weinberg, Phys. Rev.
Letters 20, 224 (1968); R. E. Marshak, N. Mukunda, and S.
Okubo, Phys. Rev. 137, B698 (1965).

3 This transformation is slightly different from that given by
Kuo, which corresponds to a multiplication of phase factors %, 7,
and —1 in Eq. (7).

4S. Okubo and V. S. Mathur, Phys. Rev. Letters 23, 1412
(1969) ; Phys. Rev. D 1, 2046 (1950). These papers are concerned
with the W (3) group and will be referred to as (A) hereafter.

5V. S. Mathur and S. Okubo, Phys. Rev. D 1, 3468 (1970).
This paper deals with consequences of the SW (3) group and will
be referred to as (B) hereafter.

mass-reversal operation®
mg—> +m3 ) (6)

my—> —my, My—> —My,

induced by the chiral transformation?
1(2) = vsq1(®),  ga(%) = vs02(x),  gs(x) > gs(x) (7)
when the operator U is applied on the three quark fields.
If we define & and £; by
£o=(S@(0))o, E=(S®(0))o 8)

as in (A), we find that the corresponding quantities
€0 and & defined with respect to the new Hamiltonian
H of Eq. (2) now transform exactly in the same fashion
as in Eq. (3). Setting, as in (A),

a=es/V2e, b=£Es/V2E, v=—2eoko, 9

we see that transformation (4) takes the set €, a, b,
and v to a new one &, @, b, and 7, such that

2—a 2—b
1+4d 1+45" (10)
7=1(144a)(14-4b)y.

Notice that these relations remain invariant in form
if we solve for e, a, b, and v in terms of &, @, b, and 7.
We emphasize the fact that quantities ¢, a, b, and vy are
defined in the theory with the Hamiltonian H of Eq.
(1), while &, @, b, and ¥ correspond to the theory with
the transformed Hamiltonian  of Eq. (2).

It is important to note that transformation (4)
changes also the definition of the parity operator P into

€o=—%(1+4d)€0, a= 5=

P=UPU-=¢mYp (11)
where we have utilized the identity”
e:{:37riY= e:t31riY5 . (12)

A simple way to show this is to observe that the
operator §(¥— Y’5) has only integral eigenvalues 0, 41,
=42, ... in the SW(3) theory. Note that P changes the
definition of the parity of quantities with odd hyper-
charge in contrast to P. In the quark model, this is
transparent from transformation (7). Thus, the vector

¢ J. Tiomno, Nuovo Cimento 1, 226 (1955). For its application
to the weak interaction, see S. Hori and A, Wakasa, ibid. 6, 302
(1957); J. J. Sakurai, bid. 7, 649 (1958).
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2 CHIRAL SYMMETRY AND THE KUO TRANSFORMATION

current V,@(x) (@=4, 5, 6, 7) will interchange with the
axial-vector 4,(®(x) (a=4, 5, 6, 7), while the hyper-
charge-preserving vector and axial-vector currents
remain unchanged under (4). This fact implies that the
operator U interchanges the ordinary SU(3) and the
chimeral* SU(3) symmetries. Essentially, transforma-
tion (11) underlines the well-known arbitrariness® of
defining the relative parity of particles with nonzero
hypercharge from those with zero hypercharge. Since
this relative parity cannot be determined® experi-
mentally and is only a matter of convention, trans-
formation (4), which alters the parity convention,
should not change the physical description of the
system.

We may now ask the important question whether
physical quantities should exhibit invariance under the
transformation (4) manifestly as suggested by Kuo.
By this we mean whether the physical description
should be explicitly symmetric under the transforma-
tion. First note that the physical quantities derived from
the Hamiltonian [Eq. (1)] will depend on the param-
eters ¢ and a, whereas those obtained from Eq. (2)
will depend upon & and &, which are given in terms of
e and e¢ by Eq. (10). Since £=(1/4/6)eo(1—2a)
remains invariant under the transformation, we
consider only the variable 7= (1/4/6)eo(14+a) which
reverses its sign under the transformation. In the simple
quark model, note that ¢=ms and n=m,;. If we now
regard the physical quantities as described in terms of
suitable real or complex analytic functions of the
parameter 7, we have two possibilities: (i) The physical
quantities may be analytic everywhere in the 5 plane,
or (ii) the domain of analyticity may be restricted to
a region D in this plane. In case (i), Eq. (10) represents
a well-defined one-to-one mapping n— %= —n in the
n plane, so that manifest covariance of the physical
quantities under the transformation can be built in.
However in case (ii), if D is the analyticity domain for
the transformed physical quantities as functions of
7=(1/4/6)ee(1+a)=—n (f=—m; for the quark
model), manifest covariance of the physical description
requires that either D=D or one should be able to
continue analytically from one domain to the other.
It should be noted that if the domains D and D are
disjoint and one cannot continue from one to the other,
one does not infer noninvariance under the discrete
operation (4). In this case, however, there will be two
distinct worlds, both physically equivalent with the
interchange of the role of @ and @ and of ¢ and &, but
an explicitly symmetric description would not be
possible.

Now we would like to point out that possibilities (i)
and (ii) discussed above are closely related to whether
the fundamental symmetry SW(3) or W (3) is realizable
in the usual manner with a unique vacuum transforming
as a scalar under this symmetry group or through the

8 See, e.g., P. T. Matthews, Nuovo Cimento 6, 642 (1957).
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emergence®® of zero-mass Goldstone bosons with the
vacuum invariant only under the smaller SU(3)
symmetry. In fact, it was shown in (A) and (B) that
if the latter is the case, the points ¢=—1 and a=2 are
points of discontinuities and the theory is nonanalytic
at these points. These may be essential singularities or
branch cuts. In any case, the theory [Eq. (1)] is
restricted to —1<a<2, and it is not in general possible
to continue physical quantities beyond this region. Of
special interest to us is the physical region near ¢= —1.
The point ¢= —1+3, for an infinitesimal §(>0), maps
to the point ¢=—1—4§ under the transformation [Eq.
(10)] which lies in the disjoint unphysical region. Thus,
an analytic continuation is not possible. We may
describe this situation also by realizing the transforma-
tion H (x,e) — H (x,&) not through the discrete operation
(4), but as a result of a more general continuous
transformation in which we affect (eo,a)— (&,d)
continuously. Such general transformations can be
easily constructed, but we will not go into details here.
As is evident from simple considerations of the quark
model, any continuous transition m;— —m; (or
n— —n, £— £ in the general case) will then have to
go through m;=0 (or =0), i.e., through the point
a=—1 where the Hamiltonian is SU™® (2)@.5U ™ (2)
symmetric. Thus, if ¢=—1 is an essential singularity
where one realizes zero-mass Goldstone pions, the
transition will not be well defined beyond this piont.
On the other hand, in the case when SW(3) or W (3)
symmetry is realizable in the usual manner without
Goldstone bosons, there is no reason to believe that
a=—1 is a singular point so that in this case the theory
will be manifestly symmetric under the transformation
4).

We would like to mention a rather simple argument
which also suggests that an explicitly symmetric
theory may not be possible if the fundamental sym-
metry SW(3) or W (3) is realized through the emergence
of zero-mass Goldstone bosons. If |#) represents an
eigenstate for the Hamiltonian [Eq. (1), under
transformation (4), let |n)— |%)=U|n). Note that
if |n) is a single-particle state with odd hypercharge,
|#n) and |7) have opposite parities. However, both
states have the same eigenvalues with the Hamiltonians
H and H, respectively. An explicitly symmetric
description would then require that if a state |#) exists
with odd hypercharge, there must also exist simul-
taneously the opposite-parity state |%) in the same
Hilbert space, since in this case one can continuously
change the variables e, a into &, & without encountering
any singularity. Now, if the SW (3) or W (3) symmetry is
realized through the emergence of the zero-mass octet
(mK,n) (adopting the usual convention that K is
pseudoscalar) with the vacuum symmetric only under

9 R. F. Dashen, Phys. Rev. 183, 1245 (1969); R. F. Dashen
and M. Weinstein, sbid. 183, 1261 (1969).
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Fic. 1. Allowed domains in the a-b plane for the W (3) group.

SU(3), we know! that the scalar meson x need not
exist. This description would then not be explicitly
symmetric. The symmetry, which, however, must be
respected, is then restored by realizing that an equiv-
alent description of this system is possible under the
opposite-parity convention, where the SIW(3) or W (3)
symmetry is now realized with (m,k,n) belonging to a
massless octet with the vacuum invariant under the
chimeral SU(3) symmetry. In this case no K meson
exists. Another example which illustrates the same point
is the nonlinear realization'* of the chiral SW(3)-
invariant Hamiltonian with (3,3%)@® (3*%,3)-type viola-
tion, where we have neither the scalar mesons nor the
negative-parity hyperons.

It may be instructive to see the effect of the trans-
formation in Eq. (10) explicitly in a special case. In
(A) and (B), we have determined the maximally
allowable domain for ¢ and & from rather general
considerations. Here, for simplicity, let us consider

0 In (A), we gave an argument favoring the existence of the «
meson. However for the case of the SW(3) theory, the same
argument does not apply any longer, as we emphas.1zed in (B).

1 See, e.g., Y. M. P. Lam and Y. Y. Lee, Phys. Rev. Letters
23, 734 (1969) K. Yoshida, University of Durham Report, 1969
(unpubhshed) A. M. Harun-Ar Rashid, Trieste Report, 1969

(unpublished); L. M. Brown and H. Munczek University of
Kansas report, 1969 (unpublished).
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the case where Hy in Eq. (1) is invariant under W (3)
symmetry. The case when the fundamental symmetry
is SW(3) rather than W (3) is quite similar, with only
slight modification. The allowed values of ¢ and & are
represented in the a-b plane as in Fig. 1. To see the
effect of transformation (10) on this plane, we divide
the domain IV of (A) into four subdomains, as shown
in Fig. 1. It is easy to check that transformation (10)
interchanges these allowed domains among themselves
as follows:

(D)< (IV):, ID)e ), V)« (V),
(IV)s <> (VI), (IV)se> (VII).

Now, if a= —1 and ¢=2 are the only essential singulari-
ties, the physical region contains only the domains II,
III, and IV. Note in particular that this physical region
is not invariant under transformation (10). It can also
be seen that whereas the points ¢=—1 and e=1% are
invariant under the transformation, the points =0 and
a=2 go into each other, interchanging the ordinary and
chimeral SU(3)’s.

We would like to comment briefly that the trans-
formation U may actually not be unitarily implement-
able in the mathematical sense. In the model of Nambu
and Jona-Lasinio,? one knows for instance that for the
“superconducting” solution, a general chiral trans-
formation takes one from a given Hilbert space to
another disjoint one. Thus, formal arguments used by
Kuo may also be dangerous from this point of view.

We may also mention that if the fundamental
symmetry group is W (3) rather than SW(3), we can
have another mass-reversal transformation

(13)

Mmy— —my, Me— —my, mz— —mz (14)

generated by
q1(x) = v5q1(%), g2(x) = vsg2(%), ga(x) = vsgs(x). (15)

This corresponds to e— —eo, ¢ and & remaining
unchanged, and implies a complete reversal of the
parity convention.

In conclusion, we believe that the Kuo transformation
does not conflict with the results of our previous papers.
It is presumably relevant only in the case when the
SW(3) symmetry can be realized without Goldstone
bosons, with the vacuum symmetric under the full
SW(3) group.

12y, Nambu and G. Jona-Lasinio, Phys. Rev. 122, 345 (1961).



