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Recently Regge effects have been studied in weak amplitudes by describing the final-state strong inter-
action with a Regge pole at J =¢ (¢). In particular, it has been shown that the double-helicity-flip amplitude
A (s,t) for the process yr — vy has a moving pole at J =¢(f) —2 and a fixed pole at J =—1, and that the
electromagnetic form factor of the pion, F(s), can be written as F(s) =14Gp(s) +G,(s), where G,(s) —
s¢@-114+0(1/Ins)]. In the present paper, we demonstrate how these results can be obtained by a simple
and direct method that draws out an immediate physical understanding of the results obtained. Our method
involves the study of the asymptotic behavior of the relevant field-theoretic diagrams with the use of

Sudakov variables.

1. FIXED POLES IN WEAK AMPLITUDES

T has been shown'™ that sum rules require that the
double-helicity-flip amplitude 41(s,?) for the process
yr — ym must have a fixed pole at J=1. This was
confirmed? in the model of Fig. 1. Here, T,, is the
amplitude for yy —wm, I is the sum of irreducible
graphs for vy — orm, and T is the off-shell = scattering
amplitude, with

Tw(AR,P)=1,(AR,P)
d*X I,,(A,R,X)T(A,X,P)
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Fr16. 1. Model for final-state interactions in the amplitude T, of
vy — =m. Solid lines are pions, wavy lines are photons.
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After making the projection
Tyw=P,P A1+, I,=X,X,[1+---, (2)

and passing to the J plane, it is seen? that the J singu-
larities of 4, are governed by the J singularities of Iy
and 7. When the amplitudes 7; and T are given by the
diagrams of Fig. 2, this leads to 4; having singularities
at J=1and J=0a(f)—2.

We wish to show that this result can be obtained by
a simple and direct analysis of Eq. (1) with a technique
that displays in an appealing manner a physical under-
standing for the result. Our results (and much more)
were all obtained with the elegant machinery developed
in Ref. 2, but we present our technique because it is
simple and direct (it does not require any of the P;”
expansions and Jacob-Wick theory used in Ref. 2),
because it displays the precise point at which the effect
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Fic. 2. (a) Irreducible graphs for the amplitude 7,, of vy — mm.
(b) Regge-pole model for the 7o — mwx amplitude.
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F16. 3. Region of integration contributing to the
leading behavior of 41(s,?).

of the P,P, projection comes into play, and because it
ties in with much of the recent work®~!% on Regge theory
from diagrams.

This technique uses the Sudakov®®1!! variables.
Lightlike momenta are defined by

pi=p?=0, 2p)-pa'=s; ©)
to lowest order in s,
p=pr—(M2/s)p, p2'=p2—(M?/s)pr. (4)

The internal momenta of integration are replaced by
Sudakov variables defined by

k=ap/+Bp/+K, d%k=(s/2)dedBdK,  (5)

where K is a two-dimensional spacelike vector perpen-
dicular to p; and p,. The momentum transfer can be
written as

A= (t/s)(p2'p1')+0Q,

but for simplicity we will take ¢=0. Then the energy
variable of Fig. 1 becomes

di=dy=d=k=afs+K?,
s1=(pr—k)*=(1—8)(M1*/s—a)s+ K2, (7)
s2=(potk)*= (14a) (M 2*/s+B)s+K2.
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(=40, - (6)
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We also need the projection of

(2k _PI)M(Zk _Pl)v

onto P,P,. Since
p=R, p=-—P,
k= pr(B—M+%a/s)~+ pola—M?B/s)+ K,
therefore,
2k—p1=2P(—a+M:*B/s)+R(B—M’a/s—1)+K, (8¢)

(8a)
(8b)

and
(—at+M2*8/5)%1(s1,0; )
(d—m?+ie)?
XT(s2,0;d). (9)

A(s,0)=s / dedBdK

The amplitude 7 is given by!?
I(s1,0; d)=1/(s1—m*+1e) ,
and the amplitude 7" satisfies

T(s2,0; d) — 52*V¢(d)
—1/d

We shall also write T as!®

(10)

if §sp—
i §<d—>w.

® dx
T(s2,0; d1)=/
am? X — 382

To extract the large-s behavior of 4:(s,f), it is con-
venient to perform some integrations explicitly. To do
this, note!! that the denominators in Eq. (7) vanish
over certain regions in the real a8 plane, as shown in
Fig. 3. In particular, we see that the important region

(11)

f(x,d).

a (o) (b)

B<-M§/s
—M%(s<,8< 0

ay () a; (4
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F16. 4. Distribution of the poles in « of the integrand of Eq. (9)
about the real « contour of integration.

12 The second amplitude of Fig. 2(a) is easily handled by the

same technique.
18 This holds strictly only for ¢(0) <0; the general case can be

handled by subtractions.
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of integration is the region
0<B<1, a~0(m¥/s),
—1<a<0, B~0(m?*/s).

(12a)
(12b)

To express this more precisely, consider the integral
(9). As B ranges over the real axis, the terms d, s1, and
s2 have simple poles in the complex «a plane which are
prescribed by the 7e prescription:

d—m*+ie=0, s1—m*+ie=0, s2—x+1e=0, (13)
and which distribute themselves about the real «
contour of integration (Fig. 4). For B>1 and
B< —M,?*/s, the contribution to Eq. (9) vanishes be-
cause the a contour of integration can be closed in the
half-plane free of singularities. For 0<3<1, a pole in

a from s; occurs at
M12 K2_m2
a=—+4 —,
s (1-p)s

corresponding to the integration region (12a). Evalu-
ating the residue of (14), we obtain

(14)

1 148 2T (Bs+K0; d)
Ai(st) o« — //dK , (15a)
s? 0 d2(1 _5)
KZ_m2
d=B(M12+ —)—I—K?—m2, (15b)
K?_m2
h=MPt ——— —BM 2. (15¢)

Letting s — o,

1 dﬁ h2ﬁ¢(0)
Ai(s,t) — s*©—2 /[dK/ — g(d).
o @(1-p)

This is the result of the type obtained by Bronzan
et al.? Looking back to Eq. (7), we see that it comes from
that region of integration where the energy s» flowing
through the Reggeon is large (of order s), and the energy
s1 through the left side of the diagram is small. Ordi-
narily, the presence of the Reggeon would lead to behav-
ior s2©; but the effect of the projection of X,X, onto
PP, introduces an extra factor 1/s? through the coeffi-
cient of P in Eq. (8c).

Finally, we turn to the contribution from 8~O(m?/s)
[Fig. 4(b)]. This can be evaluated exactly by picking
up the pole in « from the term s;. However, it is con-
siderably easier to evaluate this contribution if we
reverse the roles of a and 3 by integrating on —1<a<0
and picking up the pole in 8 from s; (Fig. 5). One might
argue that in so doing we are double-counting the region
of integration

—1<a< —|0(m?/s)],

(16)

[0(m?/s)| <B<+1 (17)

WEAK AMPLITUDES 389
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d s,

F16. 5. Poles in B for —1<a<0.

(Fig. 3), but it is easily seen that the contributions we
are evaluating come from the (nonintersecting) regions
of Egs. (12). The region (17) corresponds to a back-
ground integral of Eqgs. (12) and gives a lower-order
term in s.!* Evaluating the pole in s,, then,

M22 x—K?
=, (18)
s (14a)s
and hence
0 a?da
A(s,0) //dK/
—1 (1+0t)
® d ,d
x/ % Jsd) (19a)
4m’d2(—as+K2+M12—m2)
1 0 ad * d. ,d
H__f/dzc/ wde [T ETED )
§ _1(1+0!) 4am? d2
where
x—K?
d=a(—M22+ >+K2—m2. (19¢)
(1+a)

We see that 4(s,0) has a fixed pole at J= —1, and this
comes from that region of integration where the large
energy s flows through the propagator of the amplitude
I. Note that the presence of spin, reflected through the
term o? in Eq. (19a), is essential. Without this term,
the integral corresponding to (19b) would diverge.
This would mean that A:(s,f) would behave as (Ins)/s,
as a box diagram. The a? saves the day, though, and the
fixed pole appears.

II. ELECTROMAGNETIC FORM FACTOR
OF PION

In Ref. 4 a model was proposed for the electro-
magnetic form factor of the pion that is based on the
diagram of Fig. 6, giving a 7" matrix proportional to

i A% (2k+p) T (s,k?)
@)t ) [(e—p0)?—m*I[(k+p2)?—m*]

4 This was first noted by Winbow [Eq. (8) of Ref. 10] and
more recently expressed rigorously by Negrine (Ref. 6).

20)
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F1c. 6. Model for the electromagnetic form factor of the pion.
Solid lines are pions; wavy lines are photons.

This leads to a form factor given by F.(s)=14Gz(s)
+Gp(s)3

2p-k
G,,(s)oc/d“k(l—}— —z——)
P2

X .
Lk —p1)* —=m?* [ (k+p2)*—m?]

The amplitude A(s,k?) was taken to be a Veneziano

CLIFFORD RISK 2

amplitude.’s It was expanded in terms of poles, the
integrals of Eq. (21) were done directly, and, among
other things, the asymptotic behavior of G,(s) was
found as s —x,
G,o(s) — s$O—1, (22)
We would like to show how the result (22) can be
obtained directly from Eq. (21) knowing only the
asymptotic form of A(s,k?) and without having to
specify its details. Our derivation has two features.
First, it uncovers the implied assumption of Ref. 4
that the form factor of A(s,k%) be neglected. We shall

:see that form factors would lead to a greatly depressed
‘behavior in (22). Second, it demonstrates that a result

like (22) depends only on the asymptotic form of
A(s,k?) and is independent of the particular way
(Veneziano model) that this is generated. In particular,
the use of a unitarized Veneziano amplitude, say,
would not affect the type of result (22).

To extract the asymptotic behavior of G,(s), we
again set

A(s,k?) 1) k=ap)/+Bp’'+K, (23a)
P=p1—po=p1'(1—m?/s)+ps'(1—m?/s). (23b)

Then
sdadBdK[14-(a+B8)(1 —m?/s)~"1]A (s,aBs+K?) 1)

G,(s) .
) / [(1—B)(m?/s —a)s+ K2 —m2+ie][(14a)(m?/s+B8)s+ K2 —mi-+ic]

Again performing the integration on a explicitly,

1
a= ———(—pm*+K?)

25
(1-8)s @)
and
1+
G,(s) = fdﬂdK —_—
1-6
A(s,8(—Bm*+K?)/(1—B)+K?
X . (26)

Bs+K2—m?

The main contribution to the 8 integration comes from
the region 0<B<e (see Fig. 7), where ¢ is a small
fixed number®:

Ins Ins
G,(s) > — /dK A(s,K?) «« — /dt’ A(s,t)). (27)
s s

This is the general type of result we wished to obtain.
For the special case when A (s,t') is a simple Regge pole,

A(st)=est), o()=¢(0)+¢7,  (28)

I/s Oll/s) € I B

Frc. 7. The term 1/(8s—1). The main contribution to the
integral is (Ins)/s and comes from the region O(1/s) <@<e. The
range 0<B<0(1/s) gives the principal value 1/s, while the range
e<B<1 gives a contribution 1/s.

18 The term Gp(s) is associated with a Pomeranchon amplitude
B(s,k?) having no resonances.
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Ins 52O
Go(s) > ——

1 \=
—>s¢(°>_1l:1+0<——>:]. (29)
s a+¢’Ins Ins

This is the result of Ref. 4. In particular, we see that
the leading contribution to G,(s) comes from that
region of integration where the line (k—p1)? is on the
mass shell and the line (k+ p2)? goes off the mass shell
linearly in s. This means that if form factors had been
included in the amplitude A(s,t’), the behavior (29)
would have been depressed to a form 1/s2.

III. CONCLUSIONS

The Sudakov technique allows one to evaluate in a
simple and direct manner amplitudes arising in weak
amplitudes. In particular, effects of the photon spin are
displayed, and the asymptotic behaviors obtained are
easily associated with regions of integration where the
relevant internal energy variables are large.
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For scattering processes, the amplitude A4(5,0) has
a fixed pole at J= —1 and a moving pole at J=«(0)—2.
For vertex processes, the form-factor term G,(s)
behaves as s*©~11+4+0(1/Ins)] when Veneziano =7
amplitudes are used and the pion form factor is ne-
glected; the asymptotic behavior will be depressed if
the pion form factor is included.
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Veneziano-Like Model for the Axial-Vector-Current Three-Pion Amplitude*
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In this paper we explore the general features of non-vector-dominance Veneziano models for 4#r — .
We assume that the axial-vector current is conserved (zero-mass pions) and write our invariant amplitudes
as products of beta functions and arbitrary functions of the axial-vector-current momentum squared. By
using a soft-pion theorem, we are able to make statements about the pion form factor. In a particular model
of the above type (the spurion model applied to the five-point function) we find that

F(g)=n"THT (= @+HT (—712+3) /T (—F—v2ti).

ECENTLY there has been a burst of papers on
A*w — w28 Most of these papers try to combine
field-current identities with the Veneziano-model ampli-
tudes for 7w — wm and ww — w4, in order to obtain the
weak amplitude, or else they assume infinite pole
dominance but assume that the 4, daughters couple to
the three-pion system in the same manner as the 4.4 It
is our philosophy that the generalized Veneziano model
which includes knowing the 2z-point pion amplitudes
and which is consistent with factorization is incom-
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