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Recently Regge effects have been studied in weak amplitudes by describing the final-state strong inter-
action with a Regge pole at J=p(t). In particular, it has been shown that the double-helicity-flip amplitude
A i(s,t) for the process yx -+ yx has a moving pole at J=@(t)—2 and a fixed pole at J= —1, and that the
electromagnetic form factor of the pion, Ii (s), can be written as F (s) =1+Gg(s)+G, (s), where G, (s) b

s&~ & 'L1+Oi1/lnsl]. In the present paper, we demonstrate how these results can be obtained by a simple
and direct method that draws out an immediate physical understanding of the results obtained. Our method
involves the study of the asymptotic behavior of the relevant field-theoretic diagrams with the use of
Sudakov variables.

I. FIXED POLES IN WEAK AMPLITUDES

P = —+ R k= -=-+X
I 2 2 -P2= — +P2

' 'T has been shown' ' that sum rules require that the
~ ~ double-helicity-fhp amplitude At(s, l) for the process
yg —+ye must have a Axed pole at J=1. This was
confirmed' in the model of Fig. 1. Here, T„„is the
amplitude for yy —+~x, I is the sum of irreducible
graphs for yy —+ mm, and T is the oB-shell ~x scattering
amplitude, with

T„„(I,Z,P) =I„„(I,Z,P)

d'X I„,(A,R,X)T(It.,X,P)

2sr [(,'5+X)'-+tt' ie]t (,'—6 X)'-+t—t' ie]—
(I)

After making the projection

T„,=P„P.At+ . , I„„=X„X.It+ (2)

and passing to the J plane, it is seen' that the J singu-
larities of A~ are governed by the J singularities of I»
and T. When the amplitudes I& and T are given by the
diagrams of Fig. 2, this leads to A~ having singularities
atf=i ard J=~(I)—2.

We wish to show that this result can be obtained by
a simple and direct analysis of Kq. (I) with a technique
that displays in an appealing manner a physical under-
standing for the result. Our results (and much more)
were all obtained with the elegant machinery developed
in Ref. 2, but we present our technique because it is
simple and direct (it does not require any of the Ps"
expansions and Jacob-Wick theory used in Ref. 2),
because it displays the precise point at which the effect

ta)

FIG. 1. Model for final-state interactions in the amplitude T„,of
pp -+ ~m. . Solid lines are pions, wavy lines are photons.
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FIG. 2. (a) Irreducible graphs for the amplitude I„,of y"f ~ 'IT~.

(b) Regge-pole model for the m~ —+ +2'. amplitude.
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%e also need the projection of

(2k —pi) „(2k—pi).
onto I'„P„.Since

pi —R), p2 I
1

(Sa)

k= pi(P —Mi'n/s)+ pi(n —M, 'P/s)+E, (Sb)

therefore,

2k —pi ——2I' ( n+ I/I—i'p/s)+ R(p Mi'o/—s 1)+I—, (Sc)

and

0 (rn~ys }

( n+M—2'P/s)'I(si, 0; d)
A (s,0) =s dndPdE—

(d —m'+is)'

FIG. 3. Region of integration contributing to the
leading behavior of A 1 (s,t).

The amplitude I is given by"

XT(si,0; d) . (9)

oI the I'„P„projectioncomes into play, and because it
ties in with much of the recent work' "on Regge theory
from diagrams.

This technique uses the Sudakov"" variables.
Lightlike momenta are defined by

I(si,0; d) = 1/(si m'—+is),
and the amplitude T satisnes

T(si&0; d) —+ s2&'"g(d) if si
—+ 1/d if s2&d —+~ .

(10)

to lowest order in s,

(3) We shall also write T as"

T(s2,0; di) = 1(x,d) .
p

'= p (~ '/s) p—, p'= p (~"/s) p —(4)

The internal momenta of integration are replaced by
Sudakov variables defined by

k =np&'+ ppi +X, dik = (s/2) dnd9dIC, (5)

where E is a two-dimensional spacelike vector perpen-
dicular to pi and pi. The momentum transfer can be
written as

4m' X—Sg

To extract the large-s behavior of Ai(s, t), it is con-
venient to perform some integrations explicitly. To do
this, note" that the denominators in Eg. (7) vanish
over certain regions in the real nP plane, as shown in
Fig. 3. In particular, we see that the important region

(b)

but for simplicity we will take I=O. Then the energy
variable of I'ig. 1 becomes

ds, s2
QR

d s)

di ——di ——d= k'=nPs+E'
si ——(pi —k)'= (1—p) (Mi2/s —n)s+X',
si= (pi+k)'= (1+n)(Mi'/s+p)s+IC'.

(7)

P&- M /s
2

g» (c)

S2

—Ma/s &P& O
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FrG. 4. Distribution of the poles in n of the integrand of Eq. (9)
about the real o. contour of integration.

"The second amplitude of Fig. 2(a) is easily handled by the
same technique.

"This holds strictly only for @(0)(0; the general case can be
handled by subtractions.
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amplitude. " It was expanded in terms of poles, the
integrals of Eq. (21) were done directly, and, among
other things, the asymptotic behavior of G, (s) was
found as s ~~,

G, (s) ~ st'(o) '. (22)

FIG. 6. Model for the electromagnetic form factor of the pion.
Solid lines are pions; wavy lines are photons.

This leads to a form factor given by F (s) = 1+Gr (s)
+G,(s);

2p k
G, (s) ~ d4k 1+—

2

A (s,k')
x . (»)

[(k pl) 2 m2j[(k+p ) 2 m2j

k =o(p2'+ ppr'+E, (23R)

F=pr —p2 ——pr'(1 —m'/s)+ p2'(1 —m'/s) . (23b)

We would like to show how the result (22) can be
obtained directly from Eq. (21) knowing only the
asymptotic form of A(s, k') and without having to
specify its details. Our derivation has two features.
First, it uncovers the implied assumption of Ref. 4
that the form factor of A(s, k') be neglected. We shall
:see that form factors would lead to a greatly depressed
behavior in (22). Second, it demonstrates that a result
like (22) depends only on the asymptotic form of
A(s, k') and is independent of the particular way
(Veneziano model) that this is generated. In particular,
the use of a unitarized Veneziano amplitude, say,
would not affect the type of result (22).

To extract the asymptotic behavior of G,(s), we

again set

The amplitude A(s, k') was taken to be a Veneziano Then

G,(s)"
sd(rdPdE[1+ (rr+P) (1—m'/s) ']A (s,(rPs+K')

[(1 P) (m'/s —n)s+K'—m'+ie][—(1+n)(m'/s+P) s+E' m'+i cj—

Again performing the integration on o, explicitly,

and

—(—Pm'+K')
(1—P)s

G, (s) ~ dPdK

A(s, P( Pm'gK')/(—1 P)+K')—
X (26)

Ps+E' m'— I/s 0{I/s)

The main contribution to the P integration comes from
the region 0(P(e (see Fig. 7), where e is a small
6xed number6:

G, (s) —+
lns

dE A(s K') cc
lns

dt' A (s,t') . (27)

This is the general type of result we wished to obtain.
For the special case when A(s, t') is a simple Regge pole,

Fxc. 7. The term 1/(Ps —1). The main contribution to the
integral is {lns)/s and comes from the region O{1/s) &P &e. The
range 0&P &O(1/s) gives the principal value 1/s, while the range
e &P &1 gives a contribution 1/s.

A(s, t') = e"'s"" 4(t') =4(0)+0't',
"The term G~(s) is associated with a Pomeranchon amplitude

(28) 8 {s,k'l having no resonances.
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then

lns s&&0'

G, (s) ~
s a+&'lns

1
~s4'"' ' 1+0 . (29)

lns

III. CONCLUSIONS

The Sudakov technique allows one to evaluate in a
simple and direct manner amplitudes arising in weak
amplitudes. In particular, effects of the photon spin are
displayed, and the asymptotic behaviors obtained are
easily associated with regions of integration where the
relevant internal energy variables are large.

This is the result of Ref. 4. In particular, we see that
the leading contribution to G, (s) comes from that
region of integration where the line (k —p&)' is on the
mass shell and the line (0+p2)' goes o8 the mass shell
linearly in s. This means that if form factors had been
included in the amplitude A(s, t'), the behavior (29)
would have been depressed to a form 1/s'.

For scattering processes, the amplitude Ai(s, 0) has
a fixed pole at J= —1 and a moving pole at J=c~(0) —2.
For vertex processes, the form-factor term G,(s)
behaves as s&&'& 'Ll+O(1/lns) j when Veneziano n.~
amplitudes are used and the pion form factor is ne-
glected; the asymptotic behavior will be depressed if
the pion form factor is included.
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In this paper we explore the general features of non-vector-dominance Veneziano models for A&g ~ g&.
We assume that the axial-vector current is conserved {zero-mass pions) and write our invariant amplitudes
as products of beta functions and arbitrary functions of the axial-vector-current momentum squared. By
using a sof t-pion theorem, we are able to make statements about the pion form factor. In a particular model
of the above type (the spurion model applied to the Gve-point function) we 6nd that

F(q') =~-~r(~)r( —
q +~)r(—v,+~)/r( —

q
—v,+k).

ECENTLY there has been a burst of papers on
A &m ~ mm. ' ' Most of these papers try to combine

field-current identities with the Veneziano-model ampli-
tudes for mm. ~ em and m-m ~~31 in order to obtain the
weak amplitude, or else they assume infinite pole
dominance but assume that the 21 daughters couple to
the three-pion system in the same manner as the 31. It
is our philosophy that the generalized Veneziano model
which includes knowing the 2e-point pion amplitudes
and which is consistent with factorization is incom-
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patible with the above two assumptions. 7 Specifically,
the author has shown in a previous paper that by using
spurion techniques on the five-point function for
n+s ~~s~, we find that the Ai daughters couple

differently from the 31. Also, he found that in a spurion
model for 5"m -+ ~~ (where S„is an isoscalar current),
the amplitude for cox —+ mm is represented by one beta
function whereas that for ym ~ xx is represented by an
infinite number of beta functions, corresponding to the
coupling of the co daughters to the three-pion system. ' If
we assume that the five-point function is given by a
single Bardakci-Ruegg (BR)'0 amplitude, and we use
spurion techniques, then we obtain an amplitude for

7A completely factorized scalar current has been found by
Leonard Susskind (private communication). His model shows an
infinite number of daughters, with odd daughters being missing.

8 F. Cooper, Phys. Rev. D 1, 1140 (1970).
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