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The consequences of the proposed model for Pomeran-
chuk exchange were investigated in some detail. The
model predicts that elastic differential cross sections
shrink with increasing energy at a rate corresponding
approximately to an eGective Pomeranchuk pole having
a slope n~'=0. 5 GeV 2 in agreement with the recent
Serpukhov measurements. If a Pomeranchuk theorem
holds, the asymptotic limit of total cross sections are
predicted to be approached in a logarithmic fashion
from below. Finally, the crossover phenomenon was
investigated, which is in this model due to the vanishing
of a Regge-pole contribution corrected for absorption
and being odd under charge conjugation. The absorp-
tive corrections to conventional Regge-pole expressions
predicted by the model are given in terms of quantities

characterizing the elastic scattering in the asymptotic

region. It was pointed out that the analysis of the

crossover condition provides information about total
cross sections at asymptotic energies. %e conclude by
noting that the proposed E-matrix model is not limited

to small values of momentum transfers. However, for

large values of t it probably becomes essential to take

the spin of the external particles into account.
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The dual representation of K —+ 3m. decay amplitudes is studied. It is found. that E ~ 3x decay amph-

tudes in a generalized Veneziano model are incompatible with current-algebra relations. For example, pion

poles and kaon poles are not dual to other poles. An example of realistic K —+ 3~ decay amplitudes which

contain pion and kaon poles, which contain both
~
nI

~

=sr and 2 parts, and which are compatible with current. —

algebra relations is obtained. Our results seem to suggest that we should prefer the charged-current&
charged-current nonleptonic weak Hamiltonian to Hamiltonians with pure

~

AI
~
=s.

I. INTRODUCTION

&~UAL representation of reaction amplitudes (Ven-
eziano model' and generalized Veneziano modeP ')

has been discovered. Amplitudes in this representation
have resonance poles at low energy, have Regge be-
havior at high energy, satisfy the crossing relations,
and give relations among Regge trajectories such as the
exchange degeneracy. In this representation, poles in
various channels of a reaction are related so closely
that, for example, a sum of all s-channel poles of the
amplitude is equal. to a sum of poles in other channels.
This property of the amplitudes is the so-called (full)
duality. However, the above definition of duality is
not practical for our purpose. Since the generalized
Veneziano amplitude for E-point function is the only

~ Supported in part by the National Science Foundation under
Grant No. NSF GU-2061.

t Permanent address: Department of Physics, Tokyo Uru-
versity of Education, Tokyo, Japan.' G. Veneziano, Nuovo Cimento 5'7A, 190 (1968).

' K. Bardakci and H. Ruegg, Phys. Letters 283, 342 (1968).
M. A. Vlrasorov Phys. Rev. Letters 22~ 37 (1969).' M. H. Chan, Phys. Letters 283, 425 (1968);M. H. Chan and

S. T. Tsou, ibid. 283, 485 (1969).
' Z. Koba and H. D. Nielsen, Nucl. Phys. 810, 633 (1969).
' C. J. Goebel and B.Sakita, Phys. Rev. Letters 22, 257 (1969).
~ Z. Koba and H. D. Nielsen, Nucl. Phys. 812, 517 (1969).

amplitude with full duality, we dehne the full duality

of an amplitude as follows: An amplitude of an E-prong
reaction is completely dual (has full duality) if and only

if it is expressed as a sum of a finite number of general-

ized Veneziano amplitudes for Ã-point function.
A purpose of this article is to study whether a weak

amplitude has full duality. Dual representations for

Eg4 decay amplitudes have been studied by the present
author, ' and it has been found that the kaon pole is not
dual to any other poles if we impose conditions re-

quired by current algebra at soft-pion limits. However,
it has been found that all poles except for the kaon pole
can be dual. if the relation among trajectories,

nrc (t) —rra(t) =1—n, (3E ')
for nrc(/) = positive integers, (1.1)

is satished. ' In this article we consider whether it is

' Y. Hara, Phys. Rev. D 1, 874 (1970).
' By applying the method used in Ref. 8 to the m+~ —+ ~+/+ v

processes, we And a relation

e, (t) —n (t) =1—o,~(M ') for n (t) =positive integers. (A)

If we assume that all trajectories are linear and parallel, we find

the relations o.p(M ') =g and Mp~ —M '=M~+' —MIP from the
relations (1.1) and (A). No other relations among Regge trajec-
-tories are obtained by studying similar leptonic processes such as
q+x+ —+ g+l+ v.



IC —+3m DECA YS I N DUAL MODELS

-,'IA, (y y —) I
=(0.96~0.01)&&10-',

IA,(00 y) I
=(0.97~0.02) X10-',

I
A.(+ —0) I

= (0.86~0.02) X10-,
—', IA, (0 00)

I
=(0.85+0.02)X10 ',

o(~ ~ ~)= 0.1000~0.O036,

a(0 0 +)= —.01.258&0.010,

c(+ —0)= —0.300&0.018. (1.4)

These results violate the relations obtained by
assuming the I VIII

=-', rule for the decays, "
—,'A, (+ + —)=A,(00+)

=A,(+ —0)=-',A, (0 0 0) (1.5)

'" Thc center of the Dalitz plot of IC+ —+ w'w'21+ decay and that
of EJ.0 ~ m+m m0 decay is not uniquely dehncd. If we assume the
validity of current algebra, then the E. —+ 3x decay amplitudes in
various dynamical models satisfy the relations (1.5) and jor (1.7)
(except for negligible corrections) at the point A&I =au2 ——coo =-,'3f~.
At eoI=au2=F3=3'M~, the magnitudes of the amplitudes are

A, (00+) = (0.98a0.02) y 10-6

A.(+—0) = (0.85&0.02))&10 6.

"In deriving the magnitudes of the amplitudes (1.3},we have
made use of the method proposed by Devlin by assuming a linear
spectrum (1.2) and slopes (1.4). T. J. Devlin, Phys. Rev. Letters
20, 683 (1968}.

123. Aubert, in Proceedin. gs of Topical Conference on Weak
Interactions, Geneva, 1969 (unpublished), p. 205.

'~ D. Davisoii ei uL, Phys. Rev. 180, 1333 (1969) La(00+)$.
'4R. C. Smith, Ph. D. thesis, University of Maryland, 1970

(unpublished) I a(+—0)g. See also, R. C. Smith, L. Wang, M. C.
Whatley, G. T. Zorn, and J. Hornbostel, University of Maryland
report (unpublished). There are experiments with a (+—0)
= —0.21 (Ref. 12).

possible for E ~3m decay amplitudes to have full
duaIity when current-algebra re1ations in soft-pion
limits are imposed. There is a significant di8erence be-
tween E«decays and E —+3m decays. Leptons are
involved in E~4 decays and there are no Regge tra-
jectories in lepton-meson channels. On the other hand,
only hadrons are involved in E—+ 3x decays, and we
have to introduce a spurion which is responsible for
transitions due to the strangeness-changing weak.

nonleptonic interaction.
Experimental results for E~ 3s. decays (E+ +-

~+x+~—, E+ —+ m'~'x+, EI,' —& ~+~—~', and El.' —+

n~~on') are conventionally parametrized as

I
A(~is, era) I

'
=

I A, (s.,s-,n-, ) I
'L1+2a(so —sa)/~. '1, (1 2)

where ~ = —Lq(lt) —q(s', )g' (the third pion is the
asymmetric pion), 3so=si+s2+s3, and M is the mass
of a charged pion. The A.(~ri&2+s) is the magnitude
of the amplitude at the center of the Ditz plot, "
si= s~=sg, and a(s i~2~3) is proportional to the slope of
the decay spectrum. According to recent experimental
results " '4

and"

where
(1.8)

J =cos8jigy (1+y~)~i(Xi iX,)—gg
+sine Lig~.(1+~,)-,'()I,,—~)i,)qj. (1 9)

If we assume the Hamiltonian (1.8), the dominance of
""'

I
~I

I
=2 part ove«he

I »I = 3 p««f t e ampli-
tude may be explained by a dynamical enhancement of
the

I DII =-,' part of the amplitude. "
The

I AII =-,' parts of the E~ 37r decay amphtudes
are not expressed by Veneriano amplitudes" since
there are no exotic resonances with I= ~3. Some authors"
have argued that the EII =2 rule is a consequence of
the fact that the IDI = s parts of the amplitudes are
not expressed in terms of dual ampIitudes. However,
they have to show that it is possible for the

I EII =-,'
"In order to derive relations {1.6},we have to assume that the

decay matrix elements are linear in s3. The linear approximation
may be justi6ed for the real parts of the matrix elements. If the
imaginary parts are proportional to the linear momenta in various
channels, the imaginary parts of the IC+ —+ wo~0~+ and
+1,0 —+ ~+~ H decay amplitudes are proportional to (sl —4' 2)1'~
and that of the E+~ 21-+~++ decay amplitude is proportional to
(s1—4'/w')'"+ (s~ —4M ')"2. Therefore, the linear spectrum ap-
proximation for E+—& ~'~'~+ and EI.' —+ w+~ +' decays and the
relation a(+—0) =a(00+) may hoM even if the amplitudes have
imaginary parts. On the other hand, the contribution of the imagi-
nary part to the spectrum of the E+~ m+m+~ decay (as a func-
tion of sa) has a cusp at ~3=% +~Q. However, the imaginary
parts of the X~ Bm decay amplitudes may be negligible in the
physical Ieglon.

16 We neglect the small EC-violating nonleptonic interaction.» See, for example, R. F. Dashen, S. C. Frautschi, and D. Sharp,
Phys. Rev. Letters 13, 777 (1964); Y. Hara, Progr. Thcoret. Phys.
(Kyoto) N', 710 (1%7).»I or simplicity, let us consider the reaction ~+~ —+g+g'
(g': I'= 1, I=-,'), The isospin of the reaction is 1 or 2 and the iso-
spin of the crossed reaction m+E ~ ~+a' is q or $. It is impossible
for the erst reaction to be pure I=1 and for the second one to be
pure ~~ simultaneously.

» K. Kawarabayashi and S. Kitakado, Phys. Rev. Letters 23,
440 (19t 9).

2a(& + W) = —u(+ —0)= —a(0 () +), (1 6)

by at least about 10%%u&, and clearly indicate the existence
of the I VIII

=—', parts of the amplitudes. However, the
existence of the

I
DI

I
& 'sparts of the amplitudes are not

required by these experiments since the relations

—,'A, (y y —)=A,(00 y)

A,(+ —0)= -',A, (0 0 0),

which are obtained by assuming the nonexistence of the
I AII &-,' parts of the amplitudes, are satisfied by these
experimental results within experimental errors.

Since it is rather di%cult to expect electromagnetic
corrections to the

I AII = i2rule to be about 10%, it is
natural to assume that the weak nonjeptonic Hamil-
tonian is a product of a charged current and its
Hermitian conjugate, "
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2x lO

zero, and the root-type singularities of the imaginary
parts of the amplitudes are not well approximated by
this approximation. " Therefore, the purpose of Secs.
III-V of this paper is to 6nd a nontrivial example of
IC —+3m decay amplitudes which are consistent with
current-algebra relations and to compare these ampli-
tudes with experimental results (Sec. V).

Though very unlikely, it is still possible that the
weak nonleptonic Hamiltonian has only a ~DIt =-,'
part and that the ~AI~ =2 parts of the decay ampli-
tudes are of electromagnetic origin. '4 We discuss this
possibility in Sec. VI. An example of the E —+ 2~ decay
amplitude in the Veneziano model is given in the Ap-
pendix. In Sec. II we discuss the current-algebra rela-
tions and the linear approximation of E —+37t- decay
amplitudes. "

l I

I

Physical
Region

F&G. 1. & -+ 3w decay amplitudes in linear approximation.
Amplitudes {2.5) with A2/Ao ——0.044.

parts of the amplitudes to have full duality when
current-algebra relations'~" are imposed upon them. .

In Secs. III and IV of this article we study whether
the

~
AI~ =

p parts of the E ~ 3ir decay amplitudes are
expressed by generalized Veneziano amplitudes for
6ve-point functions, ' ' and we shall And that kaon poles
and pion poles are not dual to other poles just as the
kaon pole is not dual to other poles in X~4 decays. '
Since the

~
61~ =-,' parts of E~3ir decay amplitudes

are not expressed by completely dual amplitudes and
since kaon and pion poles are not dual to other poles
when current-algebra relations are imposed, in Sec. V
we try to find an example of amplitudes which have both
kaon and pion poles, which contain both a

~

DI
~

=—,'part
and a

~
hI~ =pP Part, and which reProduce the current-

algebra relations.
Through current-algebra relations, the soft-pion

limits of E—+3m decay amplitudes are related to
X—+ 2m decay amplitudes. '~" However, these current-
algebra relations are conditions for oR-the-mass-shell
E~ 3x decay amplitudes and there is an ambiguity in
extrapolating amplitudes from oR the mass shell to on
the mass shell. For simplicity, the E~3' decay ampli-
tudes were assumed to be bilinear functions of the four-
momenta of the rnesons, 'P q(E) and q(ir;). However, if
we consider both the ~DI~ = —,

' amplitude and the

~
AI

~

=
~ amplitude, this approximation is not justified.

The phase diRerence between these amplitudes is not

"Y.Hara and Y. Nambu, Phys. Rev. Letters 16, 875 (1.966).
»D. K. Elias and J. C. Taylor, Nuovo Cimento 44A, 518

(1966).
22 C. Bouchiat and P. Meyer, Phys. Letters 253, 282 (1967).
~ A. D. Dolgov and V. I. Zacharov, Yadern. Fiz. 7', 352 (1968)

t Soviet J. Nucl. Phys. 7, 232 (1968)j.

II. CURRENT-ALGEBRA RELATIONS AND LINEAR
APPROXIMATION OF K~ 3m

DECAY AMPLITUDES

By making use of the partially conserved axial-
vector current (PCAC) condition,

2B„A &'&=V2f M 'P&'&

(2It'.IprIiI'—&~/6vg. v)4 ", (2 1)

we obtain the following relation for a E ~37r decay
amplitude in the soft-pion limit:

d'x Ap&'&(x, 0),II (0)
~
E) (2.2)

q'(ir')=q'(ir')= —~ ' If we as-
sume the currentXcurrent weak interaction (1 g)
current algebra,

LA pt'~ (x,t), J'& "&(x',t)j= if;,&I„'p&(x,t) ti(x x')—
+ (c-number Schwinger term), (2.3)

from (2.2) we find the following relations" ":
A (E+ —+ ir+ir+ir; q(iri+) = 0)= —A p+V2A ~,

A(E+ —+~+~+~—;q(ir-) =0)= —342A&,

A(E+ ~ n'irPir+ q(ir ') =0)
=+(3/242)Ap= (1/&2f )A(E+ —+ m+p-'),

'

A(E+ —+ irpirpir+; q(or+) =0)= —A p
—2v2Ap,

A(IHIP ~ ir+ir irP; q(ir~) = 0)= —(3/2V2)A p,

A(ICI.' ~ ir+ir ir'; q(ir') =0)
=Ap+(1/v2)Ap=(1/v2f. )A(Es'~ ir ir ), (2.4)

A (Er,' ~ ir"ir'ir' q(iri') = 0)
=A, —&2Ap ——(1/&2f )A(Es' —+ ir"ir'),

'

A(Esp~ ir+m irp; q(ir+) =0)= —(9/2v2)Ap,

"See, for example, Y. Hara, Progr. Theoret. Phys. (Kyoto) 3'7,
470 (1967)."Much of the content of Sec. II is already discussed in Ref. 22
and especially in Ref. 23.
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and

A(xs'~ ~+~-~', q(~') =o) =o.

There are electromagnetic corrections to these rela-
tions. However, since we have chosen the Hamiltonian
(1.8), we assume that these corrections are much smaller
than the

I AII = ss amplitude Ao.
These relations are those for off-mass-shell E —+3m

decay amplitudes, and we have to extrapolate E —+ 3m-

decay amplitudes from on the mass shell to off the mass
shell. For simplicity the amplitudes were assumed to be
linear functions of the energy of asymmetric pions, ' ""
oi(s.o) (Fig. 1).Therefore, in this approximation we find

I'ro. 2. Pion A1 . . pole diagram

OH,„
A

A (E+ +or+s'+—or
—

) = —3%2A,

—2(Ao —4&2Ao)co(s )/cVir+,

A (K+~ vrooroor+) = —A o
—2v2A

+2(A+ A)

1
A(Ki, o~s+s. oro) =Ao+ —Ao

V2

5 oo(s')—2 Ap+- —A2
2v2 Ago

A (Kr, ' +orson'7r') =A—o
—v2A o,

and

by making use of the results of E ~ 2' decay
experiments. '" "

The agreement between our predictions (2.6) and
(2.7) and the experimental results (1.3) and (1.4) is ex-

. cellent except for the decay rates. However, if we check
the predicted relative rate,

(2.5) l I
A (+ + —) I

=
I
A (0 o +) I

I A;(+ —o) I
=-',

I
A, (o o o) I

IAPc, ' ~+ -)
I

(2 8)
IA(Ks' —& s'or')

I

by experiments, the agreement is satisfactory:

9 oo(s')
A(IC '-+or+or or') = ——A

W2 3f~o and

left-hand side= (1.14&0.05) X10 '

right-hand side= (1.07&0.01))& 10 '.
(2.9)

Prom these amplitudes, we obtain the following pre-
dictions for E —+ 3x decays" ":

A, (+ + —) I

=
I
A, (o o + ) I

=
I
—,'A o

—(1/3v2) A,
= (1/3&2f.) I

A (Ego —+ or+s.—) I

=0.76/ 10-'
(left-hand side=0. 97&0.03), (2.6a)

-'; fA, (000)
f

= IA,(+ —0) f

=-', fAo —&2Aof

= (1/3&2f ) I
A (Kso —+ 7r'7r')

I

=0.71' 10-6

(left-hand side =0.85&0.02), (2.6b)

a(& & W) =0.09 [a(& & %),„o=0.1000&0.0036],

a(0 0 +)
= —0.27 [a(0 0 +),„o= —0.258&0.010], (2.7)

and

a(+ —0)= —0.27 [a(+ —0),„o———0.300&0.018],

I We have used v23fo g~/g ir instead of f .

The discrepancy between experimental absolute rates
and predicted absolute rates may be due to off-shell
effects on the over-all factor of the amplitudes.

In spite of the above excellent agreements between
predictions and experimental results, we cannot justify
the use of the linear approximation of the amplitudes
(2.5) since there is evidence" that the relative phase of
3 p and A 2 ls about 40'. The imaginary parts of the
decay amplitudes have root-type singularities at
s;= [M(or;)+M(oro)]' and they are not approximated
well by the linear approximation. "Therefore, we have
to approximate the IC —+ 3x decay amplitudes by
realistic functions with dynamical singularities. " In
Sec. III we deal with the leading generalized Veneziano
amplitude. "

27 B. Cobbi, D. Green, W. Hakel, R. Moffett, and J. Rosen,
Phys. Rev. Letters 22, 682 (1969).

'8 Particle Data Group, Rev. Mod. Phys. 41, 109 (1969).
"However, the effect of dynamical singularities may be small

in the physical region of E~ 37i- decays since the positions of p,
E*, etc. are rather remote.

» The content of Secs. III and IV has been reported in Yasuo
Hara, International Centre for Theoretical Physics Report No.
IC/69/65 (unpublished).
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FIG. 3. Kaon, Eg, . . . , pole
diagram.

III. LEADING GENERALIZED VENEZIANO
AMPLITUDE

Let us assume the ~3 I~ = s rule, since the (DI~ = s
parts of the decay amplitudes cannot have full duality. "
The E +or'+m. '+~—~ decay amplitudes with full

duality are obtained by making use of the generalized
Veneziano model of the 6ve-point amplitudes' '
[I«, w', m&', ~", and the spurion «(I= —', )7. The five-point
amplitude in the generalized Veneziano model is not
unambiguous, since trajectories with r«(0))0 (n, =nr
and « =«,~) are involved. The leading amplitude,

FIG. 4, p, E*, . . . , pole diagram,

which has pion and kaon poles with Veneziano ~~ and
Ear scattering amplitudes, ""which has all other poles
shown in Figs. 2—4, and which satisfies a condition im-
posed by current algebra (the amplitude should vanish
at some soft-pion limits), is unique and is given by

1 1

t3[Tr(M gM«M, MiMq)+Tr(MgcV«iViJV;3f6)7 [1 n(s;,—) n(s, «)7— duq du4(1 u&u&—) u&

Ql
—K*(~km) f Q

— (&)—1
4

X '""(1—u»4) '"'+[1+«(p,)—«(s«) —~(s,«)7
1—Q1Q4 1 —QjQ4

1 I 1 —Q1
—"("j) 1—Q4

dug du4(1 —ugu4)
—'ug —~ &'~'» u4

—&~(«)(1 uzu4)
—~le~ca«m)

0 ~ —Q1Q4 ~ —Q1Q4

+(terms obtained by permutations of t, j, and k), (3.1)

.0 0

0
for i =1, 2, and 3,

0.

and

M~~o ——M6=
'.0 1 0.

(3.2)

M~- ——

.0 0 0&

%e assume that the m.-A1 trajectory n, the E-E&

where s,;= —[q(~')+q(~')7', s« = —[q(~') —q(& )7'
p= —[q(&~)+q(«)72, and p, = —[q(«) —q(7r')72 [here
q(&~)+ q(«) =q(~')+ q(vr&)+q(vr") and q'(«) = 07 (see
Fig. 5). In Eq (3.1) th.e Jtf's are 3X3 matrices, "

r 0&

trajectory «, the p ftrajecto-ry n, and the E*Eu'-
trajectory nz* are all parallel and that they satisfy the
relations'4

n(t) —n. (t) =«*(t)—nrem(t) = —,'. (3.3)

By making use of the relations (3.3), the amplitude
(3.1) can be expressed as

t3[Tr(df gM pe. ,tV PI«)+Tr(JV giV«%PI;M 6)7
XB( n. (iV Jr'), 1 —«(c—V '))[1—n(s;, ) —n(s, p)7

X [B(1—«*(s«~), 1—n(s, «))—B(1—n(s, ;), 1—n(s, «))7
+ (terms obtained by permutations of i, j, and k)

(3.4)

for real decays [q(«) =07. Because of the relations (3.3),
"C. Lovelace, Phys. Letters 28B, 265 (1968)."K. Kawarabayashi, S. Kitakado, and H. Yabuki, Phys.

Letters 28, 432 (1969)."J.E. Paton and Chan Hong Mo, Nucl. Phys. B10, 516 (1969).
'4 The relation (3.3) is derived from the relations (1.1) and (A)

of Ref. (9) if trajectories are assumed to be linear and parallel.
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poles at n(s,,) =positive integers (nil ~ =positive integers)
disappear from the first (second) term in. the last bracket
of the amplitude (3.1).lt is interesting to notice that the
first (second) integral of (3.1) is proportional to the
E7r (irir) scattering amplitude though the first (second)
integral has no kaon (pion) pole.

There is another condition imposed by current
algebra at some soft-pion limits. That is, the E ~ 3m

decay amplitudes should be proportional to the E~ 2x
decay amplitudes at these limits. For example,

v2f A(Kr, ' —+ ir++ir +or', q(ir') =0)
=A(Es'~ir++ir ) (3 5)

& {spurion) K

{skrn)KN k

Our amplitude (3.1) does not satisfy the requirement
(3.5). We may regard the left-hand side of the relation
(3.5) as the E —+ 2ir decay amplitude if it has no poles
at o,~, n =integers. In the above limit, our E —+3m.

decay amplitude (3.1) has no pion pole and no kaon
poles since the vrx and E7r scattering amplitudes as-
sociated with the pion and kaon poles satisfy the Adler
condition. However, this amplitude has undesirable
A», E~, etc. poles. This is because their residues do not
satisfy the Adler condition.

Therefore, we cannot accept the leading generalized
Veneziano amplitude (3.1) as a X—+ 3ir decay amplitude.

IV. NONLEADING GENERALIZED VENEZIANO
AMPLITUDES

a{s; )

=op(s; )

= f(s")IJ
FIG. S. I,orentz scalars and Regge trajectories.

for n (k) =n and q(ir') or (r(n'") =0, where a, b, r, , d, X,

and p, are arbitrary parameters.
One example is

P[Tr(MgM, M,M,M, ) +Tr( M~M, M, M, M)]

X[1—2n(s, i)] dui du, (1 uiu, )-—"ui

Since the leading generalized Veneziano amplitude
of It ~ 3ir decays (3.1) has been found not to satisfy
current-algebra relations, we look for nonleading
generalized Veneziano amplitudes' of IC —+ 37' decays
which satisfy conditions required by current algebra.
This is easily done if we notice the relations

&
—a (.r&'k)

j.—Q»'R4 1 —Q»N4

X(1—uiu4) "~"'""'+(terms obtained by

permutations of i, j, a,nd k), (4.4)
a[nor(p;) nzi*(sr—, )+,']-

+b[1—Xn(s,,) —(2—)i)n(s, q)]=0 for q(mi)=0

L (*)- -(k)-l]
+d[1—u ( ) —(2 —u) '( -)]=0

for q(ir") =0
and the fact that'4

n(s;, )+n(s, r,)=u+ 1 (integer)

(4 1) where n is a positive integer. This amplitude does not
have a pion pole, 3» pole, etc., because —n appears in
the integrand instead of —n —1. Only their daughter
poles appear. If n=o, the above amplitude reduces to
the I ovelace amplitude. ' However, the amplitude
with n=0 is not acceptable since it has a kaon pole
though (X~H,„~ir)=0. The amplitude with n=1 is
acceptable. "

Another example is

[Tr(MgM6M, M+I~)+Tr(MrrMkMj MjM6)] fa[nz(p;) nrr *(si~)+2]—+b[1 )n(s, ,) (2 —))n(s, &)]—}—
I»» ~z (yi)

X{c[n(s,,) —n (k) ——,']+d[1 un(s, i,) ——(2 —u)n(si )]} dui du4(1 uiu4) ' —~ui&r'&

0 ~ 0 1 —N»N4
»—a (ai&)

X u&" 'i" (1—uiu4)'- ~*&'""&+(terms obtained by permutations of i, j, and k), (4.5)
1—Q»Q4

'5 The amplitude (4.4) with n =1 gives the following results:

-,'I A.(++—) I
=

I
A. (oo+)

I

=
I
A. (+—o) I

=-;
I
A, (ooo)

I
=o.ex to-

2a(%&%) = —a(00+) = —a(+ —0) =0.29.
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where u, b, c, d, P, , and p, are arbitrary parameters. '
To this amplitude the pion trajectory does not con-
tribute. Only daughter trajectories of n contribute to
this amplitude.

Vfe have found examples of nonleading generalized
Veneziano amplitudes for E ~3m decays. However,
it is impossible to obtain examples with poles due to the
mesons on the pion Regge trajectory. It is not probable
that matrix elements of the weak nonleptonic Hamil-
tonian between the kaon and all mesons on n are all
zero. Hence, we conclude that amplitudes for weak
processes do not have full (or maximal) duality. For
example, the pion pole or kaon pole of a IC ~ 3m. decay
amplitude is not dual to other poles. This conclusion is
identical to the one we have reached by studying E«
decays, ' though no leptons and no fixed poles in the
J plane are involved in E~ 3m. decays. However, we
have to notice that the existence of pion and kaon
poles in E~ 3m decay amplitudes is not always neces-
sary, though the existence of the kaon pole in E«
decay amplitudes is required by the existence of E&2

decays.

V. PION- AND KAON-POLE-DOMINANCE
MODEL OF X~ 3m DECAYS

In previous sections we have proved that the leading
term in the generalized Veneziano model of E—+3m

decays is not compatible with the current-algebra rela-
tions (2.4) and found that nonleading generalized
Veneziano amplitudes of decays compatible with cur-
rent-algebra relations have no pion poles nor kaon
poles. Therefore, pion poles and kaon poles of IC —& 3x
decays are found not to be dual to other poles. If we
consider both the ~AI~ =—', and 2 parts of the E—+37r'
decay amplitudes, we have to introduce imaginary
parts to decay amplitudes. Thus, we have to consider
dynamical singularities of amplitudes.

In. this section we find an example of a E —+ 3' decay
amplitude which reproduces current-algebra relations,
which has both

~

()(I~ = —,
' and $ parts, and which has a

pion pole and kaon poles. The pion-pole-dominance
model of E—+ 3x decays with Veneziano 7t.m scattering
amplitude was 6rst proposed by Lovelace. "However,
his model has a difhculty. It does not have contribu-
tions from kaon poles. The mm- scattering amplitude in
the Veneziano model ()r +vrp~~&+ms) is expressed
as3I, 32

T(s,t,u) = 8 p8~iA(s, i,u)+b ~('&piA(t, u, s)
+() g()p A(u, s,('), (5.1)

where
A(s, t,u) = f'(tV(s, t)+ V(s,u) —V(t,u)$ (5.2)

V(s, t) =n'(2M. ' —s —1)03(1—e,(s), 1 —(rp(/)). (5.3)
"By adjusting parameters, various slopes of the pion spectrum

can be obtained from the amplitude (4.5). However, it seems that
we should prefer (4.4) to (4.5) since the amplitude (4.5) is very
arti6cial.

A (+&(s,t u) = 2i f'[-V"(s)t)& V*(u, t)j (5.5)

V*(s,t) =n'(M„'+M»' s t—)—
&&8(- (), —,()) (5 )

The f is the p&r&r coupling constant, f'/4s =2.10&0.11,
and u' is the slope of the p trajectory' " d(&(,(t)/dL at
t=M '

p )

a'=[2(Mp' —M ')j '. (5 q)

The function $(1—(x(s), 1—n(t)) is an example of a
crossing-symmetric Regge-behaved amplitude for non-
linear trajectories discovered by Suzuki. 3~ An explicit
form of S is given by

(S(1—ai(s), 1 ng(t))—

1

ds as&(s&+ arti(s&f (c)(1 s)—aa(t)+Dam(() f (&—s) (5 8)

where
s Imn, (s')

n, (s) =a;s+t&;+ — . ($s'—
S S —S

a;s+b,—+0n, ( )s (5.9)

and f(s) is a function with the following properties:

f(0) =0 and f(1)=1,
g&)rf (s)

=0 at s =0 and z = 1 (5.10)

for an arbitrary integer 3f.
The contribution of the pion pole and kaon poles to

E+ —+ ~I++w2++w —decay is expressed as

f'(If+
I
&

l
ir") V(si, s )+ —V*(s,s )k-M„' p, -M»'

where

+— V"(s»i, s i),-(5.11)
p2 —M»'

k = —Lq(x)+q(~) j', p, = —Lq(~,+) —q(~)j',
s; = Pq(7r, +)+q(7r ) j'",—s»;———

I q(E) —q(m. ,)J'
(see Fig. 5). The q(») is the four-momentum of the
spurion &( and satisfies q(IC)+q(&() = q(&ri+)+q()r2+)
+q()r ). If the

~
AIt = —', rule is satisfied, the followin

relation must be satisfied:

(K+&H ~7r+)= (Er,'(IH ),7r'). —
"M. Suzuki, Phys. Rev. Letters 23, ZOS (1969).

(5.12)

The E~ scattering amplitude in the Veneziano model is
expressed as"

T(s,t,u) =b.pA(+&(s, t,u)+ 2&((r.-, rp5A ( &(s,t,u), (5.4)

where



We regard the expectation value (EtH„~s.) as a con-
stant evaluated at Pq(E)+q(K)]'= —M ', q'{s)=0, and

4( ) —V( )]'= —~x'.
The amplitude (5.11) of the pion- and kaon-pole-

dominance model does not have a zero at the soft-pion
limit q(s. ) =0, required by current algebra when the

~
AI) =-,' rule is valid. " 4' This is because

v*(3E 'pf ')WO.

Thus, in order to avoid this dif6culty, we have
to consider contributions from poles due to higher
meson resonances and subtraction terms. I et us
assume that the pole residues of these poles are
of Veneziano type and let us neglect the k and p;
dependence of these terms. An example of a sum of a
pion pole, kaon poles, and extra terms due to higher
meson resonances belonging to n„and n~ families is
given in the following4':

A (E+ +s t++—s s++u-)

2 1
—f H+ V(st—ass—)+ V (sxsyss —)+ V (sxtyst —) n f Hogw (sxryst —)+W (sxs)ss )]N' — pt 3fx' — ps ~x'

+2(Ho+H+)f'n'W(st, ss )+2f'n'(Ho+H+)E2(1 nx (3f—x), 1—n, (3II '))

A (E+ +nto+s —so+r. r+)
—$(1—np(3l '), 1—n, (M '))](sts —3f ')/(Mxs —M '), (5.13a)

1=H+ A (sts, st+,ss+)+ (sxl+ls)sxs) +Ho
k —3E,' pp —Mx'

A &
—'(sxs, so+.,Sx+)

pt —Mxs

+ ~ (-, ",-.) —,-f H.LW {-,")+W*(-,".»+-,-f (2H.+H.)LW*(-., ")
ps —~x'
W*{sxs,so~—)+W*(sx~,st+) W*(sxt,st+—)]+f'n'(Ho+H+)([$(1 —n, (M '), 1—no(M. s))

+2(B(1—nx*(Mx'), 1—n, (3f.s))](sts —M ') —$(1—n, (M '), 1—np(3f. '))(st++st+ —2M, ') }/(3fx'—cV ')

A(Ez,
' —& ut'+ms''+us')

+(Ho+Hy)f n PW(sts&sty)+W(sts&so+) —W(st~, ss+)], (5.13b)

=Ho -LV(sts, sos)+ V(sso,sot)+ V(sst, sts)]+ &'+'(sxs, s28 sxo)+ ~ '+'(sxs, sts, sxt)
k —M„2 pt —~xs ps —M'x'

-&'+'(sxt, sts, sxs) +on'f'Ho[W*(sxt, sts)+W*(sxt, sts)+W*(sxs, sts)
ps —cVx'

+W*(sxs,sso)+W*(sxs, sts)+W*(sxs, sos)], (5.13c)
A(Er, o +s++s +so)—

1
=Ho A(s+, so+, so )+— A'+'(sx+, s+,sx ) +H+

po —~xs
(sx—p—opxo)

pp —Mx'

+ & & '(sx+, s+o,sxo) -',+'fn' H[ o*W( sx, +s+)+W*(sx,s+ )] tsn'f'(2Hp+Ho—)
p —Mx'

)&t.W*(sxo,so )+W*(sxo,s+o) —W*(sx,s o) —W*(sx+,s+o)], (5.13d)

3 M. Jacob, C. H. Llewellyn Smith, and S. Pokorski, Nuovo Cimento 63A, 574 (1969)."D. G. Sutherland, Nucl. Phys. 813,45 (1969).
~ This difhculty can be solved if we regard (5.11) as the contribution of the Feynman diagram drawn in Fig. 2 (pion pole only)

and Fig. 3 (kaon pole only) and if we assume that limos o (Z(q) IH ls (g))=0 as was suggested in Ref. 20. The current-
algebra relations (2.4) with nonzero A2 are not satisfied by this model. This model predicts

—:l~(++—
& I

= I~ (oo+& I
=0.24(1~0.»&, —.l~ (000) I

= l~ (+—0& I
=066(l+o»&

d
2u(a&%) =—g(+ —0) = —u(00+) =0.29—0.25),

& =«(~&l&-I (g&&l"--~.*/(ft(g&l& l~(g&)lo' —~x'.
4' We have looked for an example of an amplitude which is a sum of pion pole, kaon pole, 8'(s;,s,), and 8'*(s;,s;) (extra terms

due to higher meson resonances) and terms linear in s;. The amplitude (5.13) is not a unique amplitude which satisfies the above
condition. We may add the amplitude (2.5) with arbitrary A 0 and A2 to (5.13).
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A (Eso —+ s-o+pr++s=) =Ho A i—&(sic,sp, src+)
po —Mrc'

+H+ A' '(sr', s o,srro) — A '(sIr+4syo4sJro) sc4'f—'(4H++3Ho)
p+ —Mrc' p —Mx'

XLW*(sic,s+ ) W*(s—x+,s+ )g sc4 f—(2H++Hp)[W*(s~p, s p)
—W*(s4r, s o)+W*(sic+,s+p) —W (sxp, s+o)]

+2$(1—nrem*(Mrc'), 1 c4p(M—'))f'c4'(Hp+H+)(sp+ sp )—/(M ' Mrr—'), (5.13e)

where

and

H, = ( [H.[E.), H, = {+ [H„[E+),
W(s, t) =$(1—Q(s), 1—n(t)),

W*(s,t) =$(1—«(s), 1—n(t)).

The amplitude (5.13) is one of the simplest amplitudes
which satisfy current-algebra relations (2.4), which
have pion and kaon poles and have both [AI[ = —,'
and —parts.

By making use of the current-algebra relations (2.4),
the expectation values of the weak nonleptonic inter-
action H+ and Ho are related to the E —+3m decay
amplitudes:

A (Es' ~ 2~')
=v2f A(Ez'~ s-t'+ pro'+mrs', q(trs') =0)
= —&2f 'f'Ho[2$(1 —,(M '), 1—,(Mrc'))

—$(1—«*(Mrr'), 1 —n, (M, '))
—$(1—«*(M-'), 1—~.(Mx')) j, (5 14)

A (E+~ tr+s o)

=v2f A(E+ —+ pr&'+mrs'+s+; 4t(s&') =0)
=V2f.a.'f'(H, +H+) Ls$(1—«*(M„'), 1 —tt, (M„'))

—$(1—«*(Mic'), 1 —n, (M '))j,

are known. For simplicity let us assume that

f(z) =-,' for 0(s(1. (5.16)

Then, we are allowed to use B(1—n*(s), 1 —n*(I)) and

B(1—«4*(s), 1 —n*(t)) instead of $(1—n(s), 1 —n(t))
and $(1—«*(s), 1 —n(t)) if we use n"(s) =n(s) —sett(s)
and nrc*"(s) =«4(s) ——',Anrc (s). Since we have no de-

tailed information on n(s) and «*(s), we shall take the

example used in Ref. 31:

n*(s) =n(s) —-', 44,n(s) = —,'+ (s—M.')/[2(M, ' —M' ')j
+0.14i(s—4M ')'~ GeV '

and (5.17)
**(s)= —,'+(s —M ')/L2(M *'—M ')]

for M '&s&kI~'. %e obtain the following predic-
tions" from the amplitudes (5.13):

—,'[A, (++ —) [=[A.(00+)[=0.6s,
—', [A,(o o o) [= [A.(+ —o) [=o.6o, (5.1g)

a(~ ~ ~)=o.12, u(0 o +)= —o.31,

a(+ —0) = —0.30. (5.19)

The agreement between the above results (5.18) and

(5.19) and the experimental results (1.3) and (1.4) is
fair. However, as in Sec. II, the agreement between our

A(Es'~s+pr ) —A(Es' —+s'4r') =2A(E+~s-+or').

According to recent experimenta, l results, ""
2[A(E,o ~ ~+~-) [s

=2.285~0.055,
[A(E&o ~ &opro) [s

[A(E+ —+ pr+s
—

) ['
=0.00212,

[A(Eso ~ tro~o) [s

and
[A(Es'~s.+7r—) [

=396X10 'MeV.

Re a(t)

=- f (GeV )

The phase of A(E+ ~ s-+s o) is assumed to be zero and
the phases of A (Eqo -+ s+pr ) and A (Esp ~ s.os o) are
assumed to be about 40'.

Therefore, the E—+3m- decay amplitudes are ex-
pressed in terms of E~2x decay amplitudes if the
explicit form of n, «4, and f(s) (which appears in $)

Fzo. 6. Nonlinear trajectories for (5.20) and (5.21).

4'In this case, [Ho[ =5 OXIO ' MeV and H+ 0.947Hp. It-——
is interesting to notice that [Hp[) [H+[, though [A (14s' —& 4r+4r }[) [A (Eso ~ 4ro4ro} [. '
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TABLE I. Comparison of experimental and theoretical results.

Experiments Sec. II
Theories'

Sec.V(a) Sec.V(b) Sec.VI

2 ~Ac(++ —) (
X10'

(A. (00+) ]
X10'

iA. (+—0)
i
X10'

3 [
A c(000) ( X 10'

3/8
a(+&%)
a(00+)
a(+—0)

—a(00+)/2a(& +W)
—a(+—0)/2a(WWW)

0.96&0.01
0.98%0.02
0.85%0.02
0.85&0.02
1.14&0.05
0.1000&0.0036

—0.258+0.010
—0.300+0.018

1.29+0.02
1.50+0.03

0.76

1.07
0.09

—0.27
—0.27

1.5
1.5

O.e8

0.60

1.13
0.12

—0.31
—0.30

1.3
1.3

0.93

0.85

1.12
0.10

—0.26
—0.27

1.3
1.4

0.71

p

—0.27

a Section II:Eqs. (2.6) and (2.7); H~ with jhIj =-, and $; matrix element is linear in co(7r3). Section V(a): (5.18) and (5,19); Hw with jhIj =~s and —,';
with pion and kaon poles; Rem is linear. Section V(b): (5.20) and (5.21);H~ with j AIj =$ and —,'; with pion and kaon poles; Rea is nonlinear. Section VI:
(6.3) and (6.4); H with j AI j =$ only; matrix element is linear in ea(7ra).

predictions and experimental results becomes excellent
if we compare only relative rates and relative magni-
tudes of slopes. The inclusion of dynamical singularities
such as a p pole and a E~ pole has made the slopes a
little steeper Lcompare (5.19) and (2.7)g. Numerically
the contribution of the imaginary part of the amplitude
to the decay spectrum is negligible (about 3%).

The discrepancy between the predicted absolute
decay rates and the experimental absolute decay rates
may be explained as off-mass-shell effects. However,
this discrepancy is also removed by considering highly
nonlinear trajectories. For example, if we assume that
the real parts of the o. and o.~* trajectories are those
given in I'ig. 6 and s' Imu(s) =0.2(s—4M„')'~' GeV ',
we find4'

s I
A,(+ + —) =

I
A, (0 0 +) I

= 0.93,
IA.(+ —o) I

=s IA, (0 o o) I
=o.85, (5.2o)

a(+ + —) = 0.10, a(0 0 +)= —0.26,
and

a(+ —O) = —O.27. (5.21)
The agreement between our results and the experi-
mental results is excellent.

VI. DISCUSSION AND CONCLUSION

Though it is very unlikely, let us assume that the
weak Hamiltonian has only a I VIII

= s part (such as a
current)&current interaction with neutral currents or"
H„ccqhsq+iqh7y„. q) and that the IDII =—,

' parts of the
decay amplitudes are of electromagnetic origin. In this
case we have to assume that there are electromagnetic
corrections of 0(~~~As) to the current algebra relations
(2.4) with As=0. However, the electromagnetic cor-
rections to the relations

A (X"~ vr's-'s" q(m. ') =0)
= (1/v2 f )A (IC+ —+ vr+s e),

A(I I,' —+7r+s. ~', q(s')=0)
= (1/v2 f.)A(K, '~ ~+~ ), (6.1)-

+ In this case
~
II0) = 2.7X10 ~ MeV and 8'~ = —0.924&o.

and

A (ICr, ' -+ s's's'; q(7rP) =0)
= (1/v2 f)A (E,' ~ s-'vr')

are 0(n') and negligible if we a,ssume the following
PCAC condition in the presence of the electromagnetic
interaction":

B„A„i'&=(1/v2) f cV 'P "&+S(n/4rr)Fs, F,pet„p, (6.2)

where S is a constant and o. is the fine-structure constant.
If we assume that decay amplitudes are linear in

a&(s.s) as was assumed in Sec. II, we 6nd

and
a(+ —0) = —0.27 (6.3)
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-,'IA, (o oo)I = IA.(+ —o) I
=o.7o

from (1.7) and (6.1). The slopes a(& & -+) and

a(00+) can be arbitrary.
If we choose the H„with pure

I
DII =xs, the trouble

is the fact that we do not know how to obtain large
electromagnetic corrections such as

LIA, (+ y —) I/2IA. (+ —o) I3—1=o.14.

This trouble, together with the excellent agreement be-
tween the predictions of models based on the current
Xcurrent Hamiltonian (1.8) and experimental results,
seems to suggest that we should prefer the current
Xcurrent Hamiltonian (1.8) to H„with pure

I
EII = s.

If the weak nonleptonic Hamiltonian is the current
Xcurrent interaction (1.8), the X-+ 3n. decay amplit-
tude will be a sum of generalized Veneziano amplitudes
such as (4.4) and amplitudes which contain pion and
kaon poles such as (5.13).

For convenience, the results obtained in this article
are tabulated in Table I.
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APPENDIX: X~ 2~ DECAY AMPLITUDES IN
THE VENEZIANO MODEL

An example of E~ 2m. decay amplitudes suggested by the Veneziano model is as follows:

A(z, ,') (w2/ =f )( ill. l)(,')(212(2 —(M, ), 1 —(s„))—12(1—,(M, ), 1 (3f—)),
M~ $12 SK1 3I~ $12 SK2

22(2 — (s,), 1—(s„))+ t»(2 — (s,), 1—(s„))), (&2)
2%K'2cVK'

21(K,' s —
) =(s/2/ f)( 'l 22 ~2,1 ')(212(1—(M '), 1 —(ss ))—t2(2 — (M '), 1—(M', '))

3f~ —$+ —SK+
+ — $(1 nfl*(s—fr+), 1 —n(s+ ))+

JI~ $+— SK-
-S»(2 — (. ), 1 —(s, )))2&K'

+(1i~~~f-)(&~'I&- I
K~')+&~+I &-I K+)Xm(1 n~*(s~+)—, 1—n(m. '))+S(1—n~ (s~ ), 1—n(M 2))], (A2)

and

A(K+ ~ 2r+2r ) =(1/%22rf )&2r+
I Hsss I

K+)$(1 n(3f—) 1—nfl*(sfro))

sfrp+so+ —cV '
+(2/~& f )( l22 l22 )'(»s(-2 ("s )1——* (s ,+))

MK'

~~ —SKO —$0+
+12(2—(s„),1 — (s,)) +t2(2 —(M, '), 1 — .(s,))), (A2)

MK'

where s;;= —L(t(2r')+(t(2rf)]'= —L(t(K)+(t(M)]' and sfr;= —I(7(K) —q(2r*)]'. These K —+22r decay amplitudes
satisfy current-algebra relations:

Bnd
V2f.A(Ks' ~ 2r2'2r2', q(2r2') =0)= &2r'I H„I Kf.')

~&f.A(K+ ~ ~+~o; q(~') =o)= (~+I+„IK+),
(A4)

when the n and nfl» trajectories are real and are given by the real parts of the trajetcories in (5.17).


