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Starting from the assumption that the inelastic states in the unitarity relation can effectively be repre-
sented by a set of quasi-two-particle states, a E-matrix formalism is set up for high-energy elastic scattering
and diffraction-dissociation processes. Using arguments similar to those of Freund, it is shown that the
Pomeranchul- contribution to elastic scattering and diffraction dissociation can be generated by multiple
exchange of an exchange-degenerate quantum number carrying Regge trajectory R, by considering at the
same time a formation of a sequence of excited intermediate states of the colliding particles betv een the
individual R exchanges. This unitarization procedure leads to an imaginary as well as a real contribution
for vacuum exchange, corresponding basically to sums of double and triple R-exchange contributions, re-
spectively. At the same time, the E-matrix formalism produces an absorptive correction to the input Born
terms. The consequences of the proposed model are worked out, particularly as regards the asymptotic
behavior of total cross sections and the interpretation of the crossover phenomenon.

I. INTRODUCTION

~T is well known that Regge theory provides a reason-
~ - ably good description of inelastic processes at high

energies. Elastic scattering, however, is still less well

understood. This is related to the fact that the true
nature of the Pomeranchuk trajectory is unknown.

Originally introduced as an ordinary Regge pole carry-

ing the quantum numbers of the vacuum and possessing
the largest intercept allowed by unitarity, it soon
became clear that this trajectory had very special
properties: (i) Its slope turned out to be smaller than
that of quantum-number-carrying trajectories which
have a slope of order 1 GeV ', and (ii) there seem to
be no particles related to the Pomeranchuk trajectory.
Furthermore, the following well-known conceptual
difficulty appears: Iterating a Pomeranchuk pole with
intercept one in an elastic scattering amplitude produces
cuts in the angular-momentum plane which accumulate
at j= 1 for vanishing momentum transfer t and domi-

nate each other for increasing order of iteration at
negative t. This seems to indicate that the full Pomer-
anchuk contribution is basically a more complicated
object. As an ansatz to a more refined theory for elastic
scattering, various phenomenological multiple-scatter-
ing models have been discussed, describing the Pomer-
anchuk contribution effectively as a superposition of

Regge cuts. It has been found useful, in order to in-

corporate this multiple-scattering aspect into the theory,
to treat elastic scattering in the Glauber-eikonal type of
approximation. ' ~ However, it is still unclear to what
extent the Glauber multiple-scattering picture, 4 ' which
was originally intended to describe the scattering of
composite objects at energies where particle creation
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and annihilation are negligible, can in fa,ct be regarded as
a satisfactory description in the relativistic domain.
In order to be able to include inelastic states in the
multiple-scattering chain, we will not use the Glauber
model here. The main reason is that the implications
of unitarity in relativistic particle scattering are not
easily incorporated into that model. Our aim is to
satisfy s-channel unitarity at least in a certain approx-
imation to be discussed in detail below, and to describe
what is conventionally called "Pomeranchuk exchange"
as a unitarity effect—an s-channel phenomenon —which
is complicated when analyzed in terms of t-channel
exchanges. We therefore choose as our starting point
a E-matrix type of parametrization for the scattering
amplitudes in the way first discussed by Blankenbecler
and Goldberger' and by Baker and Blankenbecler in

connection with the Fourier-Bessel representation of
scattering amplitudes. ' " Our approach has some
resemblance to recent investigations of the multi-
peripheral model, "although in detail it is quite different.
The main distinction is that we introduce here a txo-
cluster hypothesis for the description of the intermediate
states in the unitarity relations. In the multiperipheral
model, on the other hand, s-channel unitarity is satisfied
exactly at the expense of having to face the difficult
problem of handling the multiparticle phase space.

Furthermore, we will not assume a Pomeranchuk
trajectory as an input term, i.e., as a "driving term"
in this formalism. Instead, we shall investigate under
what conditions a vacuum exchange contribution can
be generated from multiple exchange of lower-lying
trajectories, allowing for a whole set of excited inter-
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II. K-MATRIX FORMALISM

Our starting point will be the impact-parameter
representation for the scattering amplitude at high
energies. " Neglecting complications due to spin a,nd
isospin, the elastic s-channel scattering amplitude is,
in our normalization, given by

f&"(s,t) =2zrs bdbzt&" (b s)J (bg —t) (1)

The elastic differential cross section and the optical
theorem rea, d'

and

do 1

, I
j'"(st) I'

dt 4m''s

Imf&'&(s, t=0) =-', q(Qs)o...(s),

(2)

"R.Henzi, Nuovo Cimento 46A, 370 (1966).
'4 We label elastic amplitudes with a superscript (1) to distin-

guish them from certain inelastic amplitudes to be introduced
below.

mediate states. The basic diagrams producing a
Pomeranchuk contribution in this formalism will be
those shown in Fig. 1, where the transfer of the vacuum
quantum numbers in the t-channel corresponds to a
back-and-forth exchange of quantum numbers carried
by a trajectory E, together with an excitation of all
possible "resonances" in the intermediate state pro-
duced by the incoming particles a and b at a particular
c.m. energy squared s= (p, +pb)'. Our basic statement
will be that, although the Regge cuts corresponding to a
double E-exchange and a certain well-dehned quasi-
two-particle intermediate state in Fig. 1 are asymptotic-
ally suppressed in the near-forward direction compared
to single E-exchange, the consideration between the
R-exchanges of exceed states, zvhich grow in number as
the energy increases, can in fact compensate this suppres-
sion of the individual terms in the sum. Thereby,
indeed, a vacuum contribution can be generated which
dominates elastic scattering asymptotically without
having to postulate in the theory a Pomeranchuk pole
in the beginning.

The plan of our presentation will be as follows. In
Sec. II we introduce the multichannel E-matrix descrip-
tion of scattering amplitudes in the impact-parameter
language and discuss various approximations inherent
in our approach. In this section we state our main
results for particle-particle scattering and extend them
in Sec. III to the case of particle-antiparticle scattering
where additional annihilation channels are open. In Sec.
IV the implications of the proposed model regarding the
real part of high-energy forward-scattering amplitudes
and the existence or nonexistence of a Pomeranchuk
limit as well as a Pomeranchuk theorem are studied.
Section V is devoted to a discussion of the crossover
phenomenon, and Sec. VI to some 6nal remarks.

FIG. 1.Double-Regge-
exchange diagrams con-
tributing to elastic scat-
tering.

~ QR

+ Z ,"'(b,s)~ "'(b,s)*+h"'(b,s) (3)

Here the amplitudes zt, &zi(b, s), j=1,2, . . . ,zz(s), are the
amplitudes for transitions to the open two-body
channels, and tz&i'(b, s) represents the overlap func-
tion" ' in the impact-parameter representation, des-
cribing the effect that the transitions to multiparticle
intermediate states have on the elastic amplitude. Con-
ventionally the sum over the two-body "quasielastic"
&zzzd the true inelastic transitions in Eq. (3) a,re called
the overlap function, being denoted by g&" (b,.).

To satisfy s-channel unitarity, there are now in
principle two possibilities open. On the one ha, nd, one
can try to parametrize elastic scattering globally in
terms of the combined effect of al/ inelastic states
appearing in the unitarity relations, i.e., make a suitable
ansatz for g&'&(b,s). On the other hand, one can try to
find a set of quasi-two-body states (2);,j = 1,2, . . . ,zz(s),
such that Eq. (3) is approximately satisfied with
h&" (b,s)=0. The erst alternative was advocated in a
number of papers" " following the original suggestion
by Van Hove, "and most recently in Ref. 20. We shall
follow here the second alternative and investigate the
consequences which result from it.

Introducing a matrix zt(b, s) of dimension L1+zz(s)j
for the transitions between all the coupled quasi-two-
body channels, we write Eq. (3) for tz&"&(b,s) =0 as

(1/2z)[n(b, s) n(b, s)']=n(—b,s)n(b, s)" (4)

To satisfy this relation, we now introduce a IC-matrix
parametrization"" for the impact-parameter matrix

"W. N. Cottingham and:R. F. Peierls, Phys. Rev. 137, B147
(1965).

"A. BiaI'as and L. Van Hove, Nuovo Cimento 38, 1385 (1965).' A. Bialas, Th. W. Ruijgrok, and L. Van Hove, Nuovo
Cimento 37, 608 (1965).' R. Henzi, Nuovo Cimento 52A, 772 (1967);53A, 301 (1968).

'~ L. Van Hove, Rev. Mod. Phys. 36, 655 (1964).' R. Henzi, A. Kotanski, D. Morgan, and L. Van Hove,
CERN Report No. TH. 1086, 1969 (unpublished)."R.C. Arnold, Phys. Rev. 136, B1388 (1964)."K. Dietz and H. Pilkuhn, Nuovo Cimento 37, 1561 (1965);39,
928 (1965).

where q is the relative momentum in the c.m. frame,
given at high energies by q=-,'Qs.

It was shown by Blankenbecler and Goldberger' and
by Cottingham and Perierls" that unitarity is expressed
at high energies in a simple manner in terms of the
Fourier-Bessel coefficients zt&" (bs). To leading order in s,
the unitarity relations for the zt&" (b,s) correspond to the
ones for the partial-wave amplitudes, i.e., one has

(1i2z)Lv'"(b, s) —n"'(b, s)*)=n'"(b, s)v'"(b, s)*
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p1(b,s), and write

pt(b, s) =N(b, s)I 1—iN(b, s)]—'
= $1—iN (b,s)]—'N (b,s). (5)

Here the matrix N(b, s)—the "Born matrix" —contains
the driving terms which we will relate below to single
Regge-pole exchanges. The full unitary amplitudes,

which constitute the ma, trix pt (b,s), will then automatic-
ally contain the iterated Born terms describing multi-
Regge-pole exchanges. In particular, the unitarized
amplitudes will develop a piece which can be identified
with the exchange of the vacuum quantum numbers
and hence can be interpreted as the Pomeranchuk
contribution.

The matrix N(b, s) will be represented as

N(b, s) =

' A("(b,s)
tVi

('& (b,s)
tVI('& (b,s)

&V„(,& ('& (b,s)

tV&(" (b,s) (Vp(P& (b,s) E„(,& ('& (b,s)
(bis) B»(bis) ' ' It»(i& (bis)

B»(b,s) IV p "(b,s) Bp~(,
& (b,s)

tV„, ,
('& (b,s)

(6)

A corresponding labeling of rows and columns is
assumed for the matrix pt(b, s). &V "&(b,s) is the single-
Regge-exchange term for the elastic scattering in the
impact-parameter representation, and 1V,"'(b,s) is the
corresponding quantity for the transition from the
initial state a+b to the quasi-two-body state labeled
(2); containing one or two resonances denoted by
a;" and/or bp*. Finally, the N, (P&(b,s) describe elastic
scattering of these resonances, and the 8,, (b,s) rep-
resent the transitions between the various excited two-
particle channels.

Ke point out that, since the individual Born terms
entering in (6) are real and N (b,s) is symmetric because
of time-reversal invariance, the form (5) for the
mstrix rt(b, s) indeed implies h(b, s) =0, where h(b, s)
is now a I &i(s)+1]XL&i(s)+1] overlap matrix. This
relation holds because in the E-matrix language one has

h (b,s) =L1 i N (b,s)]—'(1/2i) LN—(b,s) N'(b, s)]—
X((1+iN (b,s)7 ' (7)—.

We are aiming at a description of high-energy elastic
scattering and diGraction dissociation and shall con-
struct the individual Born terms by considering only
the dominating exchanges for large s, i.e., Regge
trajectories having intercepts of order u(0) =0.5.
Remember that we do not regard the conventional
Pomeranchuk pole as a possible input here, quite
independently of the fact that it does not satisfy the
required reality condition. As mentioned above, a
vacuum contribution will, under certain conditions,
come out automatically as a result of the unitarization
procedure implied by the form (5) of the impact-
parameter matrix.

To construct the matrix (6) explicitly we take as the
single-scattering contributions to the amplitudes the
terms corresponding to the exchange of an exchaege-
ilegeeerate Regge trajectory R in the t channel, having
trajectory u(t) =u(0)+u't, with intercept u(0) =0.5 and
slope n'=1 GeV ', i.e., we take a trajectory correspond-
ing to p and 3, or pp and fP (fP= I").We therefore write

f"""'-"(,t)=g (,t)=(/o) "'S

N(b, s) =Nri(b, s) =
2' S

with Ip(b, s) given by

xdx ga(s, —x')Jp(bx)

1 —IlI.(b,s), (9)
(s/s )' '

1

exp�(

—b'/4&p)
Ip(b, s) =

271 sp
p =u' ln(s/sp) . (10)

I.et us now carry out the matrix inversion implied
by Eq. (5), first without using the information provided
by Eq. (9). In order to be able to proceed one has to
introduce a simplifying assumption. We are going to
suppose that the coupling between Chgererit excited
two-body channels Lthe 8,,' in Eq. (6)] are small

where 11 is a real-symmetric constant matrix constructed
in analogy to Eq. (6), with matrix elements p('&, p, ('&,

p, "', j=1,2, . . . ,ii(s), and p,y, j,j'=1,2, . . . , r(is) sp is. a
scaling energy taken as usual to be so ——1 GeV'. To be
specific, we consider the elastic channel to be pp, &r+p,

or X+p scattering. The corresponding antiparticle
reactions, where additional charge or hypercharge
annihilation channels are contributing, will be con-
sidered in Sec. III.

Notice that we have assumed a certain ghost. -

eliminating mechanism operating in Eq. (8). The factor
1/siniru(t) contained originally in the signature factor
of the Regge-pole contribution is assumed to be can-
celed by a corresponding factor in the conventional
Regge residue p(t), i.e. , we put p(t) =p siniru(t), with
P taken to be constant. One could call this "maximal
ghost elimination" for an exchange-degenerate trajectory
in contrast to a weaker ghost-eliminating mechanism
operating possibly for non-exchange-degenerate trajec-
tories which we will discuss in Sec. IV.

The Fourier-Bessel transformation of Eq. (8), to-
gether with the above assumption of a linear Regge
trajectory, now yields the Born matrix N(b, s) according
to
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compared to the other elements of the matrix N(b, s),
i.e., (8,, )'«N, "&N,'"&. We shall find below that the
B,y (or, correspondingly, the P,, ) are related in our
description to diffraction-dissociation processes which
are experimentally known to be about a factor of 6 to 8
smaller than the corresponding elastic scattering. "'4
Neglecting, therefore, quadratic terms in the 8,,' and

using the abbreviations A "&(b,s) =1 i—N "&(b,s) and
A, "'(b,s) = 1 —iN, j"(b,s), j= 1,2, . . . ,n(s), one ob-
tains for the elements in the 6rst column of the matrix
7I(b,s), i.e. , for elastic scattering of particles a and b,
described by &I&'&(b,s), and for resonance production
by the same incoming particles, described by &I, "&(b,s),
j=1,2, . . . ,e(s),

n(R& (V &'&)2

&I'»= —+i g
( & lV, &'&N'"'8 '

~ ~' A (»A .(3&A ., (3&

n(. & (&V, &'&)'

1++
(.) cY;(')N,'(')A;,'-

+i g
A(1)A.(3)A., ( )

(10')

n2(') =
-g .(2) gt (1) iP/. (2)

+i -+i
n(.) X(»~V;.(»a'—

j'w j
~(R& (N., (2&)2 R(R& N. , (2& V.„(2&g., „-

1++ +i
j'w j"

(10")

n(s)

c(b,s) = 2 L& '"'(»~)]'

7j. (s)

s n(s)

Po(b, s)]' 2 (P "')' (1»)
sp g=l

DJ(f,~) = z -'& 5 "&(t,~)BJ (f', ~)

We now introduce the further assumption that A('
=A, &", j=1,2, . . . ,e(s), which, loosely speaking, means
that the initial- and final-state interactions in the
process a+f& -+ (2),=a;"+bi* are equal. The next
step now is the evaluation of the sums appearing in
Eqs. (10). Our claim is that although the individual
Born terms are of order 1/gs Lcompare Eq. (9)], the
s depersde&j-t sums of squares or third powers of such
contributions may asymptotically be of considerably
larger size compared to the contributions of the individ-
ual terms in the sums which are of order s ' and s '",
respectively.

We define with the help of Eqs. (9) and (10) n(s) , 2 2a's a' p s/7',

2 LP "']'=2 2 LP-;",s "&P»a*,s "&]'
s=l k=1

, 2 2a's a' p, s/s

=(&"&)' 2 2 (i&)'
i=1 k=1

(12)

First a comment on the limits appearing in the summa-
tion over i and k is in order. A particular intermediate
state (i,k) in Fig. 1 will only contribute appreciably to
forward scattering if it can be produced with small

Writing each sum over j as a double sum over the
individual excited states contained in the two-particle
intermediate state which can be produced by
exchange, one sees that the quantities C(b,s), D, (b,s),
and D(b, s) correspond to the diagrams shown in Figs 1, .
2, and 3, respectively. The blobs in these diagrams
contain all possible excited states (resonances) of
variable mass up to a highest one with mass depending
on s.

Let us first treat the sum appearing in Eq. (11a).
Following Freund, "we write it as

n(s)

D(b, s) = Q D, (b,s).V, "&(b,s)

s n(s)

Ll.(b, )7' 2 ~, ~"~„, (»b)
sp j'=1j'8j

i,k
RR

b*k

a RI
I

I

R Rk~k'b, bk

n (s)
= P iY "'(b,s)~V &"(b,s)8,, (b,s)

0'
I

s 3/ n(s)

Ll.(t,~)]' 2 0 "&0 "&PJ,' (11c)
Sp 212

~jHj'
"E, W. Anderson et al. , Phys. Rev. Letters 16, 855 (1966).
24 I. M. Blair et al. , Phys. Rev. Letters 17, 789 (1966).

bQ
k

b*„

"P.G. O. Freund, Phys. Rev. Letters 22, 565 (1969).

1"'ro. 2. Double-Regge-exchange diagrams contributing to
di8raction-dissociation processes.
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i,k i', k'
i =i', krak

I

R ~RR
b

bk bk

FIG. 3. Triple-Regge-exchange diagrams contributing
to elastic scattering,

momentum transfer t; =0. Now 3;„is given by

;„~ =m. ,*'m p, '/s. (13)

n (s) s s
Q [p i'i]'=C —ln—.
j=1 Sp So

(12')

Here C is a positive constant which we shall show below
to be related to Pomeranchuk exchange. With the
result (12'), one obtains finally for C(b,s)

C(b,c)=C ln(s/sp) [Ip(b,s)]'. (16)

In a completely analogous fashion, making the same
assumptions for the sum p,' p,'"'p, , which were made
for the sum (12), one derives for the quantities D, (b,s)
corresponding to Fig. 2 the result

D, (b,s) =D, ln(s/sp)[Ip(b, s)]', (17)

It is therefore required that the masses of the inter-
mediate particles appearing in Eq. (12) have to obey
the relation

m, 'mg *'&p's, (14)

where p' is some small constant mass. Assuming,
moreover, the a;* and by* to lie on a linear Regge
trajectory of slope a'= 1 GeV ', the masses of the
intermediate excited states are given by

m "=m'=m '+i/n'& i= 1, 2, . . . m&;(s)
(15)

mp„'=miP=mpP+k/n', k=1,2, . . . ,rip(s).

Taking Eq. (14) into account, the highest possible
values of ri, (s) and ipse(s) are obtained as indicated in

Eq. (12).
Let us now justify the last step in Eq. (12).Following

again Freund, " we assumed the coupling strength
between the excited intermediate state labeled (i,k)
and the "elastic state" to be proportional to (ik)"".
Here ~ is some constant determining the relative
coupling strength of the various higher excited states
~a;*, bp*) to the elastic or ground state ~a,b).

One can now investigate different assumptions
concerning the value of & which determines the behavior
for large s of the quantity C(b,s). The most natural
choice seems to assume that all excited intermediate
quasi-two-particle states are coupled equally strongly
to the elastic channel independently of the masses of
the particles produced. This corresponds to a =0 and
leads to the following behavior of the sum (12) for
la,rge energies:

where the constant D, will be related below to diffrac-
tion-dissociation processes, i.e., the production, via
Pomeranchuk exchange, of quasi-two-body states
containing excited baryons and/or mesons. Familiar
examples of such processes are, for instance, iV* and/or
vector-meson production in xX collisions.

For consistency with the derivation of Eqs. (10') and
(10"), one must require that D,(C in analogy to
(P;,')'((P, "'P,'"' for jj '= 1,2, . . . ,n(s). We shall return
to this point below when we discuss the implica, tions of
the assumptions made so far and, in particular, study
the mechanism which will give rise to a vacuum-
exchange contribution in this E-matrix description.

To conclude our discussion of Eqs. (11), we finally
have to determine the large-s behavior of the sum (11c)
corresponding to Fig. 3. With the help of Eq. (17),
Eq. (11c) can be written

so n (s)
D(b, s) = —ln—[Ip(b,s)]' P D,P "i (18)

(s/sp) 'i' sp

Applying here the same argument which led to Eqs.
(16) and (17), i.e., assuming again equal strength of
all terms in the sum

n (8)
D.p. (2)

(19)

with D being a constant and m an arbitrary positive
integer. This leads to

s +i
D(b, s) =D ln— [Ip(b,s)]'.

sp
(20)

We are aware of the fact that the assumptions made
to arrive at Eqs. (19) and (20) are more difficult to
justify theoretically than those which lead to Eqs. (16)
and (17). Moreover, the power m of the factor ln(s/sp)
in Eq. (19) is unknown. We shall explore the con-
sequences of various possible values for m in this

would result in a large-s behavior D(b, s) (s/sp)"'
X [ln(s/sp)] 'F(b), which can be shown to violate
Frossart's bound. At most, positive powers of In(s/sp) are
allowed to appear on the right-hand side of Eq. (18) in
order to yield an elastic forward-scattering amplitude
bounded by (s/sp)[ln(s/sp)]' as s goes to infinity. We
therefore conclude that the contributions of the
higher excited states appearing in the sum p D,p,'@
are more strongly damped as compared to the sum

p(p, '&'i)'. Without offering a deeper justification, we
assume that the sum on the right-hand side of Eq. (18)
behaves for large energies as the largest possible power
in s consistent with the Froissart bound. In particular,
we assume that



K-matrix approach in more detail in Sec. IV, where we
investigate its connection to the real parts of forward
elastic scattering amplitudes at very large s as well as
the existence of a Pomeranchuk limit. For definiteness,
we shall assume in most of the following discussion that
m=2„which will be shown in Sec. IV to imply a
Pomeranchuk theorem in this formalism.

Having obtained the high-energy behavior of the
sums appearing in Kqs. (11a)—(11c), we can now, after
insertion of the results given by Eqs. (16), (17), and
(20) into Eqs. (10') and (10"), make an expansion of
the right-hand side of these equations in powers of
1/(s/so)'". Remembering that the unitarity relations (3)
in the impact-parameter language were only valid to
leading order in s, we neglect in Eqs. (10') and (10")all
terms of order 1/s and smaller. With C(b,s), D, (b,s),
and D(b,s) as given by Kqs. (16), (17), and (20),
respectively, the results for the unitarized elastic
scattering as well as resonance production amplitudes
are now given by

iC(b,s) —D(b, s)
g&"{b„s)=gp"'(b, s)+gp&" (b,s)=-

1+C(b,s)+iD(b, s)

1 —C(b,s) —2iD(b, s)
+iV &"(b,s)-, (21a)

I 1+C(b,s)+iD(b,s)]'

g, & '(b, s) =g, , ~~'~(b, s)+g, , s& ~(b, s)

X,"'(b,s)—+
1+C(b,s)+iD(b, s) 1+C(b,s)+iD(b, s)

iD, (b,s)

3X"'(b,s)D,'(b, s)51 C(b, s)]-
(21b)

L1+C(b,s)+iD(b, s)7'

Considering Eq. (21a), we see that the unitarization
procedure has generated from the driving terms X&'~

and E,"' of order 1/(s/so)"' not only an "absorptive
correction" to E&'& represented by the factor multiply-
ing the Born term in Eq. (21a), but also a contribution

iC(b, s) —D(b,s)
gl &"(b,s) =— (22)

1+C(b,s)+iD(b, s)

which behaves like a constant at large s (apart from
logarithmic factors). After Fourier-Bessel transforma-
tion Lcompare Eq. (1)] the contribution (22) gives rise
to a term proportional to s, which can be interpreted
as representing the Pomeranchuk exchange contribution
since it corresponds to no net quantum-number
exchange. For the imaginary part of q~"'(b, s), which is
determined by the double-E-exchange contributions
represented by C(b,s) and shown in Fig. 1, the latter is
evidently true since the two-step processes can proceed
by twice the exchange of quantum numbers (p, A&, or
&u component of R), or twice the exchange of vacuum
quantum numbers (I" component of R). For the

(supposedly small) real part of pz&'&(b, s) which is
basically determined by a threefold exchange of the
trajectory E and represented in Eq. (22) by D(b,s), the
requirement that no net quantum numbers are trans-
ferred corresponds to a restriction on Ore of the E-
exchanges in Fig. 3, i.e., only the E'-component of R
is allo~ed to be effective.

The contribution originating from Kq. ('.2) has a
number of interesting properties. First of all it represents
a superposition of cuts in the angular-momentum plane,
since —as is clear from Eq. (22)—it can be written for
large s as a power series in LC(b,s)+iD(b,s)] corre-
sponding to an iteration of graphs of the type shown in
Figs. 2 and 3. We point out, however, that the multiple-
sca,ttering series obtained by expanding the denominator
in Eq. (22) can in general only be assumed to converge
for very large s since C(b,s) and D(b,s) are of order
const/ln(s/so). "For low values of s, the Fourier-Bessel
transform of the right-hand side of Kq. (22) must in
general be performed as it stands in order to yield the
Pomeranchuk contribution to f"&{s,t). It is, however,
interesting to determine the "eAective" contribution
provided by Eq. (22) for large s and small t (correspond-
ing to large impact parameters), which is given by

g~ "&(b,s) = iC(b, s) —D(b, s)

s 2

=iC ln —LIO(b, s)]'—D ln—LID(b,s)]'. (23)
So So

Equation (23) leads after Fourier-Bessel transformation
to

2 C s '+' '
fz'"(s,t)-i——

2 4xa; so so

S I+std t

(24)
3 (4x.n'so)' so

This equation shows that for a purely imaginary high-
energy elastic scattering amplitude in the near-forward
direction, i.e., for D/4msgr' small compared to C, the
"effective Pomeranchuk-pole trajectory" at large s and
small t is given in this model by Lnz(t)], ff"—1+2Q
which means that the slope of the effective 8-trajectory
is one-half of the generating exchange-degenerate
trajectory n(t). If the real part of the elastic scattering
amplitude at large s, rejecting the contributions of the
diffraction dissociation channels, is small but non-
negligible, one gets a further contribution having an
effecti e sl pe-,''.

We remark that a slope of the order —,'e' is of the right
magnitude to explain the shrinkage found in elastic pp
collisions up to the highest available energies. '7 This
shrinkage corresponds to a slope of an effective Pomer-

' For D(b, s) this is true only for us=i. For nz 1 see our
discussion in Sec. IV."G. G. Beznogikh et gl. , Phys, Letters 303, 2741 (Ig69).
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anchuk pole given by n~ ——0.40~0.09 GeV '. A similar applies to diHraction dissociation. '@le shall come back
shrinkage seems to be observed in E+p 'scattering to this point in Sec. IV .
corresponding to a somewhat larger effective Pomeran- We finally mention in connection with Eqs. (21a) and
chuk slope. "We are inclined to take the result that our (21b) that the E-matrix formalism described above
Inodel predicts the forward peak in particle-p«ticle leads automatically to a damping of the input Born
elastic scattering to continue to shrink at apprpxima«ly terms. This 'absorptive correction" to the quantum-
the correct rate as energy increases as a support fpr the number-changing contributions contained in the second
described picture for the Pomeranchuk contribution. term, called qq "&(b,s) in Eq. (21a), and in the second

In contrast to the Glauber-eikonal type of description. and third terms, called q, '"'(b,s) in Eq. (21b), is given
of elastic scattering proceeding via multiple exchange of in terms of the quantities which determine the high-
a supposedly existing single Pomeranchuk pole of energy elastic scattering. Vfe shall see in Sec. V, jn
natural parity, it turns out that in our description the treating the crossover phenomenon, how this absorptive
Pomeranchuk term —even in lowest-order rescattering correction to single Regge exchanges can in principle be—does rot have a definite natural or unnatural parity. used to determine properties of the elastic scattering.
The reason is that already the lowest-order term given In summing up, let us list the assumptions made in
by Eq. (24) and corresponding to the graphs shown in the course of the derivation of Eqs. (21).
Figs. 1 and 3 represents a Regge cut (double or triple
g-exchange), which cannot be associated with a def'nite (') The inelastic states contributing in the unitarity

parity being exchanged in the t channel This is true relations can be represented by a set of quasi-two-

despite the fact that the leading quantum-number-
changing trajectories going into g i e jo(P') g, ~ (ii) The couPling strength for the transition between

pr p, are all of natural parity.
' ' '

different excited two-particle channels i m the Bore
Similar ar uments a l to the Pomeranchuk matrix ls smaller than the corresponding coupling tp

contribution to resonance production which is rep- h nnel 'e' j ' ™&'

resented by the f ist term on the right hand side of Fq n(s), such that terms quadratic in the p, ,' are negligible.

(21b) corresponding basically to the diagrams shown in ('") The couPling strength for Producing a certain

Fig. 2. The fuH diffraction dissociation amplitude can, resonance from the elastic channel is indePendent of

analogously to the elastic case, be depictured as con- h mas the Produced resonance, and the density

sisting of a sum of terms corresponding to a chain of of the excited states is that Provided by a linearly

graphs of the type shown in Figs. 1 and 3 together with ' 'ng Regge t a&

a final link of the type shown. in Fig. 2. As for elastic (») The diagonal elements in the Born matrix are
scattering, this multiple-scattering series corresponds to all 'Pproximately equal, i e., p&'&= /, &'&, j= 1,2, . . . ,n(s).
the expansion of the denominator in the expression for

As mentioned at the beginning of this section, (ij is
our main. assumption. The assumptions (ii)—(iv) could

From experiments on E*Production in pp co hsions, in principle be altered and the consequences for the
one concludes that the constant D, aPpearing in the vacuum contribution be worked out in essentially the
amplitude g, p&2&(b, s) for diffraction dissociation is
smaller than the constant C (describing predorninatly In concluding this section we would like to stressthe elastic scattering) by a factor of e to 8 at incident

that we do not pretend to have shown that indeedlaboratory momentum between 6 and 30 GeV/c "2i
Pomeranchuk exchange in particle-particle collisions

giving thus a Posterior~ a justification for having
is necessarily being generated by multiple-Regge-poleneglected quadratic terms in the, ,' in deriving Eqs.
exchanges combined with the excitation of resonances
in the intermediate state. In deriving Eqs. (21a) and

10 above.
It is obvious from the above discussion that the

Pomeranchuk contribution to elastic scattering as well h; h r
as to diffraction dissociation Processes does not factor b 1. t have demonstrated that the described
ize. Furthermore, the phase of the vacuum contribution inter retation of the Pomeranchuk cont ib t
to elastic scattering is given by the relative strengths of
the diagrams shown in Figs. 1 and 3. A slmi ar statement deri e in the followin sections some c f

this picture for the Pomeranchuk contribution. In
"T.Lasinsky, R. Levi-Setti, and E. Predazzi, Phys. Rev. 179, particular, we shall study the total cross sections and

j42~ (&96~). the crossover of elastic differential cross sections in' In the approach of Ref. 1 only the single-P-exchange contribu-
ion, which is dominant at low values of f, has despite (natura}) is mo e. e ore we can o is, owever, we ave to

parity. All higher-order rescattering cut contributions —and investigate whether or not the presented approach tp
consequently the full vacuum-exchange contribution to elastic particle partjclecplljsjpnscana]so beappljedtppartjcle
scattering —represent a mixture of natural and unnatural parity
components. It seems difficult to obtain a pomeranchuk term of antipaI'ticlc collisions and what the implications are
purely natural parity in any of these multiple-scattering models. in this case.
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III. PARTICLE-ANTIPARTICLE SCATTERING AND
CONTRIBUTION OF ANNIHILATION

CHANNELS

Up to now we have treated elastic processes like pp,
n.+p, or X+p scattering and the associated diffraction-
dissociation processes. Ke have pointed out that the
Pomeranchuk contribution to such processes can in an
average sense be generated from an exchange-degenerate
Regge trajectory, considering at the same time all the
possible quasi-two-particle inelastic intermediate states
which can be produced at a certain energy. Now the
question immediately poses itself: (an pp, m. p, or
K p collisions be understood in a similar way? How
do the charge or hypercharge annihilation channels,
which can in addition contribute here, inQuence the

description)
We shall introduce in this E-matrix model an

identical coupling of the exchange-degenerate Regge
trajectory R in PP and in PP collisions. This assumption
has to be made in our approach in order to guarantee
the Born terms representing the exchange of the
trajectory R to be real in pp as well as in pp collisions
(and correspondingly in the other pairs ~+p and X+p).
We thus take the view that the additional annihilation
channels, which can contribute to pp collisions compared
to pp collisions, are in fact negligible at high energies
At low energies these annilhilation channels, of course,
affect the amplitude for pp scattering, forcing it to be
different from the amplitude for pp scattering. We shall
attribute, for instance, the fact that o«&»(s) is larger
than o«ti'"(s) at present energies in the familiar way to
a different coupling of the lower lying traje-ctories in pp
and in pp collisions. More specifically, we will atrribute
it to the fact that the ~- and p-exchange contribution is
odd under charge conjugation and hence enters with
a different sign in the pp amplitude compared to the

pp amplitude. Having generated the vacuum contribu-
tion in an average sense from the lower-lying trajec-
tories, we therefore set up a model by considering
afterwards for the Regge exchange described by i' "&(b,s)
in Eq. (21a) the correct individual Regge-pole contribu-
tions, allowing, furthermore, for a breaking of exchange
degeneracy.

The above remark —that we will consider the effect
of the annihilation channels as negligible at high
energies —now implies that we have in Eqs. (16), (20),
and (21)

(25)

and correspondingly for the other pairs ~+p and E+p.
The content of Eq. (25) is equivalent to the statement
that the exchange-degenerate trajectory E, which is
supposed to give rise to a real Born term for pp as well

as for pp scattering, is ence under charge conjuga-
tion.

We remark that it would be aesthetically more
attractive to generate the Pomeranchuk contribution in

PP and PP collisions from the exchange of an object
having mixed properties under the C operation. This,
however, destroys the reality requirements and there-
fore, by Eq. (7), our basic assumption that a set of
two-particle channels are able to represent the true
inelastic channels open at a certain (large) value of s.
If we were to give up this idea, we have essentially
returned to the overlap-function approach or a combina-
tion thereof with our present parametrization. Our aim,
however, was to explore the other extreme and assume
that a quasi-two-particle description of the inter-
mediate states in the unitarity relations is in fact
possible. Having now stated all the assumptions
involved in our approach, we proceed to work out the
consequences.

IV. REAL PART OF ELASTIC FORWARD-
SCATTERING AMPLITUDES AND

TOTAL CROSS SECTIONS

From Eq. (21a), or more directly from Eq. (24), it
follows that for m=1 the ratio of the real to imaginary
part of the elastic forward-scattering amplitude at
high energies is given by"

Ref &"(s, t =0) ——', (D/4~n'so)
=&(s)=-

Imf&'&(s, j=0) C
(26)

We have neglected in Eq. (26) the contribution of the
lower-lying trajectories which are of order (s/so) '"
compared to the leading term. While in the conventional
Regge-pole theory g(s) is predicted to approach zero, in
this model $(s) is predicted to go to a constant, provided,
of course, that the value of m is taken to be 1. The
magnitude of this constant depends on the contribution
of the diffraction-dissociation channels on the elastic
transition (compare Fig. 3) and its sign on the sign of D.
In Sec. V we shall give some evidence which indicates
that D is likely to be positive.

From forward dispersion relations one knows that the
fact that $(s) is bounded by a constant implies the
Pomeranchuk theorem which states that particle-
particle and particle-antiparticle total cross sections
approach the same constant limiting value at asymptotic
energies. " Assuming quantities of order (D/4nn'so)'
to be small compared to those involving C in conformity
with our assumption (ii) in Sec. II, one obtains for the
Pomeranchuk contribution to the total cross section

"Remember that this is consistent with the conventional
description in which the assumed Pomeranchuk-pole trajectory
is coupled with identical residues in particle-particle and particle-
antiparticle interactions.

"For short, we again drop the labels on C and D and reinsert
them whenever necessary.

'2I. Ya. Pomeranchuk, Zh. Eksperim. i Teor. Fiz. 34, 725
{1958)(Soviet Phys. JKTP 34, 499 {1958)j.
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from Eqs. (2) and (21a)

o(,.(~(s) = I&nfl ("(s, t =0)
(7+s

4~ps g(s)o
—(p &pp)

blb-
l +Q(s)e—(PPIPr&

4ir+s s
o(' ln—inL1+Q(s)], (27)

in Eq. (21a) we take in our model as described in Sec.
III the terms corresponding to the true non-exchange-
degenerate Regge-pole contributions" with their known
transformation properties under charge conjugation.
Neglecting again terms quadratic in D, one obtains for
the total cross sections for pp and pp collisions

4n.gs
o.(.((s) =o,.(~(s)+ ——

with
so

XIm bdb L"(rr '"(b,s)&,Y "'(b,s)]

with

&tot...'(s)- ...( )(&—,(2s)
16 pm' ln(s/s p)

oi.((~) =C/2rrn'sp' (29)

An asymptotic behavior of the kind (28) is typical
for cut models for the Pomeranchuk contribution. It can.
also be obtained in the Glauber-eikonal type of approach
by iterating an ordinary Pomeranchuk pole of slope of
order 1 GeV ' as was shown in Ref. 1.

We Anally write the Pomeranchuk contribution to the
total cross section compactly as

0 tot

4irn'Qs s — (o~)
ln—ln 1+

s p — 8we 1il(s/s p)

(30)

Apart from the slope o.
' of the generating trajectory,

which is assumed to be 1 GeV ', there enters only one
parameter into Eq. (30), namely, o &,& (p() ) for the
process in question. Notice, however, that one has still
some freedom in adjustin~ sp which is conventionally
taken to be 1 GeV'. In the numerical analysis to be
discussed below we shall adhere to this value for sp.

In the conventional Regge-pole description the total
cross sections a,t nonasyrnptotic energies, for instance for

pp and pp collisions, are given by a cortstartt piece,
identical for pp and pp, originating from an assumed
Pomeranchuk pole, plus various contributions of order
(s/sp) '" coming from the lower-lying trajectories which
differ for pp and pp according to the C parity exchanged,
i.e., I"~co in the chosen example. In the present model
the total cross section is, at finite energies, given by a
logarithrnically rising Pomeranchuk contribution given
by Eq. (30), plus Regge-pole contributions decreasing
like (s/sp) '(P originating from the Fourier-8essel
transform of the term rt&p('&(b, s) in Eq. (21a). This term
describes the true Regge-pole contribution including
the absorptive correction. Remember that for E('&(b,s)

(s) =
(4m.spn') ' ln(s/s, )

At very high energies one can expand the logarithm in
Eq. (27), set g=-,'Qs, and show that the total cross
section approaches its asymptotic limit in this model
in a logarithmic way from below, i.e.,

1 C(b—,s) D(b, s)

-L1+C(»s)]' L1+C(b,s)]'-
(31)

To be able to compute the Fourier-Bessel transforms of
these expressions and obtain 1)r», ("(b,s), a certain
ghost-eliminating mechanism has to be operative. In
Sec. II we assumed for the exchange-degenerate trajec-
tory R that its residue contained a factor sinrrn(t),
which was called there the maximal ghost-eliminating
mechanism. However, for a non-exchange-degenerate
trajectory such a factor induces additional zeros in
the amplitude in addition to those which are required

"This corresponds to the conventional description of, for
example, the pp and pp total cross sections where exchange
degeneracy has to be violated in order to account for the observed
variation in s of o-t,p&(s) at present energies. Exact exchange
degeneracy would in the conventional model predict a constant
pp total cross section.

'4 V. Barger, M. Olsson, and D. D. Reeder, Nucl, Phys. BS, 411
(1968).

Here lY'P ('&(b&s) and E„o (b,s) are the Fourier-Bessel
transforms divided by s Lcompare Eq. (9)] of the
conventional I"- and cv-Regge-pole contributions which
are given by Eq. (32) below. C(b,s) and D(b, s) were
defined in Eqs. (16) and (20) Lcompare also Eq. (29)].
The positive sign under the integral in Eq. (31) corre-
sponds to pp scattering and the negative sign corre-
sponds to pp scattering, where we have assumed the
sign convention of Barger et al. '4 for the Regge-pole
contributions, i.e.,

1+o—(en~ (t) S Apr(t)

p pp (t)—
2 sin~n» (t) sp

~z'(&)

= ——,
' [cot—,'7'» (t) —i])8p

sp

(32)

] e—i 7ra (t) npo (t)

&3.(t)—
2 sinprn„(t) s(

S (&((o (t)
= ——,'-[tan-', ~n„(t)+i]P„(t)—

sg
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for the ghost elimination. In the non-exchange-degen-
erate case it is sufficient to assume that the residues in
Eq. (32) contain for the positive-signature E' pole a
factor sin-', em~ (t), and correspondingly for the negative-
signature (p pole a factor cos-', ~(r„(t). This situation
could be called minimal ghost elimination. We shall not
discuss here further ghost-eliminating mechanisms and
their influence on the total cross sections in this model.
We only remark that a definite mechanism has to be
adopted for all the poles appearing for arbitrary
negative t in Eq. (32) before the Fourier-Bessel trans-
form can be computed and Eq. (31) be applied. A more
detailed comparison with the experimental data on
total cross sections using the theoretical ideas outlined
above will be presented in a later publication. In this
paper we want to study first the various theoretical
possibilities contained in the described E-matrix
formalism.

Up to now, we assumed m=1 and considered the
coefficient D measuring the diffraction-dissociation
contribution to elastic scattering to be small compared
to C such that quadratic terms in D could be neglected.
I et us now assume m=2 in Eq. (19) and discuss the
implications in this case.

Although the constant D is still considered to be small,
the additional factor ln(s/sp) appearing now in D(b, s)
will eventually force the D contribution to dominate
such that the Pomeranchuk contribution to )to) (b,s) is,
at very high energies, given by

~p(1)(b s)
D(b, s)

1+tD(b,s)

s 3

D(b)= D( 1o—I,(b, s, )
sp

(33)

s s
(T(„(p(s) (m —2)y ln—ln ln— for m) 3, (35)

sp sp

where y is a constant. It thus results from Eq. (35)
that an arbitrary power of ln(s/sp) in Eq. (19) is still
in agreement with the Froissart limit for total cross
sections.

Having investigated the consequences of the possible
values of m in Kq. (19), we do not pursue the possibility

It is easy to show that the real as well as the imaginary
part of the elastic forward-scattering amplitude now
behaves for large s like (s/sp)ln(s/sp) and that the
total cross section is given by

D2
(r(,.(, (s) = (8/3)~n' ln—ln 1+, m=2. (34)

sp (4am'sp)'

Considering finally arbitrary positive values of m
bigger than 2 in Eq. (19) changes the diverging asymp-
totic behavior (34) by an additional factor inLln(s/sp)].
In detail, one obtains the large-s behavior

of logarithmically diverging total cross sections any
further here. Instead, we ask the more interesting
question: Does the proposed E-matrix model provide
an example for the behavior

Ref&" (s, t=0) (s/sp) ln(s/sp),
Imf(')(s, t=0)~s/ sp?

According to the usual arguments involved in the
proof of the Pomeranchuk theorem, Eqs. (36) imply
that although total cross sections become constant
asymptotically, they in fact approach diferent constant
values for particle-particle and particle-antiparticle
scattering, i.e., the Pomeranchuk theorem is violated.
It would be illuminating to have a relativistic model for
elastic scattering satisfying Eqs. (36) explicitly without
having to derive this property from a forward dispersion
relation under the above-stated assumption regarding
the particle-particle and particle-antiparticle cross
sections at infinity. In particular, after the total
cross-section measurements from Serpukhov have
appeared, it would be interesting to investigate rel-
ativistic theories in which Eqs. (36) are true. Unfor-
tunately the model proposed in this paper is not of this
category. It is impossible to obtain the behavior (36)
starting from an expression for )7~o)(b,s) having the
structure of the right-hand side of Kq. (22). At
most, one can obtain from Eq. (22) the behavior
Ref(" (s, t =0) (s/s())Lln(s/sp)]'(' Imf(') (s, t =0)~s/ sp

for C(b,s) as given by Eq. (16) and D(b, s) as given by
Eq. (20) with m=-', .

V. CROSSOVER PHENOMENON

Since the results on total cross sections from Serpuk-
hov have appeared, a number of theoretical models
have been investigated" "' which predict a logarith-
mic approach to asymptotic conditions similar to the
behavior obtained in Eq. (28) above. Moreover, the
question has been raised whether the Pomeranchuk
theorem in fact holds or whether total cross sections
approach different values for particle-particle and
particle-antiparticle collisions, or even grow logarith-
mically. Even if the latter two possibilities were
rendered unlikely by new experimental data as, for
instance, precise determinations of the phases of
elastic forward-scattering amplitudes at high energies,
one would still have to conclud" -assuming now a
Pomeranchuk theorem to hold —that asymptotic condi-
tions are approached only at extremely high energies.
In such a situation it would be interesting to see
whether there are further measurable quantities related
to the limiting values (T(,,~(p() ) for various processes. In
the E-matrix model presented in this paper this is true
in principle for the crossover point We briefly recall
"N. %. Dean, Phys. Rev. D 1, 2703 (1970).
"V. Barger and R. J. N. Phillips, Phys. Rev. Letters 24, 291

(1970)."J.M. Kaplan and L. Schi8, Nuovo Cimento Letters 3, 19
(1970).
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that the crossover (c.o.) point is the momentum-transfer
value t=f, ., of order —0.2 to —0.3 GeV ' where the
differential cross sections for pp and pp, or+p and or p,
and E+p and E p intersect, respectively.

For a long time this crossover phenomenon presented
a difficulty in the framework of the Regge-pole theory
and could only be accounted for by the insertion of
ad hoc zeros into the residue functions of certain lower-
lying trajectories. This prescription, however, was in
disagreement with factorization. On the other hand, the
crossover phenomenon can be understood in models
which include absorptive corrections to Regge ex-
changes, avoiding at the same time the contradiction
with the factorization principle for Regge poles. ' "

We have seen in Sec. III that the E-matrix model
produces, besides a vacuum-exchange contribution, an
absorptive correction to the Regge-pole exchanges.
Moreover, the damping factor which results from the
unitarization procedure leading to Eqs. (21) s,bove is
expressible in terms of the same quantities which
govern the elastic scattering. We therefore ask the
question: What kind of constraints result in this model
from the crossover conditions In particular, can one
obtain some connection between the constants C and D
or—what amounts to the same thing —between Oi,o(ot&)

and D/4onr's oCappearing in Eqs. (21), (26), and (30)7

We first derive the crossover condition in this model.
Then we turn to its numerical evaluation under a
certain assumption regarding the ghost-eliminating
mechanism. To be specific, we consider the case of
elastic pp and pP collisions.

The vanishing of the cross-section difference (do/Ch)»—(do/dt)» at the crossover point is usually attributed
to the vanishing of the interference term between the
(absorptive-corrected) oo contribution and the Pomeran-
chuk contribution. The co term is supposed to be the
only exchange with C number —1 present in pp and

pP interactions. A possible p contribution is usually
neglected. The crossover condition, therefore, reads in
our language

do. der 1
0=

dt „„dt „- =, . 47''s

XLfp*(~,l .)f-(~,r., )+fp(~, ~. .)f-*(~,!., )], (37)

where fp(s, t) and f„(s,t) are given by

iC(b, s) D(b,s)—
fp(s, t) =2ors bdb — Jo(bg —i) (38)

o 1+C(b,s)+iD(b, s)
and

f„(s,t) =2m-s bdb;&'„'"(b, s)

1 —C(b, s) —2iD(b, s)
X — Jo(bg —&), (39)

$1+C(b,s)+iD(b, s)]'
"For a more detailed discussion see Ref. 39.
"W. Drechsler, Fortschr. Physik (to be published).

with C(b,s) and D(b, s) as defined in Eqs. (16) and (20)
(the latter with m=1). Considering again only linear
terms in D, one derives from Eqs. (37)—(39) the follow-

ing general crossover condition for ore participating
Regge trajectory —here the co trajectory:

bdb Imgp'"(b, s)Jo(bg t, ,,—)

bdb PReX„'i& (b,s)A (b,s) —Im.h „&i&(b,s)8(b,s)]

XJo(bg —t. .) bdb Re» p" (&b,s)Jo(bg —t., )

bdb Re Y„~i&(b,s)B(b,s)Jo(bg —t. ,), (40)

where

R(s) exp( —3b'-, 4p)
A(b, s) =4- (41a)

L1+Q(s) exp( —b'/2P)]'

1 —Q(s) exp( —b'/2&o)
a(b, s) = — — —,(41b)

LI+ Q(~) exp(-b-'/2;)]'

Q(s) exp( —b'!2p)
Im»p &'&(b,s)=-

1+Q(s) exp( —b'/2p)

E(s) exp( —3b'!'4p)

(41c)

Re»p&i&(b, s) = —— —.(41d)
31+Q(&) e- p( —b'/2P)]'

We have used here a,s abbreviations the qua, ntities
Q(s) defined in Eq. (27) Lcompare also Eq. (29)], and
R(s) defined by

R(s) =
(4oon'so) ' ln (s/so)

Furthermore, one ha, s

R(s) D/4ora'so
— =D'.

Q(~)
(43)

If D were exactly zero and the ghost-eliminating
mechanism for the co trajectory known such that
lV„o&(b,s) could be regarded as uniquely given, then
Eq. (40) would allow a determination of a„i(oo) from
the experimental mea, surement of the crossover point.
In practice, however, there are a number of difhculties.
First, the crossover points are not known accurately
enough. For the pair pp, pP the crossover point is, from
the data of Foley et al.~ at p&gb —11.8 GeV/c, found to
be at t= —0.20 GeV'. The differential cross section
curves for or+p and or p at p&,b =12.4 GeV/c" intersect

"K. J. Foley et al. , Phys. Rev. Letters 15, 45 (1965).
4' D. Harting et al. , Nuovo Cimento 38, 60 (196').
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in a broad region around t= —0.37 GeU '. There seems
to be no reasonably accurate determination of the
crossover in high-energy E+p scattering. Secondly, the
assumption of only one contributing Regge trajectory
in Eq. (40) might be misleading, in particular since we
are studying a situation where the leading Regge-pole
contribution Lthe second integral in each term in Eq.
(40)j is very small near the crossover point. It is,
therefore, not necessarily safe to neglect other contribu-
tions, for example the p pole. 4' A further uncertainty is
introduced by the particular ghost-eliminating mechan-
ism obeyed by the trajectory (compare the discussion
at the end of Sec. IV). Despite these difFiculties, we
have numerically investigated Eq. (40) on a computer,
primarily to get at least some approximate numerical
information about the values for4' D'=D/4mC which
are involved. Remember that our derivations above
and in the preceding sections were based on the assump-
tion that D' is small. Quadratic terms in D' were
neglected throughout. It would therefore be interesting
to see what values of D' are needed in this formalism
to account for the crossover phenomenon.

Ke do not consider the numerical results given
below to be more than a qualitative estimate. Assuming
the minimal ghost-eliminating mechanism introduced in
Sec. IV and taking n„(0)=2,44 we derive from Eq. (40)
for pi.,=11.8 GeV/c and for various assumed values for

the possible values of oi,i(~) and D' for pp and

pp collisions shown in Fig. 4.
We first note that the result is rather sensitive to the

actual value of t, , . The upper three curves in Fig. 4
correspond to the value t, , = —0.20 GeV', having an
estimated statistical error At,,

=~0.02 GeV'. For
increasing positive values of D', the corresponding
values for o&,'(~) are found to fall. The opposite is true
for negative O'. Positive values for D' seem, therefore, to
be favored. However, this statement has to be checked
by a more detailed analysis of the pp and pp differential
cross-section data in the framework of the K-matrix
model.

The value for a&,p&(~), obtained from the data of
Ref. 31, is definitely too large. If at about pi,b= 100
GeV/c the contribution of the lower-lying trajectories
to the total pp and pp cross sections are supposed to be
small and neglected, and if a total cross section of
35.7 mb —corresponding according to Barger et al." to
the Pomeranchuk limit in a pure Regge-pole model —is

4' This is true only if a, (t) is different from a„(t). If the ~ and
the p trajectory are taken to be equal and, furthermore, obey the
same ghost-eliminating mechanism, the crossover condition is
again given by Eq. (40}.

4' We take, as before, e'=1 CxeV ' and s0 ——1 GeV'.
4'We varied o.„(0) by about 20/~ around the value 0.50 and

found that this had little effect on the analysis compared to the
other uncertainties involved, i.e., the experimental error of the
crossover determination. To give, however, an impression, we
remark that lowering the co intercept to 0.40 would lower, for
instance, the curve corresponding to t = —0.37 GeV' in Fig. 4 by
about 4 mb. I;urthermore, the slope u„' has been taken to be
1 GeV '. The residue P„drops out of Eq. (40).
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FIG. 4, Dependence of 0-t ~(00 }on D' for various assumed values of
the crossover point in pp and pp scattering at pleb=11.8 GeV jc.

identified with the Pomeranchuk contribution given by
Eq. (30), one expects a value of 51mb for oi,p'(m).
LThis value is considered to be an upper limit on
o&,i»(~).] In the present model, and with the addi-
tional assumptions made in numerically evaluating
Eq. (40), a crossover value of about t,; = —0.37 GeV'
at pi„b=11.8 GeV/c incident protons or antiprotons is
needed to obtain such a value (compare Fig. 4). A more
definite statement about the crossover predicted in our
model can evidently only be obtained from a detailed
fit to the experimental data on pp and pp diBerential
cross sections. Ke note in passing that in the Glauber

type of analysis of pp and pp scattering carried out by
Chiu and Finkelstein'4' the crossover obtained from a
fit to the experimental differential cross-section data at
this energy is found to be at t = —0.37 GeV2. It would be
interesting to have new and accurate experimental
information on the crossover points. We finally remark
that the E-matrix model predicts the crossover to be
shifted to smaller values of ItI when the collision

energy increases.

VI. DISCUSSION

Neglecting complications due to spin and isospin, we

started from the assumption that the inelastic states in
the unitarity relations can electively be represented by
a set of quasi-two particle states. A E-matrix formalism
for high-energy scattering was proposed, using as a
framework the impact-parameter representation of
scattering amplitudes. It was shown with the help of
this unitarization procedure that the Pomeranchuk
contribution to high-energy elastic scattering and dif-
fraction-dissociation processes can be interpreted as

being due to multiple-Regge-pole exchanges accom-
panied by the formation of a sequence of excited
intermediate states of the colliding particles. In terms
of j-plane properties, this interpretation of the vacuum-

exchange contribution corresponds to a superposition
of cuts in the angular-momentum plane.

4' C. B. Chiu, Rev. Mod. Phys. 41, 640 (1969).
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The consequences of the proposed model for Pomeran-
chuk exchange were investigated in some detail. The
model predicts that elastic differential cross sections
shrink with increasing energy at a rate corresponding
approximately to an eGective Pomeranchuk pole having
a slope n~'=0. 5 GeV 2 in agreement with the recent
Serpukhov measurements. If a Pomeranchuk theorem
holds, the asymptotic limit of total cross sections are
predicted to be approached in a logarithmic fashion
from below. Finally, the crossover phenomenon was
investigated, which is in this model due to the vanishing
of a Regge-pole contribution corrected for absorption
and being odd under charge conjugation. The absorp-
tive corrections to conventional Regge-pole expressions
predicted by the model are given in terms of quantities

characterizing the elastic scattering in the asymptotic

region. It was pointed out that the analysis of the

crossover condition provides information about total
cross sections at asymptotic energies. %e conclude by
noting that the proposed E-matrix model is not limited

to small values of momentum transfers. However, for

large values of t it probably becomes essential to take

the spin of the external particles into account.
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The dual representation of K —+ 3m. decay amplitudes is studied. It is found. that E ~ 3x decay amph-

tudes in a generalized Veneziano model are incompatible with current-algebra relations. For example, pion

poles and kaon poles are not dual to other poles. An example of realistic K —+ 3~ decay amplitudes which

contain pion and kaon poles, which contain both
~
nI

~

=sr and 2 parts, and which are compatible with current. —

algebra relations is obtained. Our results seem to suggest that we should prefer the charged-current&
charged-current nonleptonic weak Hamiltonian to Hamiltonians with pure

~

AI
~
=s.

I. INTRODUCTION

&~UAL representation of reaction amplitudes (Ven-
eziano model' and generalized Veneziano modeP ')

has been discovered. Amplitudes in this representation
have resonance poles at low energy, have Regge be-
havior at high energy, satisfy the crossing relations,
and give relations among Regge trajectories such as the
exchange degeneracy. In this representation, poles in
various channels of a reaction are related so closely
that, for example, a sum of all s-channel poles of the
amplitude is equal. to a sum of poles in other channels.
This property of the amplitudes is the so-called (full)
duality. However, the above definition of duality is
not practical for our purpose. Since the generalized
Veneziano amplitude for E-point function is the only

~ Supported in part by the National Science Foundation under
Grant No. NSF GU-2061.

t Permanent address: Department of Physics, Tokyo Uru-
versity of Education, Tokyo, Japan.' G. Veneziano, Nuovo Cimento 5'7A, 190 (1968).

' K. Bardakci and H. Ruegg, Phys. Letters 283, 342 (1968).
M. A. Vlrasorov Phys. Rev. Letters 22~ 37 (1969).' M. H. Chan, Phys. Letters 283, 425 (1968);M. H. Chan and

S. T. Tsou, ibid. 283, 485 (1969).
' Z. Koba and H. D. Nielsen, Nucl. Phys. 810, 633 (1969).
' C. J. Goebel and B.Sakita, Phys. Rev. Letters 22, 257 (1969).
~ Z. Koba and H. D. Nielsen, Nucl. Phys. 812, 517 (1969).

amplitude with full duality, we dehne the full duality

of an amplitude as follows: An amplitude of an E-prong
reaction is completely dual (has full duality) if and only

if it is expressed as a sum of a finite number of general-

ized Veneziano amplitudes for Ã-point function.
A purpose of this article is to study whether a weak

amplitude has full duality. Dual representations for

Eg4 decay amplitudes have been studied by the present
author, ' and it has been found that the kaon pole is not
dual to any other poles if we impose conditions re-

quired by current algebra at soft-pion limits. However,
it has been found that all poles except for the kaon pole
can be dual. if the relation among trajectories,

nrc (t) —rra(t) =1—n, (3E ')
for nrc(/) = positive integers, (1.1)

is satished. ' In this article we consider whether it is

' Y. Hara, Phys. Rev. D 1, 874 (1970).
' By applying the method used in Ref. 8 to the m+~ —+ ~+/+ v

processes, we And a relation

e, (t) —n (t) =1—o,~(M ') for n (t) =positive integers. (A)

If we assume that all trajectories are linear and parallel, we find

the relations o.p(M ') =g and Mp~ —M '=M~+' —MIP from the
relations (1.1) and (A). No other relations among Regge trajec-
-tories are obtained by studying similar leptonic processes such as
q+x+ —+ g+l+ v.


