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The solutions (821) lead to the following relations
between (7',s) and (r,s):
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We have already discussed the numerical results that
follow from Eq. (822) in Sec. IV in the text.

Finally, we give the transformation properties of the
SU(3))&SU(3) generators under Eq. (821). For 8',
this was already done in Sec. III. It is easy to verify
that the second transformation in Eq. (821) corre-
sponds to exp(67rF7), which is the finite rotation in
SU(3) space that carries the isospin into the V spin.
This shows very clearly how the relative weights of U3
and U8 in Eq. (81) get changed. Note that, in this case,
the Cabibbo - angle undergoes the transformation:

8~ 2277+8. We emphasize that an "intrinsic" tadpole
model at the SU(3) level, if it contains a "small"
isospin-breaking term, is rendered ambiguous by this
transformation. Physically, this says that if F1,2, 4 5 are
not conserved, then the statement that F4,5 are "less"
conserved than J 1,2 does not have an invariant meaning.
Lastly, under X, the generators transform according to

X
(F8,8,4, 5j F8,8, 4, 5 ) ~ (F6,8, 4, 5j F8;8,4, 5 ) y

X
(F1,2,6,7 j F1,2,6, 7 ) ~ ( F2

1
F1 y F7 g F6

F2, Fi, F—7, —F6) . (823)

This means that if F1 and Ii~ are not conserved, then
we may yet construct a third SU(3) group with the
generators ( F2', Fi'—, F8, F4, F5& F7', F6', F8)—. In the
framework in which only the U(1)X U(1) symmetry is
preserved, this SU(3) is not distinguishable from the
"ordinary" SU(3).
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A method for considering the spontaneous breakdown of chiral symmetry without recourse to a particular
Lagrangian model is presented. The physical or asymptotic fields are assigned to linear representations of
chiral SUSXSU3 together with appropriate c-number addition to the scalar 6elds. This c-number addition
manifests the spontaneous breakdown of the symmetry. Expansion of the interpolating 6elds in terms of
asymptotic 6elds is introduced, which, together with the spontaneously broken chiral symmetry and the
arbitrariness in the choice of interpolating 6eMs, produces sum rules relating leptonic, semileptonic, and
strong-coupling constants of 0+ and 1 mesons. Results similar to those of current algebra are obtained with
some notable differences. Among the most important is the appearance of the soft-meson amplitude as a con-
sequence of our mechanism of spontaneous breakdown. We are thereby led, in an exceedingly simple way,
to generalized soft-meson sum rules. In particular, new results are given for the semileptonic decays of the
K meson, and generalized relations among strong-coupling constants and leptonic decays of 1+ mesons are
del lved.

I. INTRODUCTION
' 'T is widely recognized that any local operator having
. . the same quantum numbers as an asymptotic 6eld
can be chosen as an interpolating, Heisenberg 6eld for
that asymptotic 6eld. ' Although the transition matrix
may take different forms off the mass shell (depending
upon the choice of the interpolating field), it is unique

*Permanent address: Department of Physics, Kyoto Uni-
vers1ty, Japan.' K. Nishijima, Phys. Rev. 133, B204 (1964), and references
therein; see also K. Nishijima, High Energy Physics and Ele-
mentary I'articles (International Atomic Energy Agency, Vienna,
1965), p. 137.

on the mass shell. Thus, for example, any isovector,
pseudoscalar, local operator can be used as an inter-
polating 6eld for the pion. Speci6cally, one may choose
the divergence of the axial-vector current as its inter-
polating 6eld. This so-called partially conserved axial-
vcctoi clllTcIlt (PCAC) condition llas bccll cxtcIisivcly
employed in the current-algebra approach' to chiral

~ M. Gell-Mann and M. Levy, Nuovo Cimento 16, 705 (1.960);
Y. Nambu, Phys. Rev. Letters 4, 380 (1960).' S. L. Adler and R. F. Dashen, Current Algebras and Applica-
tions to I'article E'hysics (Benjamin, New York, 1968); B. Renner,
Cgrrent Algebras and Their Applications (Pergamon, Oxford,
England, 1968).
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symmetry. The current-algebra approach has presented
an efficient way of deriving sum rules for the soft-pion
amplitudes by making use only of the asymptotic con-
dition (the PCAC assumption) and algebraic properties
of currents.

It was nevertheless tempting to construct a Lagran-
gian which satisfies the PCAC condition and manifests
chiral symmetry. This approach is used in chiral dy-
namics. As a simple example, consider the chir al
SV2XSV2 symmetry of the m.-o. system. If the m. and
0 fields are assigned to the basic (quartet) represen-
tation of SU2XSUq, then m +0 is an invariant. An

interesting situation develops in the case where this
invariant acts as a c number: The 0 field is not indepen-
dent of the m 6eld and can be eliminated from the
Lagrangian. When derivatives are excluded from the
interaction term, the Lagrangian invariant under
chiral SV&PSV& is unique in the sense that all the pos-
sible invariant interaction terms are c-number constants
of the form (~'+0')~ with %=2, 3, . . . . The only
meaningful interaction term comes from the kinetic-
energy part of the Lagrangian when we replace the o.

field by (const —m')'~'. Then the Lagrangian becomes
nonlinear in the x 6eld:

l[(g ~)2+ (~.g ~)2/(R2 ~2)j
where R'=m'+0. This Lagrangian is nothing but the
x-meson part of the invariant nonlinear 0 model of
Gell-Mann and Levy, ' which reproduces many of the
current-algebra results when a certain symmetry-
breaking term is introduced. Weinberg ' and others'
have developed a general method of constructing non-

linear Lagrangians. The invariant Lagrangians for x
mesons so obtained are all equivalent to the nonlinear
o- model in the sense that they reduce to it by suitable
redefinitions of the x 6eld. Now, if two Lagrangians are
related by 6eld rede6nition, they give the same physical
results, ~ although this rede6nition does change the
chiral transformation property of the Geld. Thus the
nonlinear 0- model is the most general Lagrangian
for the pion system which reproduces current-algebra
results.

What we have learned from the Lagrangian version
of current algebra, then, is that what is important is not
the specific form of the Lagrangian, but rather its
physical uniqueness. In other words, it is not the
transformation property of the interpolating 6eld but
that. of the asymptotic 6eld which plays an essential
role. We are thus faced with the important question as
to how the asymptotic 6elds behave under the chiral
transformation. The transformation of the asymptotic

4 S. Weinberg, Phys. Rev. Letters 18, 188 (1967);J. Schwinger,
Phys. Letters 24B, 473 (1967).' S. Weinberg, Phys. Rev. 166, 1568 (1968).

'S. Coleman, J. Wess, and B. Zumino, Phys. Rev. 177, 2239
(1969); C. G. Callan, Jr, , S. Coleman, J. Wess, and B. Zumino,
ibad. 177, 2247 (1969).' S. Kamefuchi, L. O'Raifeartaigh, and A. Salam, Nucl. Phys.
28, 529 (1961);see also L. Bessler, Phys. Rev. 184, 1523 (1969).

fields in the mass symmetry limit must be one which
keeps their free-field equations invariant. Now a non-
linear transformation generates higher powers of the
fields, but none of the powers of the asymptotic fields
can satisfy the free-field equations. So the possibility
of nonlinear transformations of the asymptotic 6elds is
highly implausible. ' In the following we shall require
that the asymptotic fields transform linearly under the
chiral transformation in the invariant limit. We note
that, in the case of SV2&&SV2 chiral dynamics men-
tioned above, we eliminated the o- 6eld from the
I agrangian. We see now, however, that it should re-

appear to complete the chiral SV2)&SV2 quartet for the
asymptotic fields. Hence the 0. particle should appear as
a bound state of the pions in the invariant limit. ' The
0- could, however, become highly unstable as the break-
ing mechanism is turned on.

In this paper we shall assign, in the mass symmetry
limit, all the physical (asymptotic) fields to linear
representations of the chiral SV3XSV3 algebra. It is
important to observe that we can freely add c-number
constants to the scalar physical 6elds without changing
the canonical commutation relations. However, if the
free-field equations are to remain invariant under the
c-number transformation, then the masses of such 6elds
must vanish in this invariant limit. But actually the
physical particles have nonvanishing masses, and one
might think that the mass breaking may cancel out the
effects coming from the c-number addition. We, how-

ever, assume that the c number remains even when the
explicit mass-breaking mechanism is turned on. Hence
to complete the SVBXSU3 multiplet of scalar fields we
include the possible addition of c numbers. ' This ad-
dition of c numbers to the scalar multiplet is the mani-
festation of the spontaneous breakdown' of chiral
SV3XSU3 symmetry. In particular, we shall add c
numbers only to the I=F =0 members of the physical
scalar multiplet; we shall add no c numbers which would

prevent the conservation of isospin and hypercharge.
It should be remarked that the addition of c numbers to

H. Umezawa, University of Wisconsin-Milwaukee Report
No. UWM-4867-68-6, 1968 (unpublished).' The present paper is mainly a generalization to SU3)&SU3 of
our previous paper: T. Muta and H. Umezawa, University of
Wisconsin-Milwaukee Report No. UWM-4867-69-4, 1969 (un-
published). We would also like to point out that the c numbers
considered here as a manifestation of spontaneous breakdown have
some similarity to the c number which measures the explicit sym-
metry breaking in the model of M. Gell-Mann, R. J. Oakes, and
B. Renner, Phys. Rev. 175, 2195 {1968).See also S. L. Glashow
and S. Weinberg, Phys. Rev. Letters 20, 224 (1968).

"See, e.g. , G. S. Guralnik, C. R. Hagen, and T. W. B. Kibble,
in Advances in Particle Physics, edited by P. L. Cool and R. E.
Marshak (Interscience, New York, 1968), Vol, 2. The possibility
of the spontaneous breakdown of the chiral SU~)&SU2 symmetry
has already been suggested by P. B.Kantor and J. L. Pientenpol,
Phys. Rev. Letters 21, 241 (1968); A. Salam and J. Strathdee,
International Center for Theoretical Physics Report No. IC/68/
109, 1968 (unpublished). Certain models exhibiting the spon-
taneous breakdown of chiral SU3&(SU3 symmetry have been dis-
cussed by G. Cicogna, F. Strocchi, and R. Vergara CaGarelli,
Phys. Rev. Letters 22, 497 (1969), and by J. Honerkamp, Uni-
versitat Bonn Report, 1969 (unpublished).
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any fields other than the scalar field would spontane-
ously break parity conservation, Lorentz invariance,
etc. The c numbers added to the scalar fields are funda-
mental constants in our theory and will be determined
in terms of the leptonic decay constants of the pseudo-
scalar mesons.

We shall use the technique of expanding Heisenberg
operators in terms of the physical fields" and shall
apply the transformation rules of chiral SU3)&SUB to the
expansions in order to derive soft-meson sum rules.
We shall derive sum rules on the leptonic and semi-
leptonic decays of mesons. By taking advantage of the
freedom of choice of interpolating fields, we shall also
obtain the generalized Adler consistency condition" and
relations involving the strong coupling constants of
mesons. We consider mesons only, but it is not difficult
to introduce baryons into our scheme.

In Sec. II we present the formulation of the theory
and determine the constants Co and Cs in terms of the
leptonic decays of spinless mesons. Particular results -are

given in Sec. III. In Sec. IV we make some concluding
remarks about the nature of the spontaneous breakdown
of chiral symmetry and illustrate the difference between
this approach and current algebra.

II. THEORY

A. Commutation Relations

As was mentioned, we shall be concerned with 0+ and
1+ spin-parity physical (asymptotic) fields, together
with appropriate c numbers, assigned to linear repre-
sentations of the chiral SUB)&SU3 algebra in the invari-
ant limit. This algebra is defined by the 16 generators

QA 2 (TA~XA)

(A = 1, . . . , 8) with nonvanishing commutation relations

[Q~+,Qa+] =if~scQc+, (2)

The local commutation relations are

[T~,V, ,s(x)]=ifABC V,c(x),

[T~, A„, s( x)]=ifgscA„, c(x),

[Xg,V„s(x, )]=ifgscA„c(x),

[X~,A„,s(x)]=ifgscV„c(x).

(Sa)

(Sb)

(5c)

(5d)

We shall choose the (3,3)+(3,3) representation for
the 18 0+, 0 mesons S;, I';, where i, j=0, . . . , 8. The
appropriate transformation properties for the asymPtotic
fields are then given by

[T~,S;(x)7=ifg;,[S,(x)+C~],

[Tg,P,(x)]=ifg;;P, (x),

[Xg S (x)]= —id' P(x)"
[X~,P;(x)]= id~, ,[S,(x)+C;],

(6a)

(6b)

(6c)

(6d)

where, following the argument in the Introduction, we
have added c numbers to S; without violating isospin
or hypercharge conservation; that is,

Cj ~jOC0+ ~j8C8 y

with Co and C8 to be determined. The nonvanishing of

Co and Cs produces the spontaneous breakdown of
chiral symmetry and SU3 symmetry, respectively. It is
interesting to note that if the linear representation

(1,8)+(8,1)+(1,1) had been chosen instead of (3,3)
+(3,3), the pion would not decay. Indeed, in that
case, (0~[X~,P,(x)]~0)=if~,,C, =O, for i=1, 2, 3.

The 1+, 1 mesons a„,;, v„,; are chosen to belong to
the (1,8)+(8,1)+(1,1) representation of SUHXSU3.
This representation is chosen so that opposite charge
parity is guaranteed for v„,3 and a„,3. Here we have

PTgP '=+Tg,
I'XgI' '= —Xg.

(3a)

(3b)

where the fisc are the structure constants of SU3. The
action of the parity operator I' is

[Tg,v„,,(x)]=ifg;,v„,,(x),

[Tg,a„,;(x)]=ifg;,a„,,(x),

[X~,v„„(x)]= if';,a„,,(x),

[X~,a„;( )]x=ifg,,,v„;(x), ,

(7a)

(7b)

(7c)

The T~ and Xg are the space-integrated charge densi-
ties of the vector V„,~ and axial-vector A„~ currents,
respectively:

where i, j=0, . . ., 8 and where v„,,(x) and a„,;(x) are
asymptotic fields.

Tz = d'x Vo,~(x), (4a) B. Determination of Co and C8

X~= d'x Ao, g(x). (4b)

"R. Hagedorn, Introdlction to Field Theory and Dispersion
Relations (Pergamon, Oxford, England, 1964), p. 27; see also
L. Leplae, R. N. Sen, and H. Umezawa, Progr. Theoret. Phys.
(Kyoto) Suppl. Extra No. , 637 (1965)."S. L. Adler, Phys. Rev. 13/, 81022 (1965).

(0 ~ [X~,P;(x)]
~
0)= id, ,C, , (8a)

and, using (4b) and the fact that P;(x) is a physical

The fundamental constants in our theory, Co and

Cs, will be determined in terms of the pure leptonic
decays of the pseudoscalar and scalar mesons.

Consider P; -+ leptons. We obtain, using (6d),
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(ol[x,,r, (x)]l o)
8b)= {&ol~o,A(0) I&;(&)&

wherek is t e rhe three-momentum.

Thus)

ldg;AC&= ~ &
= {&0l~o,A( ) I

lo 6R an(6 ) nd (4a)~ ~leptons, we emp y 6 nSimilarly, for 5;~ ep
to obtain

k lz~') 0 (10)

"'(xys)Sz(y)S. (s)dgdz Fp, ,g pg x

C; in terms o x,

(" xys)P4(y)P, (s)+—1', ,A(x) =fAs, , (x) fAzACA~—,Sb(x)+ dyds Pp, Azc (
2 c

&4& x s)s",4(y)S, (s)+dpdG Fp)z, gag XpZ»."'(xys)a"z{y)~.(s,)++ dyds PIc„,

d ds G„„Ag,"&(xys)z",z{y)P.(s)"' x s)Sz(y)P, (s)+ dyds G„„Ag,A„,A(x) =gAa„, A(x x + dyds G„Az, ( y,)—dAzACAB„Pz(x)

& s)&.(~)+, {14)'4'(xyszB)Pz(y)P. {s I'A zBdgdM& Gp, ,ggggd ds G„,,At,."'(xys)a", z(y)S,(s)+—+

d vre must haveC RI'gC are conserve, wfi Ids are understood

d 6
0

{') XS, eCc)
scudo-

coCfacie tS F„,gg, y

la" to
the maatrix element

nd use t e reSCalR1 -IIlCSOD states an

1 2 3= p)

f4= f4= f4= fv= fx", —
f8= f4„etc. —

um RulesD. Derivation of Sum

uta, tion relations 5 (7)%c erst 1mposse the commuta, ion
13 RDd j. 04 to obtain, for e pon the cxpRnsions

V„,B(x)]fABaA„, c(x) ——

obtain

m 2zzzzz) (a.+m,
&«ol T[l.,", ()~ {y)A()jlo&,

6elds. Theare interpolatingP() dF'() e
coeSclcnts RIc ln gcDc

rded (or a,dvanced pro h re evof the retar e
However, up to

cnts
ber operators. HHClSCD CI'g

dCI' 1D t11.C RSy p

d (14), use was macond terms 1n (13) an
q

a

11 fo thd sd (14) are determine exp
d leptonsRIl C ~

Z[XA,

(x)+dAz. fBzACAB„P.(x=fBfABcaic, c X AZ c

d F Bz,&"(xys)Pz(y)+dA. ACA dyd», ,Ba.

(16).A (z'(xys) a",.(y)++dAecCc dydS +pc,BcA

ents of (16).various ma, trix elemen s'|A'e then take various m

5 ~ leptoIls

n NuovoW. Zimmermann)K. Symanzik, an1'H. Lehmann, K. y
pimento 1, 205 I'1955).

efincleptonrc decay

42~ jziz (11a)+p =zV„F./[{2 ' '.~2&olg„'-*'(0) I & ) " ',
, (11b).v2(ola„'-"(0) l~' '",

j ~ (11c)

) ~ (0) zA„,z(0) c '"'where ~ 4 .
11) yields(9) nd (10& into (

(12a)Z =yZCo+C )/~~. 9)

243,

0 p .(P)&L,2 )42ko]'"/&o)~='

(12bp (2v2CO —C8)

(12cg~3C8 —F~—KF
thatDd F Impy] values f» &

is rathe~
experim

but that C8can vRnis )
(ol y (0)ls'&~&&~ & ' '

ll lc/col —0ccause o

s jn 'germs o

noted that,
jng dec Rys

Currents

f th currents ino h expansions o e
t II d

,10, on y

We now co eonstruct t e
doI'n

through the veector curren a
to ex ress t e

s m totic e

Relations {9)and (10 en
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Consider, e.g. ,

f»c(o
I
A. ,c(x) IP.(k))

=-'&ol[~.,v. ,.( )]IP.(k)&

ikpd—~b,fobsCee 'b*/[=(2zr)'2kp]'~'

g
—iky

+dg, sCe dydz F, ,o.,"'(xyz)— . (17)
[(2zr)P2kp]'t'

We immediately notice that the last term on the right-
hand side of Eq. (17) is nothing but the soft-meson
amplitude, i.e.,

([(2 )'2ko'7"'&P. (k')
I V. , (x) IP.(k)&) =o

g
—i7cy

dydz F„,e.,"'(xyz)— . (18)
[(2~)»kp]iiz

The soft meson -limit obtained here is a natural consequence

of the addition of c numbers to the physical scalar meson-
fzelds. Whenever we use the reduction technique, we are
assuming the symmetric mass for each chiral multiplet.
We will break the mass symmetry only in the final

stages of our calculation.
Thus we are led to

fABc(OI A , c(x)l P (k)&

ik„d~b,f—obsCde ' *b/[( 2z)r2pkp7"'

+d~'Cs([(2~)'2ko'7"'(P. (k')
I V. ,o(x) I

P.(k))) '=o,
(19)

or

(P~ (0)P,(k')
I
Ao

I
P b(k) ) = [f»c(P (k')

I
vc

I
P b(k) )

+dg, .(s,(k')
I AelPb(k)&

+d~, b(P, (k') IAels, (k))7/F~, (21h)

where in the last three equations we have used the fact
that, when d/0,

dAdece FA~Ad y

F~ F2—F3—F
F4 ——F5——F6=F7——F~,
Fp ——-'p(4Frc —F ).

E. Spinless Heisenberg Operators

So far we have employed the expansions of the vector
and axial-vector currents in terms of asymptotic fields.
In general we can expand any local Heisenberg operator
in terms of asymptotic fields. Here we shall make use
of the expansion of the interpolating field of the 0
meson,

P.(x) =P.(x)+ dydz R.b, "'(xyz)Sb(y)P, (z)

1
+ — dydzdw R.b, p&'&(xyzw)

3I
XPb(y)P, (z)Ps(w)+. , (22)

where the coefficients R,b, (xyz), etc. , are identified by
taking suitable matrix elements of P,(x) between rele-
vant states. Applying the commutation relation, we
have

dg, gcg([(2zr)p4kpkp'7't'(P, (k')
I v„,o(0) IP.(k)&)b =p [~ p (x)7

=ik„(f»cdc,bCb+dzb, fobsCs) . (20)

We have, finally,

(P (0) I
VQ

I
P,(k)) =ik„f,ii. ,

where, for convenience, we have used

(21a)

([(2zr)'4kpkp'7"'(P. (k')
I V„,o(0) IP.(k))) b. p

—= (P,(0) I Vol P.(k)).

We note that the c numbers on both sides of (21a)
canceled out. By the same procedure, we can also
obtain

&& dydz R.b, t'~(xyz)Pe(y)P. (z)

1
+ —d~zCs, dydzdw R,b,di'&(xyzw)

2!
&&Pb(y)P. (z)+ . (23)

We again use our basic requirement that any local
operator which has the same quantum numbers as the
asymptotic field can be taken to be its interpolating
field. Thus we make the identification

Sb(x)=zNbze([X&)Pe(x)—7 zd+egCg) )—(24)

where Nl,Ad is a suitable renormalization constant.
Inserting Eq. (23) into Eq. (24) and taking a matrix
element, we get

&P.(k) Is, (o) IP.(k)&=x».( ...& .( ) IP,(0) IP,(k))
+dg„(P.(k')

I
Pe(0) I

S,(k))
—dg. tCr((P. (k')P. (k") IPs(0) I

P,(k))
&& [(2zr)P2kp" 7't'}b- .p) . (25)

&s.(o) I
v. ls, (k)&=zk„f.e„ (21b)

(S.(0) I Aol P, (k)&=ik„d.e„ (21c)

(P.(0) I
Ao

I
S,(k) )= zk„d.e„—(21c')

f~. c (pS.p(0) I Vol'(k)) =-O, (21d)

f~~pCp(s (0) I A+lag(k)) 0) (21e)

(PA(0) I
Ao

I oc(k)& = e,(k)f»c(fc gzi)/F~, (21f)—
&P~(0) I

vo
I
ac(k)&= pa(k) f»c(gc fo)/F~, (»g)—
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III. RESULTS

A. Semileptonic Decays of I+ Mesons

The immediate consequence of Eqs. (21d) and (21e)
is that the vector and axial-vector meson decays into
~ mesons and leptons are forbidden in the soft-I~-meson
limit.

The decays o ~P+leptons and a ~ P+leptons are
described by Eqs. (21f) and (21g). We list here the
predictions for two interesting v —+ P+leptons
processes'4:

p~ ~ m'1+v, &b 2(f, gg„)—e„/F;
p ~K'I v, +b(fv gzr„)—e„/Fzr

Let us consider the process p+ —+~'1+v. In order to
compare our result with experiment we must determine

f, and g~, which characterize the amplitudes for the
processes p —& ll, lv and 3& ~ lv, respectively. The
decays p —+ e+e and p —+ p+p have already been ob-
served, but there are no data on the decay A~ —+ lp.

B. Semileptonic Decays of 0+ Mesons

The well-known result for E&3 decay derived from
current algebra" is, in our notation, &P~(0)P,(0) I AzzI Pb) 0. — (32)

the following relations:

F &7r+(0)ir (k') IA' —"IK+(k))
=(&-')&o (k') IA' "IK+(k)&

+(Q-')&o (k') IA4 *'IK+(k))
+(Q-', )(m. (k') IA'—"Ia'(k)), (29)

F (x (0)x.+(k') IA' "IK+(k))
=(&-')&-.(k) IA -"IK (k)&

(~-,') &o,(k')
I

A»- bIK+(k) &

+t'(v' ,')& -+(k')
I
V' "IE+(k)) (30)

F &x'(0)~'(k') IA4—"IE+(k))
=(Qb2)&ob(k') IA'—"IK+(k)&

+(&-')& (k')
I
A' *'IK'(k))

(xo(k ) I
A4 ;bI~+—(k))

+-;i(~'(k')
I v -' IK+(k) &.

It should be noted that (21h) is not symmetric with
respect to the two pseudoscalar mesons in the final
state and thus the conclusion depends on which meson
in the final state is taken to be soft.

We also remark that if we take an additional meson in
the final state to be soft, we obtain

&~'(0)I V' "IE+(k))= ,'&2(Fzr/F —)k—„, (26) If we define the Ei4 form fact'ors by

while our result from (21a) is

& o(0)
I
v- IE+(k)&= ——;w2k„. (27)

C. Decays P~ PP+Leytons

The E&4 decays have also been analyzed by using the
current-algebra approach. "Our results for these proces-
ses, (21h), agree with those of current algebra except for
the scalar-meson contributions. In particular, we obtain

'40ur SU(3) classification of the mesons will be as follows.0:m, E, q, X'. 0+:6, ~( 1100),og(1070), o p(720). 1:Io, IC*) @;co.
1+ A, EA, D;E.

16 C. G. Callan and S. B. Treiman, Phys. Rev. Letters 16, 153
(1966); V. S. Mathur, S, Okubo and L. K. Pandit, ibid. 16, 371
(1966).

"Callan and Treiman (Ref. 15); S. |A'einberg, Phys. Rev.
Letters 17, 336 (1966),

The origin of this discrepancy is the presence of the
scalar nonet in our scheme. Indeed, if in (26) we replace
Fzz by Fz&+Fb and use (12c), we obtain (27). (See
Sec. IV.)

In the case of the decay m+ —+ x'l+v, the scalar-meson
contribution vanishes in (21a) and we obtain exactly
the same result as in current algebra,

(m'(0)
I

V' "I~+(k)&= —&2k„. (28)

The relations (21b), (21c), and (21c') yield results
for the decays 5~ 5 +leptons, P —+ S+leptons, S~P
+leptons. Sofar these processes have not been observed.

&P~(k")Pa(k')
I
AB

I Pb(k))
= (k'+k")Fi+(k' —k")F2+(k—k' —k")Fb, (33)

then our result requires, with both final-state mesons
soft,

Ps —P (34)

D. Coupling Constants

Since any local operator which has the same quantum
numbers as an asymptotic field can be chosen as its
interpolating field, we can choose the vector and axial-
vector currents, V„,g(x) and A„,g(x), as interpolating
fields for the vector and axial-vector octets up to the
normalization'"

V„,g(x) = fgr7„,g(x),

A„,g(x) = gga„,g(x),

(35a)

(35b)

where i„,& and a,„~ denote the interpolating fields and
where f~ and g~ are the constants which have appeared
in Eqs. (13) and (14) and characterize the leptonic
decay amplitudes of the vector and axial-vector mesons.

From (21a) we obtain

&P~(0) I~.,e'")(0) IPo(k)&= &P~(k) I~., '"(o) IPo(0&&

=bk„f~eo(rrb 'v)' —k')/fe, , (36)

where J„,zitvi(x) = (U+rne'v")8„, e(x). We define the

'These field-current identities were originally obtained in a
Lagrangian field theory; see N. M. Kroll, T. D. Lee, and
B. Zumino, Phys. Rev. 157, 1376 (1967); T. D. I.ee and
B. Znnnno, i)id. 163, 1667 (1967&,



SPONTANEOUS BREAKDOWN OF CHI RAL SYM M ETRY

VI'I' form factors by

(P (k) I J„, (0) IP (k))=zf [(k+0')„g, „,"'(t)
+ (k —k'),gvaPAPC("(t) j, (37)

where t= (k ——k') z and where g&ra pA pc &z&(t) = 0 for
8= 1, 2, 3, and 8. If the form factors are smooth, e.g.,

Assuming smoothness of the form factors near the mass
shell, we are led to

(g /f —1)(m '"'—m '"")
(fa/gc 1—)(mc&"&' —ma&~&"), (45)

or simply
B—gC ~ (46)

g...(m. ') g,. (m, ') =—g...,

then we obtain

(38) In particular, this includes Weinberg's relation f, gA„"
If we now rewrite (44a) a,nd (44b) in the form

f,g, = m p' m'—, (39a)

f~g~KK =m(, '—mK', (39b)

fK*(gK K +gK K ) =mK"' m. ', —(39c)

fK*(gK*K.") gK*K."—') =mK"' mK' —(39d)

If in Eq. (39a) we neglect m ', which is small compared
to m, ', then we obtain just the Gell-Mann —Zachariasen
relation "

Similarly, it follows from Eqs. (21c) and (21c') that

(S,(O) I
I„& &(0) IP (k))

=ik„dABC(ma&" &' k')/—ga, (40a)

(S,(k')
I ~.,""&(0)IP,(0))

=i k„'(tABC(ma'"" k")/ga —(40b)

Assuming smoothness for g~I g, we obtain

ga(gABPCSA& )+gABP SA& )) ma( ) mc& ) (418)

ga(gABpcsA& & gAapcaA& &) =ma&"&P mA&a—& (41b)

Using (21f) and (21g), we find that

(PA(0) I ~pa'"(0)
I (zc(,k))

p( )kfABc(gc/fa 1)(ma'~" m—c'A")/FA, —(42a)

(PA(o) I ~., c"'(0)
I

B (k))
= pp(k)fAac(fa/gc 1)(mc&""—ma' ")/F—A. (42b)

Expressing these matrix elements in terms of form
factors,

(PA(k')
I ~.,a'"(0)

I «(k))
= p"(k)fABC[gABC ' (t)g(.+gABC ' (t)k„k,'

+gABC( )(t)k„'k„j, (43a)
{P (k')I~. , '"'(o)I (k))

= p"(k)fAac[hAac(' (t)g„.+hAca( &(t)k),k~'

+kACB&'&(t)k„'k„'j, (43b)
we find

gAa c (1)(m c (A ) 2)

= (gc/fa 1)(ma& &' mc&" &'—)/FA, (44—a)

kA ca"'(ma (~")
= (fa/gc 1)(mc'"" ma—(r")/FA, (44b—)

where ABC is such that fAac&0. The «&)BPA coupling
constant is given by gAac&'&(mc&r") =kACB&'&(mc&"&')

"M. Gell-Mann and F. Zachariasen, Phys. Rev. 124, 953
|~96&).

gc

fa

fa

gc

FAgAac"'(mc'"")
7

FAkAca"'(ma'"')

mc&""—m &~"

(47a)

(47b)

FAkACB&" (ma& &')

&(1-
mc(~) 2 —mz(~"

E. Generalized Adler Consistency Condition

(48b)

If the scalar nonet were absent, we could still obtain
Eq (25),. but without the terms containing scalar
particles; i.e., we find

1VpA Ad A, rCr {[(2zr) '2kp" ]"'
X(P.(k')P. (k")

I PA(0) IP.(k)))a"= =0. (49)

If we restrict our argument to SU2&(5U2, then
Egggdg, fCf ~ b,dF~ and

{[(27r) 2kp"]' (%-,(k')zrA(k") I7rA(0) Izr, (k)))&, =()=0 (50)

This is nothing but Adler's" consistency condition.

IV. CONCLUSIONS

We have treated chiral dynamics by means of the
linear realization for the asymptotic (physical) fields.
Many relations were derived among form factors and
coupling constants by writing suitable interpolating
fields in terms of asymptotic fields and by applying the
chiral transformations. It is important to note, however,
that the intrinsic mass-breaking effects were taken into
account by considering the physical masses of the
particles only in the hnal sum rules. Independent of
intrinsic mass breaking, we are assuming a more funda-
mental breakdown of symmetry, viz. , the linear reali-
zation of the spinless fields which carry the acMitional
c numbers (Cp, C&)) so tha, t their transformations are of
the form (6). Most of our results were due to the exis-
tence of these c numbers which we interpret physically

"S.steinberg, Phys. Rev. Letters 18, 507 (1967).

then (46) indicates that the smoothness assumption is
equivalent to requiring

FAgAac"'(mc'"")
&(l

ma("' —mc {'~)'
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as the spontaneous breakdown of ckiral symmetry
Indeed, (6) implies that the vacuum is not a chiral-
invariant state, i.e., Xlo)WO, even when we ignore
intrinsic mass breaking. Thus, we interpret the spon-
taneous breakdown as the cause, e.g. , of the leptonic
decay of the pion. This approach to chiral dynamics was
originally motivated by the spontaneous breakdown
which occurs in the chiral Lagrangian theory with
nonlinear realizations. In general, '0 when the spontane-
ous breakdown occurs, massless or Goldstone fields

appear carrying c numbers and collectively complete
a linear representation. This suggests then that the
physical spinless particles are, in the mass-symmetry
limit, the Goldstone 6elds. Thus, instead. of making use
of nonlinear realizations of interpolating fields, we have
used the linear representations for physical fields with
added c numbers.

We have restricted these c numbers by isospin and
strangeness conservation, thus leaving only Co and Cs
nonzero. It is possible that other c numbers are ex-
tremely small but not zero, measuring such things as
the nonleptonic weak interactions. If. e.g. , the physical
E field would carry a c number, AI= —,

' would be intro-
duced and parity would be violated.

We should also like to call attention to the results
which di6ered from those of current algebra. To see
how these differences arise, we consider the X&3 decay
as an example. By using the current commutator, we
rewrite (11b) in the form

(0I A,~"(0) IE+(k))

= —2 d4x b(xo)(0 I [Ao, (x) V ~"(0)]IE+(k)&

=+2 d'«(xo)(ol[~"A. , 3(x) V ' "(o)]IE+(k)).

Imposing our linear realization requirement and in-
cluding, in addition to the pion-pole terms, the ~-pole
terms, we And

([(2ir)'2qo]'~~(iro(q)
I
V„4 "(0)

I
E+(k)))~=o

1 F~ k„F,+iv2-
V2 F [(2ir)'2ko]'i' F

&&&o
I
[x„a„.+(0)]IE+(k)&,

'o L. Leplae, R. N. Sen, and H. Umezawa, Nuovo Cimento 49,
1 {1967);R, X. Sen and H. Umezawa, ibM. 50, 53 {1967).

where the second term is the ~-pole term. Then, using
(6c) and (12c), we obtain (27).

Let us now consider the parallel argument in the
ordinary computation of current algebra. In this case
we obtain (26),

(OIA„' "(0)IE+(k))

=2 d4x 0(xo)(0[8"A„,s(x) V 4 "(0)]IE+(k))

—2
= —lim d4x e+"*(q' m—~2)0(xo)

m. ' ~"'
&&(0I [a A„,,(x),v„'-' (o)] IE+(k)&

= -2iF-([(2 )'2qo]'"& '(q)I V.' "(0)IE'(k))).=

In the last step, use was made of the reduction formula,
which can be justified only when q is on the mass shell

Indeed, the matrix element is qualitatively of the form
[a/(q' —m ')+b/(q' —m„')], so that if the reduction
technique is applied consistently, the residue of the
pole at q'=vs ' is just a. However, in the limit q~ 0
we have a+(m '/m„2)b, and thus obtain the contribu-
tion from the ~ pole. Although these remarks may
serve us to understand the relation of our results to
current algebra, the interpolating expansion method to-
gether with spontaneous breakdown proposed here is
exceedingly simple and leads one directly to the soft-
meson relations.

The inclusion of baryons and photons and the con-
sideration of weak nonleptonic decays will be discussed
elsewhere.

Zoic addedin manuscript When (48a. ) is applied to the
Aipir coupling, we find that g&'&(mz, ')«(m~„' —m, ')/F,
where g(') is related to the transverse A~pm coupling
constant by g'"(m, ') =q'gr, with q being the three-
momentum of p in the rest frame of A, . This result
predicts gr«8/F 0 08 Mev '. gs. =0 has been derived

by the single-particle saturation of superconvergence
relations in p-s scattering [see, e.g. , F. J. Gilman and
H. Harari, Phys. Rev. Letters 18, 1150 (1967)] and is
consistent with experiment [J. Ballam et at. , ibid. 21,
934 (1968)].We should also like to note that Eq. (12)
has been derived by other techniques [see, e.g. , W. A.
Bardeen and B. W. Lee, Phys. Rev. 177, 2389 (1969)].
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