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Aside from symmetry breaking, an important
question concerns the relation of our work to duality.
Since both schemes are based on identical quark graphs,
it seems likely that they may be fused in a unified
approach. After completing our work on the manner in
which SU(6) s leads to fixed Regge cuts, we learned that
Hardakci and Halpern" have, in fact, constructed a dual
amplitude containing fixed cuts and have proposed that
this amplitude be utilized in the quark model. The
leading trajectory in their model couples according to

"K.Bardakci and M. B. Halpern, Phys. Rev. Letters 24, 428
(1970).

SU(6)s in the manner we have described. Ellis" has
also investigated this problem, which we expect to open.
a fruitful area of new research.

ACKNOWLEDGMENTS

We would like to thank S. C. Frautschi for his advice
and encouragement in our research. R. C. thanks;
M. Gell-Mann for a particularly helpful discussion.
M. K. thanks R. P. Feynman for suggesting investigat-
ing this problem and for numerous helpful discussions.

"S. Ellis (unpublished).

PHYSICAL REVIEW D VOLUME 2, NUM B ER 2 I 5 JULY 1970

Some Properties of a Hamiltonian Model of Broken SU(3) && SU(3) Symmetry. IP
T. K. KUO

Department of Physics, Purdue University, Lafayette, Indiana 47907
(Received 27 February 1970)

An inherent ambiguity of broken SU(3) &&SU(3) symmetry is discussed. It is shown to arise from a discrete
unitary transformation in the SU(3).XSU(3) space. For Hamiltonian models for which the symmetry-
breaking term transforms like the (3,3)+(3,3) representation, we find that, in general, there are two such
terms which describe the same physical sy' stem. Some consequences of this result are discussed.

H =o(&p+%2rup), (2)

where e and r are real parameters, and I;, i= 0, 1, . . . , 8,
together with p;, transform like the (3,3)+(3,3) repre-
sentation of SU(3)XSU(3). There may also be terms
transforming like (1,8)+(8,1), (8,8), etc. However, so
far, very little is known about these other possibilities.

* Supported in part by the U. S. Atomic Energy Commission.
'S. Glashow and S. %einberg, Phys. Rev. Letters 20, 224

(1968).
2M. Gell-Mann, R. Oakes, and B. Renner, Phys. Rev. 1/5,

2195 (1968). This paper will be referred to as GOR.
'The notation used in this paper will be as follows. For the

"charges" of the vector and axial vector currents, we write
F1, . . . 8 and FI, . . . 8'. The generators of the "left" and "right"
SU(3)'s are then -', (F,+F ). Also, we use Yq, I3', etc. , to denote .

the axial counterpart of F,I8, etc.

I. INTRODUCTION AND GENERAL DISCUSSION

ECENTLY the significance of the chiral SU(3)
XSU(3) symmetry has been clarified greatly by

Glashow and Weinberg, ' and by Gell-Mann, Oakes, and
Renner. ' They proposed that the strong-interaction
Hamiltonian density should be written as

H=H p+EP,

where Hp is invariant under SU(3)XSU(3) rotations, '
and the symmetry-breaking term H' is considered to
conserve the U(1)XSU(2) symmetry and to have
definite transformation properties under the SU(3)
XSU(3) group. In particular, GOR suggest that the
simplest form for H' is

In the following we will concentrate on Eq. (2), but
will comment on the other choices when appropriate.

Now, as has been emphasized by Cabibbo and
Maiani, ' the directions in the SU(3) XSU(3) space are
not fixed u priori. Indeed, there are an infinite number
of Hamiltonians which describe the same hadronic
world. These systems are connected by arbitrary rota-
tions R in the SU(3)XSU(3) space. Let us denote by
S the system described by Eq. (2). Then the system S,
in which a state

~
n) in S becomes E

t n) and an operator
0 becomes ROR-', is completely equivalent to S.
Physically, the unitary transformation from 5 to 5
means that we must redefine internal quantum numbers
of the hadronic states, etc.

What are the eA'ects of the electromagnetic and weak.
interactions? As far as the hadrons are concerned, they
may be regarded as external fields. In considering rota-
tions in the hadronic world, we should leave the direc-
tions defined by the electromagnetic and the weak'
interactions unchanged. However, insofar as the direc-
tion of the hypercharge is not 6xed, there is no a priori:
value for the Cabibbo angle either. Thus we may regard'.
the direction of the weak currents as arbitrary in con-

4 N. Cabibbo and L. Maiani, Phys. Rev. D 1, 707 (1970).This
paper will be referred to as CM. In this connection, see also the
related papers by R. Gatto, G. Santoni, and M. Tonin LPhys. .

Letters 288, 128 (1968)j and N. Cabibbo and L. Maiani Libid. .

28B, 131 (1968)j.' By the direction of the weak interaction, we are referring to
the Cabibbo angle. Nonleptonic weak interaction may be con-.
sidered to arise from the current-current interaction„
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sidering the rotation. In a previous paper, which is a
summary of the present work, we have assumed that the
hyp|.'rcharge direction is fixed by the medium strong
interaction. Ke now realize that this simplifying as-
sumption is unnecessary, and we will drop it in the
following discussions.

Out of all the possible rotations in SU(3)XSU(3),
one class is of special interest. They are those rotations
that leave the form of H' invariant. In particular, for
H' given in Eq. (2), we would like to find an R such that

RHR '=H'=c4(u6+&2Fu3) . (3)

If this is possible, our discussion in the previous para-
graphs would establish the equivalence of the theories
described by the parameters r and r. In Sec. II we show
that there is a discrete rotation 8' which does that. We
find further that W leaves the electromagnetic and
weak currents invariant. Thus, the strong, electromag-
netic, and weak interactions do not distinguish theories
described by r or r. The generators transform according
to

W

(F1,2, 3, j F4, 5, 6,7) ~ (F1,2,3,3i F5 ) F4 ) F7 y F6 ) ~

Either set gives rise to an SU(3) group. We shall call
the first SU(3) Lor the "ordinary" SU(3)] and the
second SU(3) Lor the "hybrid" SU(3) ' ']. Now, when
we consider the SU(3) XSU(3) symmetry broken down
to U(1)XSU(2), we still keep the SU(3) notation if
only for the sake of labeling the hadronic states. As we
are going to show in Secs. II and III, the unitary trans-
formation W amounts to a change of coordinate sys-
tems in SU(3) XSU(3) space. We shall denote the two
systems by 5 and S. Specifically, 8' has the following
properties.

(1) It sends SU(3) into SU(3).
(2) It leaves the electromagnetic and weak currents

invariant.
(3) Viewed in S, W changes the relative parity of

states with EY=1.For instance, the transformed pion
and kaon states would have different parities with re-
spect to the untransformed parity operator in S. (Of
course, in S, the transformed pion and kaon will have
the same parity. )
Now the relative parity of states with AI'= 1 is but a
convention. What we are saying, then, is that, in the
SU(3)XSU(3) space, descriptions in terms of SU(3)
and SU(3) are completely equivalent, provided that we
also change the relative parity of states with AF =1.
This result applies to any Hamiltonian model of the
form of Eq. (1).It is an inherent ambiguity in the break-
ing of SU(3)XSU(3) down to U(1)XSU(2). We would
like to point out, however, that the change of parity is

' T. K. Kuo, Nuovo Cimento Letters 3, 803 (1.970). This work
will be denoted as I.' The existence of this "hybrid" SU(3) was first pointed out to
the author by S. P. Rosen. It is precisely what Okubo and Mathur
(see Ref. 8) called "chimeral" SU(3).' S. Okubo and V. Mathur, Phys. Rev. Letters 23, 1412 (1969);
Phys. Rev. D 1, 2046 (1970).

not the only thing being done on the hadronic states. '
In general, 8', when applied to, say, a pion, would
generate a pion plus many pions, kaons, etc. Also, the
vacuum state is not invariant under 8'.

What is the effect on H' when we apply 8'? Our dis-
cussion in the previous paragraph suggests (but does
not explicitly prove) that, independent of its detailed
transformation properties, lÃH'8' ' would have the
same form as H'. In the specific case H'= (1,8)+(8,1),
H' turns out to be acutally invariant under W. (See
Sec. III.) For H' (3,3)+(3,3), we 6nd that the form
of H' is invariant, but the parameter r defined in Eq.
(2) is changed into r. [See Eq. (12)].Therefore, in this
special case, there is no way to tell the difference be-
tween theories specified by r or r. This is the main result
of this work.

The plan of this paper is as follows. In Sec. II we
establish the existence of a nontrivial finite rotation R
according to Eq. (3). We then discuss its properties in
Sec. III, proving the statements made in th.'is general
discussion. Applications and conclusions are contained
in Secs. IV and V. Finally, mathematical details of how
to find the actual rotations are studied in the Appendices.

3I~ VtMU, Mt ~ UtiVtV.

In this notation, H' would be represented by

'a 0 0

(6)

X,'= 0 u 0

0 0 b.

where a and b are real so that no e s will come in.

9 In this paper we take the view that degenerate vacuum and
Goldstone bosons appear for the realization of chixal symmetry.

IL ROTATION IN 8U(3)XSU(3) SPACE

In this section we wish to find a rotation R according
to Eq. (3). The most, general rotation which commutes
with the charge operator is a rotation generated by a
U(2) X U(2) subgroup of SU(3)XSU(3). Let us denote
by (Q&, Ur) (Q72, V72) the charge and U-spin operators
in SU(3)& and SU(3)73 spaces, respectively. Then we
must consider E. generated by

(Qr. ,Ur, )3 (Qs, IIu)

Before we compute explicitly the effect of E on H',
it is useful to introduce the notation given by CM.
Corresponding to any general operator P,(a.,;u,+b,v;),
we define a 3X3 matrix 3f:

M =P(a,+26,)X;.

A rotation in the SU(3) XSU(3) space, when applied
to the quark states, is given in terms of a paI'. r of 3X3
matrices (U, V). They are just the 3X3 representation
of R in SU(3)z, and SU(3)72, respectively. Under the
rotation (U, V), then, the transformation of cVJ is
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W

(P1,2, 8,8 j F1,2, 3, 8 ) (P1,2, 3,8j P1,2, 3,8 ) )

0 0

InAppendixA, weshallprove that theonlynontrivial Using Eq. (10), we find that
transformation on K' which leaves the charge direction
unchanged is given by (15)

Gc' —+ 3™c'=8't3c'8" = 0 —a 0
(P4, 6, 6,7j P4, 6, 6,7 ) ~ ( F6 F4 ~ F7 ) Fo

(8) —F6, F4, Fv, —Fo). (16)
0 0 b

or, in 3)&3 representation,

0 0

The transformation W is a finite rotation in the SU(3)
XSU(3) space:

W = exp(i-237r 7'6), (9)

It is easy to verify that the operators (Fi,2,8, 8; —Fo',
F4 P7 Po') form the generators of SU(3). We note
than an equivalent set of generators of SU(3) is

(F1,2, 8,8 P4, 6, 6, 7 ). In fact, the two sets are related by a
rotation around the 8th axis. Another way of saying
this is that we may use the operator W(8,4) defined in

Eq. (11).Using 8= -2'7r, 4'= 0, we have

S'I,= 0 i 0 = 8'gt. (10)
W(~vr, 0)

(F1,2, 3,8j P1,2,3,8 ) (P1,2, 88 I P1,2,3,8 )I (1 )

W (-', vr, 0).0 0 —1

We could have considered more general rotations

W(8, 4') = exp(i8I') exp(i41I3) W,

(P4, 6, 6,7 &F4,3,6, v'') '(P4, 3, 6,v; F4, 6, 6, v) (18)

With the help of Eqs. (15) and (16), we may im-

mediately obtain the transformation properties of the
electromagnetic and the weak currents. They are

which gives the same R' as O'. We will see in Sec. III
that it is sometimes more convenient to use W(8,4')
instead of 8".

In terms of the parameter r defined in Eq. (2), we
can easily compute the transformed r from Eq. (8).
We have, under 8',

WJ e.m, ~J e.m.

W

(J wea )OS 6 ~ (J weak)4 S=O,

W

(
J' weak)4S=1 e i(J weak)BS=1 ~

(19)

(20)

(21)

2 —r 2 —r

III. PROPERTIES OF W OPERATOR

In the previous section we found an operator W
which preserves the form of II', and induces the trans-
formation r —+r according to Eq. (12). We will now
discuss the transformation properties of the SU(3)
XSU(3) generators and the physical state vectors.

The generators transform like the (1,8)+(8,1) repre-
sentation of SU(3)XSU(3). Let us denote by (g, ,h;),
i=1, . . . , 8 a set of operators transforming like (1,8)
+ (8,1). Then, corresponding to the operator
Q, (c,g~+d, h;), we may define the 3X3 matrices

We will discuss the numerical aspects of this transfor-
mation in Sec. IV.

~a.)= W2)42) (23)

Since an over-all phase factor between the AS=0 and
hS= 1 weak currents is unobservable (it corresponds to
adding a phase to states with AS= 1), we conclude that
the electromagnetic and the weak currents are invariant
under W. [An equivalent way of getting rid of the i in

Eq. (21) is to use the operator W(-,'vr, 0) as in Kq. (18)j.
We turn next to the question of the transformation of

physical states. I.et us define, corresponding to a state

~n), the transformed state
~
u):

(22)

In the original coordinate system S,
~

42) is in general a
very complicated state owing to the nonlinear nature
of the chiral symmetry. In particular, the vacuum state
~0) is transformed into a state with two pions, four

pions, etc. However, the state

M+ =+(c;ad;)li, .
is very simple. For, the operator 8, in addition to being

(13) unitary, is also Hermitian with the eigenvalues &1.
This follows from the property

Under an SU(3) XSU(3) rotation defined by (U, p'),
3f+ transform according to

M+ ~ UtM+U, 3f- —+ VtM-V,

8'4= I
as can be deduced from Kq. (10).Thus,

(W2)7=W '=W'W '=W'. (25)
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Further,
[W' H] = [W', Y]= [W2,I]= 0. (26)

Also, under parity,

PIVP '=8' ',

PS"P '=tV '=W'.
(27)

(28)

Thus eigenstates of (H, Y,I,P) should be diagonal with
respect to 5'. Barring degeneracy, then

theories defined by r and r as in Eq. (12) are physically
equivalent.

Before we go on, we remark that, according to Eq.
(15), if H' has a term transforming like gs, where (g, ,h,)

(1,8)+(8,1), then this term is invariant under W.
In this work we shall not examine in detail the cases
when H' contains terms transforming like (8,8), (6,6)
+(6,6), etc.

IU. APPLICATIONS

ice) =W'i er) = f'. [er&,

Similarly,

hence

W2
i
a,)= f'-.

i n&

=W'in)=WW'ier)=l in&;

One further useful relation is

I'=lVPW ',
PP= tV '=8".

The choice f'et= &1 is not arbitrary, since

( iF, iP)=( iW (W FW)W iP)
=Me(

I
(W'F'W') lP&

But, from Eq. (16),

(29)

(3o)

(31)

(32)

(33)

(34)

(35)

(36)
r= —1+e, e=ip.—I (41)

Under W, according to Eq. (12), we would have

We wish now to concentrate on the numerical results
tha, t follow from Eq. (12). Equation (12) represents
a hyperbola in the rr plane. It has the asymptotes
r= ——„' and r= —4. It is symmetric under the inter-
change r+-+ r. The two symmetric points are r=r= —1
and r=P= ', . For r=-—1, H' defines a U(1)XSU(2)
XSU(2) symmetry. Thus W preserves the SU(2)
XSU(2) symmetry. "For r= —,', unless one assumes that
H p is invariant under the U(3) X U(3) group, there is no
simple physical interpretation for this particular r
value. However, as has been emphasized by GOR,
owing to the large ri' mass (=960 MeV), this assumption
is not very useful. So we will not attach too much signi6-
cance to the point r = —,'."

GOR suggested that in reality r= —1. In fact, they
obtained

W (F1,2, 8,8)W + (F1,2, 8,8) ) (37)

W (F4,8, 8,7)W = —(F4,8, 8,7), (38)

it follows that the relative signs of t for two states with
AI"=0 and AY=1 must be the same and opposite,
respectively. We shall adopt the convention that

=+1 for er=tr A, . . . ,

for cr=E, p, . . . .

Let us now go back to Eq. (22) and consider

Pitx)=PWier)
= (PWP-t)(Pi ~&)

=W '(~-I~&)
=ti W2(Wier))
= v-f-l~),

(39)

where ti is the parity of the state in). We can see then
that Witt)= in& is an eigenstate of P with the eigen-
value ri t . According to Eq. (39), ice) will have the
same or opposite parities as in& depending on whether
n= tr, A, or u=E, p, . . . . Thus, the W transforma-
tion changes SU(3) into SU(3), and simultaneously it
changes the parities of the I'=~1, &3, . . . states. It
leaves the electromagnetic and the weak currents in-
variant. The two coordinate systems 5 and 5 connected
by 8' are physically indistinguishable. As a consequence,

r~r= —1—e.

The two solutions" r and r do not differ very much in
this case, and are perhaps not outside the error of their
determination, which was estimated to be about 25%.
On the other hand, there are other theories which de-
pend crucially on e itself. For instance, in CM, H is
assumed to be determined by self-consistency require-
ments. While we have nothing against this principle,
their final result turns out to be a relation between the
Cabibbo angle and the parameter t.".

tansy= e/(3 —2e), (43)

which cannot be reconciled with Eq. (42). In this con-
nection we would like to call attention to a basic assump-
tion used in CM, namely,

X' = 0
.0

0 0
P 0
0 P.

(44)

We notice that this K'- is not invariant under W,
although the electromagnetic current [also, approxi-

'0 That the SU(2) XSU(2) symmetry is invariant under W was
found some time ago in collaboration with N. I'"uchs."Compare with Ref. 8, where a different viewpoint is taken."It may be asked why GOR obtained only one solution for r.
If we write I;=Wu;W ', then there are two solutions to the
matrix element (n

~

44; ~Pl, corresponding to the inherent ambiguity
between using u; or 9;.
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mately, H=Hp (u—p v2—up)$ is. For this reason, we
believe that the validity of Eq. (44) is rather doubtful.
In another interesting paper Oakes, "using a different
approach, obtained yet another relation between the
Cabibbo angle and e. It is

tan'0= 2p/(3 —2p),

which is again incompatible with the transformation
6~

We would also like to comment briefly on the recent
work of Okubo and Mathur. ' They proposed to treat
the parameter r in Eq. (2) as a continuous parameter, H'= nLup+v2ru, + (Q—,')sup). (46)

so that physical quantities will be functions of r. These
functions f(r) are required to satisfy constraints at
particular values of r, when the Hamiltonian exhibits
certain symmetries. For instance, they wrote m '
= (1+r)mp'(r), since for r =—I, we have SU(2) XSU(2)
symmetry and hence zero pion mass. The transforma-
tion induced by 8" affects this argument to the extent
that the functions used must satisfy f(r) = f(r).

So far we have confined our discussion to Hamil-
tonians of the form H'=n(up+&2rup). It was first pro-
posed" by the authors of Ref. 4 that H' be written as

SU(3) X SU(3)

L'-enerators

~ SU (3) (S- frame)II--
1

1,2, 8

KU {3) {8'-frame)

F
5 5 5 5;-F,F,-F, F

1,2, 3, 8 5 4

States

Op, rators

!ce)

0

!o) = W!o&

-1
5=W OW

Parity
-1

P=WPW

E. N. Current

Weak Current

e pm'

weakJ

e ~ m ~

Approximate
, U(1) X SU(2) X SU(2)

I

(3,3)+(3,3)
Representation

{u ~ v )i i (u, v)
3.
' 1.

(- —(u +2/Y u ),-u1
o 8 ' 1,2, 3'

7s —(2/2u -u );

— -(v1
0 8 * 1,2, 3

-v) )

! u(l) x su(2) !

FIG. 1. Schematic representation of SU(3))&S(3) symmetry breaking. The notation follows that in Sec. III.

"R. Oakes, Phys. Letters 298, 683 (1969).
' See also R. Oakes, Ref. 13, and Phys. Letters 30B, 262 (1969), where q —& 37i- is analyzed using a Hamiltonian of the form of

Eq («).
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The real coefficient s, which represents a genuine break-
ing of isospin symmetry in strong interaction, should

be of the order of 10 '. Now if we admit Hamiltonians
of the type given in Eq. (46), we should consider rota-
tions which give

APPENDIX A

In this appendix we wish to examine rotations R
which preserve the form of H'. )See Eq. (3)7. As we
discussed in Sec. I, R must leave the charge direction
invariant. They are therefore generated by the operators

RH'R '=H'= nPuo+%2rua+(+32)su37 . (47) LEq (4)7
(Qr. ,Ur, ) X (Qi~, Uz) (A1)

Again we should limit R to rotations that commute with
the charge operator. In Appendix B we 6nd that there
are altogether three possible choices for R."The trans-
formation law (r,s) —+ (r,s) is contained in Eq. (B22).
If we take the "physical" values r= —1+10 ', s= 10 ',
then, corresponding to the three solutions, we have

gi-', O'L

exp(iC IQi,)= 0
. 0

0
(A2)

Now, in the 3X3 matrix representation, a rotation of
angle C» generated by Ql, is

It seems clear that no invariant meaning can be assigned
to a "small" isospin breaking term in II'. Although all

(r,s) values in Eq. (48) give necessarily the same physi-
cal consequences as (r,s), the ambiguties exhibited make
it very difficult to accept H' in the form of Eq. (46).

V. CONCLUDING REMARKS

In this paper we have discussed an inherent ambiguity
of the SU(3) XSU(3) symmetry when broken down to
the U(1)XSU(2) symmetry. This ambiguity corre-
sponds to two equivalent choices of coordinates in the
SU(3)XSU(3) space. Namely, in the intermediate
step between SU(3)XSU(3) and U(1)XSU(2), either
SU(3) or SU(3) can be used as a reference frame to
specify physical states. We showed that the electro-
magnetic and weak currents remain invariant under this
transformation. In the particular case when the sym-
metry is broken by H' as in Eq. (2), we have seen that
this ambiguity leads to the equivalence of r and r as
related in Eq. (12). The possibility that SU(3)XSU(3)
is actually broken down to U(1) X U(1) (hypercharge
and charge) is also examined. We find that such a break-
down, although possible, would be very dificult to
understand from an esthetic point of view.

Finally, we schematically summarize our results in
Fig. 1.The items there are self-explanatory. The possibil-
ity of an approximate U(1)XSU(2) XSU(2) "intermedi-
ate symmetry" is symbolically represented by a separate
"route, "since this is invariant under the transformation
from S to 5.
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while a rotation of angle 01. along the direction n in the
UL, -spin space is

1 0 0
exp(i8r6' Ur) = 0

(
~ i )

~

exp i—,'91,8 e (A3)

r ~
CX

3C'= 0.0
0 0
6. 0
0 b.

(AS)

where a and b are real. LCompare Eq. (7)7. Let us first
consider the rotation

8'= exp( iC iiQ—ii)aC' exp(iC'rQI )

0 0
~~—'3(cl.—C» 0

0 b&
—ss (41.—C a)

(A6)

Since, according to Eq. (A3), the matrix element
ae" (~~ ~» will not be affected by the rotations 611, and
0~, we have

ae':(~L—~» =- a. (A7)

The reality condition on a yields two possible .olutions:

(I) Cr, =Cia, a=a.

(II) Cr, =C g+2s. , a= —a. (A9)

Now the tran. sformations (A4) leave the determinant
of K' invariant, independent of the angles of rotation.
It follows from Eqs. (A8) and (A9) that there are only
two possibilities:

,

8
3C'= BC'= 0

.0
0
0
b.

(A10)

Similar expressions hold for the rotations Cqq and Og.

The most general rotation on II' is then

H'= exp( —i8iifl' Uii) exp( —iC iiQii)H'
Xexp(iC»Qr) exp(i8rk UI) . (A4)

In terms of 3&(3 matrix, 3C' is required to take the form

"In I, because of the more restrictive conditions, there are only
two possible solutions.

—u 0 0
(II) 3C' = 0 —a 0. 0 0

(A11)
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From Eq. (A11), it is very easy to convince oneself that
the only rotation which makes X,'~BC' is the finite
rotation W given in Eq. (9), or the equivalent ones
given in Eq. (11).

APPENDIX B

We now consider symmetry-breaking Hamiltonians
of the form $Eq. (46)]

(1) X= )=0, op-+ o.
p (813)

(2) g=0, Oi, ——Ozz ——~, op ~ —op. (814)

Corresponding to 8~= 8~, we may study the transforma-
tion of o.3. We obtain, in terms of the definition

o.„=hoi+$op+gop, X'+P+g'=1, (812)

two possible solutions:

II =uLup+V2rus+ (4—') sup]

and the general rotation R [Eq. (47)]

(81) Corresponding to OI. =Ozz+2zr, we have similarly

(1) zz= 0, o.p -+ o, (815)

EH'2 —'=H'=aLup+V2rup+(Qpo)sup]. (82)

a 0 0
X'= 0 b 0

.0 0 c,

a 0 0
3C'= 0 b 0

I.O 0 c,'

(83)

(84)

Again R is generated by the operators which commute
with charge and are given in Eq. (A1). In terms of 3&&3

matrices, H' and II' can be written as a 0 0 a 0
0 b 0 —+ 0 —b

i.0 0 c. (0 0
a 0
0 c

i.0 0

0
0
—c

0
0
b.

0
.0

0 0
—c 0
0 —b.

(817)

Turning to Eq. (86), where Cz, = Czi+2zr, we have

(2) X= )=0, Or, = —Ozz=zr, op —+ —op. (816)

Summarizing, we see that, for the case Cl, = Cg, there
are three nontrivial solutions:

a=a,
(II) Cc ——Czz+ —P,zr, a= —a.

(83)
Since

Using Eq. (A6), we find again two solutions from rota-
tions generated by Qc and Qzi'.

JI~—g
—i4 RQRQQ~gi4 LQL

—a 0 0
0 —ib 0

(0 0 —ic,
(818)

Let us concentrate on case l, when a=a. The rota-
tions generated by UL, and Uz can now be restricted
to 2 X2 matrices. We have

b 0 b 0
=exp( —zOzzn' Uzz) exp(iOcrz Uc)

0 c 0 c

b 0= (cos-,'Oz~ —z sin —',Ozzo„)
0 c

X (cos-,'Oc+i sin-,'Oco„), (87)

(819)

a 0 0 —a
0 b 0 —+ 0
.0 0 c. , 0

—a
0

i 0

0 0'
0

0 c.
0 0
—c 0
0 bg

I
—a
0

. 0
I' —a

0. 0

0 0
b 0
0 —c.
0 0
c 0 .(820)
0 —b.

the discussions following Eq. (87) can be taken over
completely. There are then four nontrivial solutions for
the case Cl.= Cg+~3m".

where a„=e n, o- .=e n'. Let us write

0
=-,'(b+c)op+-', (b —c)op.

0 c
0 0
—b 0
0 c,

0 0~

c 0
0 b.

'a 0 0 —a
0 b 0 ~ b

i.0 0 ci . 0
a
0

i0

Then, since the form of Eq. (87) is true for arbitrary
b and c, we may discuss the transformation of o-0 and o-3

separately. Considering o-o, we obtain the condition ( —a 0 0
0 b 0 . (821). 0 0 —c.(89)eX&'= o'

Actually, out of the seven solutions in Eqs. (817) and
(820), only three are independent, which may be taken

(Bg)

further, either

ol

~1.=4, ~o —+ oo,

Or, = Ozz+2zr, op —+ —op.

(810)

(811)

Note that the erst is 8' and the third is the X transfor-
mation defined in Paper I.All the other transformations
can be obtained by successive applications of those
listed in Eq. (821).
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The solutions (821) lead to the following relations
between (7',s) and (r,s):

2 —r 1—2r —s

S
1+.4r

2(37+8)

—1+2r—2$
. (822)

( )

. 1—2r+2s .
We have already discussed the numerical results that
follow from Eq. (822) in Sec. IV in the text.

Finally, we give the transformation properties of the
SU(3))&SU(3) generators under Eq. (821). For 8',
this was already done in Sec. III. It is easy to verify
that the second transformation in Eq. (821) corre-
sponds to exp(67rF7), which is the finite rotation in
SU(3) space that carries the isospin into the V spin.
This shows very clearly how the relative weights of U3
and U8 in Eq. (81) get changed. Note that, in this case,
the Cabibbo - angle undergoes the transformation:

8~ 2277+8. We emphasize that an "intrinsic" tadpole
model at the SU(3) level, if it contains a "small"
isospin-breaking term, is rendered ambiguous by this
transformation. Physically, this says that if F1,2, 4 5 are
not conserved, then the statement that F4,5 are "less"
conserved than J 1,2 does not have an invariant meaning.
Lastly, under X, the generators transform according to

X
(F8,8,4, 5j F8,8, 4, 5 ) ~ (F6,8, 4, 5j F8;8,4, 5 ) y

X
(F1,2,6,7 j F1,2,6, 7 ) ~ ( F2

1
F1 y F7 g F6

F2, Fi, F—7, —F6) . (823)

This means that if F1 and Ii~ are not conserved, then
we may yet construct a third SU(3) group with the
generators ( F2', Fi'—, F8, F4, F5& F7', F6', F8)—. In the
framework in which only the U(1)X U(1) symmetry is
preserved, this SU(3) is not distinguishable from the
"ordinary" SU(3).
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Spontaneous Breakdown of Chiral Symmetry with Linear Realizations
for Asymptotic Fields
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A method for considering the spontaneous breakdown of chiral symmetry without recourse to a particular
Lagrangian model is presented. The physical or asymptotic fields are assigned to linear representations of
chiral SUSXSU3 together with appropriate c-number addition to the scalar 6elds. This c-number addition
manifests the spontaneous breakdown of the symmetry. Expansion of the interpolating 6elds in terms of
asymptotic 6elds is introduced, which, together with the spontaneously broken chiral symmetry and the
arbitrariness in the choice of interpolating 6eMs, produces sum rules relating leptonic, semileptonic, and
strong-coupling constants of 0+ and 1 mesons. Results similar to those of current algebra are obtained with
some notable differences. Among the most important is the appearance of the soft-meson amplitude as a con-
sequence of our mechanism of spontaneous breakdown. We are thereby led, in an exceedingly simple way,
to generalized soft-meson sum rules. In particular, new results are given for the semileptonic decays of the
K meson, and generalized relations among strong-coupling constants and leptonic decays of 1+ mesons are
del lved.

I. INTRODUCTION
' 'T is widely recognized that any local operator having
. . the same quantum numbers as an asymptotic 6eld
can be chosen as an interpolating, Heisenberg 6eld for
that asymptotic 6eld. ' Although the transition matrix
may take different forms off the mass shell (depending
upon the choice of the interpolating field), it is unique

*Permanent address: Department of Physics, Kyoto Uni-
vers1ty, Japan.' K. Nishijima, Phys. Rev. 133, B204 (1964), and references
therein; see also K. Nishijima, High Energy Physics and Ele-
mentary I'articles (International Atomic Energy Agency, Vienna,
1965), p. 137.

on the mass shell. Thus, for example, any isovector,
pseudoscalar, local operator can be used as an inter-
polating 6eld for the pion. Speci6cally, one may choose
the divergence of the axial-vector current as its inter-
polating 6eld. This so-called partially conserved axial-
vcctoi clllTcIlt (PCAC) condition llas bccll cxtcIisivcly
employed in the current-algebra approach' to chiral

~ M. Gell-Mann and M. Levy, Nuovo Cimento 16, 705 (1.960);
Y. Nambu, Phys. Rev. Letters 4, 380 (1960).' S. L. Adler and R. F. Dashen, Current Algebras and Applica-
tions to I'article E'hysics (Benjamin, New York, 1968); B. Renner,
Cgrrent Algebras and Their Applications (Pergamon, Oxford,
England, 1968).


