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The spin structure of three-particle vertices may be determined from the quark model. Using these SU (6) w
vertices in the Van Hove model, we derive a Reggeized scattering amplitude. In addition to Regge poles, there
are necessarily fixed Regge cuts in both fermion and boson exchange amplitudes. The magnitudes of the
pole and cut terms in an entire class of SU (6)-related reactions are determined by their magnitudes in a
single reaction. As an example, we explain the observed presence or absence of wrong-signature nonsense dips
in a class of reactions involving vector-meson exchange.

INTRODUCTION

HE SU(3) symmetry of the quark model has been
extremely useful in classifying strongly inter-
acting particles and in predicting the relative strengths
of their couplings. Spin has been incorporated in the
model to give a successful classification of hadron states
under SU(6).! The most natural way of treating spin at
three-particle vertices yields the symmetry SU(6)w.23
While this symmetry correctly describes many vertices,?
there has previously been no successful application to
scattering* amplitudes.

In this paper we determine the form of the Regge
amplitude which results from assuming SU(6)w as a
vertex symmetry. Knowledge of vertices involving a
spin-J resonance enables us to construct the Feynman
amplitude for the exchange of the resonance. Then,
using the Van Hove model,® we can express the Regge
amplitude as a formal sum (on J) of such resonance
exchanges. Hence in this model the form of the Regge
amplitude is determined by the assumption of SU(6)w-
symmetric vertices. We find that Regge poles are, in
general, accompanied by fixed Regge cuts, with branch
points at the zero-energy intercept of the trajectory.
These fixed cuts are similar to those suggested pre-
viously® for fermion exchange amplitudes as a conse-
quence of the absence of parity-doubled fermion states.

* Work supported in part by the U. S. Atomic Energy Com-
mission under Contract No. AT (11-1)-68 of the San Francisco
Operations Office, U. S. Atomic Energy Commission.

1 This paper supersedes R. Carlitz, Caltech Report No. CALT-
68-202, 1969 (unpublished). In that paper, construction of a
Regge amplitude from SU(6)w vertices was proposed, but the
important role of Regge cuts was not recognized.

1 See, e.g., rapporteur talks of B. French and A. Donnachie, in
Proceedings of the Fourieenth International Conference om High
Energy Physics (CERN, Geneva, 1968).

2 SU (6)w was first proposed by H. J. Lipkin and S. Meshkov,
Phys. Rev. Letters 14, 670 (1965).

8 A good review of SU (6)w is given by H. Harari, in Lectures in
Theoretical Physics (Colorado U.P., Boulder, Colo., 1965),
Vol. VIII-B.

4SU (6)w is, of course, meaningless for noncollinear processes.
If we admit the idea of Regge-pole dominance and factorization,
we can see why it does not work for collinear processes either. This
is because SU(6)w relates spin-nonflip amplitudes to flip-flip
amplitudes, and the latter vanish as a consequence of factorization.

5 L. Van Hove, Phys. Letters 24B, 183 (1967); R. P. Feynman,
Caltech lecture, 1967 (unpublished).

6 R. Carlitz and M. Kislinger, Phys. Rev. Letters 24, 186

(1970).

The fixed cuts found here for meson (quark-antiquark)
exchange amplitudes may be viewed as a consequence
of the absence of parity-doubled quarks.”

The presence of significant fixed-cut terms has im-
portant experimental consequences. The shrinkage
characteristic of a Regge trajectory with normal slope
will be absent in those amplitudes which have fixed cuts,
and there will be no dips at wrong-signature nonsense
points along the trajectory. Given the magnitudes of
pole and cut terms in some reaction, we are able to
predict the magnitudes of these terms for a whole class
of SU(6)-related reactions. Applying our approach to
a set of vector-meson-exchange processes, we find that
the numerical importance of cut terms—as indicated
by the presence or absence of wrong-signature nonsense
dips in differential cross sections—is in accord with our
predictions.

An outline of the paper is as follows. In Sec. I we show
that SU(6)w is the natural vertex symmetry arising
from the quark model and remind the reader how to
calculate SU(6) vertices. Construction of a Regge
amplitude from the SU(6)w vertices is carried out in
Sec. II. Some consequences of our approach are given
in Sec. ITI, with particular attention to the question of
wrong-signature nonsense dips. A discussion of our work
is given in Sec. IV with some suggestions for further
research on this problem.

I. QUARK MODEL AND SU(6)w

The classification of baryons as ¢ggg composites and
mesons as ¢7 composites implies that any SU(3)-
invariant vertex may be pictorially represented by
quark graphs. (See Fig. 1.) These graphs are drawn
according to the following rules. (a) Each quark or
antiquark is represented by a directed line. (b) A
baryon or antibaryon is represented by three lines
running in the same direction. (c) A meson is repre-
sented by two lines running in opposite directions.
Zweig® suggested an additional rule: (d) The quark and

7See R. Delbourgo and H. Rashid, Phys. Rev. 176, 2074
(1968). They give a model with SU (6)w-symmetric vertices and
no Regge cuts, but find it necessary to use parity-doubled quarks
to eliminate 4/¢ singularities. In our model, these singularities
are canceled by the cut terms.

8 G. Zweig, CERN Report No. Th-402, 1964 (unpublished).
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2 REGGE AMPLITUDE ARISING FROM SU(6)w VERTICES

F16. 1. Quark graph for meson-
baryon vertex.

antiquark lines of a single meson should not be con-
nected. (This rule accounts for the absence of the decay
¢— pr and the weak coupling of the ¢ to nucleons.)
Note that the rules (a)-(d) are precisely those used by
Harari® and by Rosner!® to construct their duality
diagrams.

We wish to incorporate spin into the quark-graph
picture in the simplest possible fashion. We choose a
Lorentz frame in which the particle momenta are
collinear along the z axis. In such a frame, we assume
that the spins of quarks @, b, and d (in Fig. 1) are un-
changed in the reaction. How, then, must the spins of
the annihilating quarks ¢ and e be related? The parity
of a ¢7 pair is —(—1)%, so if parity is to be conserved,
¢. and g, must annihilate in an odd angular momentum
state. Then angular momentum conservation requires
that L=1 and that the quark spins form a triplet. If,
furthermore, the transverse motions of the annihilating
quarks may be neglected, then the quark momenta lie
along the z axis, so L,=0 and hence S.=0.

Thus we see that the ¢7 state annihilates with the
quark spins in a triplet state, S=1, S,=0. This is
exactly the result given by the collinear symmetry
SU(2)w.? Taking into account the SU(3) quantum
numbers of the quarks, we obtain SU(6)w as the natural
vertex symmetry of the quark model.’* Note that the
derivation above is independent of what collinear frame
we choose, since SU(2)w states are invariant under
boosts along the z axis.

Choosing some collinear frame, it is easy to calculate
the SU(6)w-symmetric vertex functions. Let each
quark be represented by a pair of indices (a,a), where a
specifies its SU(3) nature and @ gives its spin orientation
along the z axis. In a collinear frame, the meson-baryon
vertex (Fig. 1) has the form

B (aa) (80) (yo BEe@ BOCOI 0 (54, D, 1)
The matrix
1,0 1
) o
V2\1 0

in (1) specifies that ¢, and g. annihilate in a spin state
S=1, 5.=0.

9 H. Harari, Phys. Rev. Letters 22, 562 (1969).

10 J, Rosner, Phys. Rev. Letters 22, 689 (1969).

1 Normal SU (6) is clearly not an appropriate symmetry for the
vertices, for it requires a ¢g pair to annihilate in a singlet spin state
—contrary to angular momentum and parity conservation.
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TazsiLE I. Baryon-baryon-meson vertices.

Vertex Spins® Valueb
BBP % 3 0 (1/18)(5(BPB)+4(BBP))
BBV %, —% 1 (1/9V2)(S(BVB)+(BBV)—(BBXV))

3 3 0 §(BVB)—(BBV)+(BBXV)
DBP %, 3, 0 —3(V3) (Dapye?¥7 B, P;)
DBV 3, %, 1 3(Dapye" B V75)

3, 3 O 0

3, -5 1 (1/33) (DapyeP>" B, V7;)
DDP 3, 3, 0 $(Dag,D*OP)

%: %; 0 '16 (DaﬂVDuﬁapyé)
DDV %7 %l 0 % (D-Olﬁ‘tDuﬂa V75)

35 3 1 (W (DagyDFoV75)

3, 5 0 3(DagyDoBoV )

%’ —%y 1 %\/Z(D-nﬂvDam V76)

%) %7 -1 (‘\/%) (Daﬁ‘YDa56 V’yé)

a Particle 1 is outgoing; particles 2 and 3 are incoming.
b (BPB) denotes B%gP#,BY.

Let us recall the form of the SU(6) wave functions!?
for the 56 baryons, B@®®» (o) and the 35 mesons,
M@ gy

B(ea)BY) (veym= L[ caBa By C (3 X, (M 4 Yo B Cpy X, ()
+EyaUBBVCcaxb(M)]_}-Daﬂ‘y(o’ic)abgc’i(m) . (3)

The superscript m=a+b4c¢ gives the spin projection
of the baryon. X is a two-component spinor,

1 0
XH1/2) =(O) , XCUD= <1) , )

and & ™ is a vector spinor,

£ = (3o, 1o MmN O, )
where i‘:” -
ef1=3(F1, —14,0),
eI= z(g,O,l) . : ©)
The matrix C is given by
' 01
C=w”=<—1 0) ' @

Beg and D7 are the SU(3) matrices for the octet and
decuplet:

1 1 I
— 204 ——A0 o+
V2 /6 ?
B p> ! 204 L po )
= - — —204—A noo|, (8
V2 V6 (
2
__E—— EO —_ ___A()
L V6

2 See B. W. Lee, in Particle Symmetries (Gordon and Breach,
New York, 1966).
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DW= A+t D12= (1 V3)A+,
D= (1/¥3)=*+, D22=(1/V3)A",
D= (1/4/6)2*0, D3=(1/V3)=°, 9)
D222=A—, D223= (1/\/3“)2*—,
D¥i=(1\3)E=, D®=q-.

The meson wave function is

M@ gym=P2%Co+Vge;™(c'C)as,  (10)
where
1 1
_1|-0 __.,}0 7l'+ K+ 1
V2 V6
P ! 0 ! 0 0 (11)
= - ——m't+— K )
V2 V6
K 0 2 0
- —
L V6 )
and
[ @) K]
—("+p ot +
V2
Veg= 1 (12)
# o —(w®—p% K*O
V2
L K* Ko é )

The superscript m specifies polarization for the vector-
meson nonet.

Using (3) and (10) in (1), we obtain the vertex func-
tions given in Table I. The 56-56-35 vertices are all
determined to within a single constant factor by the
SU(6)w symmetry. Similarly, the 35-35-35 vertices
may be computed from the coupling

M1 (xa) (ﬂb)M2<ﬂb) (VC)MNWD (au)Dcd .

(13)

The results are summarized in Table II.

Using the information in Tables I and II, it is a
straightforward matter to calculate the invariant vertex
functions which, in a collinear frame, reduce to those
given in the tables. These invariant vertex functions
are listed in Table II1."* Common mass factors have

TasLE II. Meson-meson-meson vertices.

Vertex Spins Value

PPV 0,0, O 3 ((P1P2V)—(P.VPy))

ViVoP 1,1, O F(V1VaP)4+(V1PV3))

ViVaVs 0,0, 0 FUV1VeVa)—(V3V2V1)
1,1, 0 F(VVeVs)—(V3Va V1))
4,0, 1 F(ViVeVs)—(V3VaV1))
0,1, -1 F((VAV2V3)—(V3V2V1))

13 We have calculated the entires in Table IIT by selecting a
complete set of invariant vertex functions, evaluating these func-

AND M. KISLINGER 2

been absorbed in the constants ¢ and d to give the
entries a simple form.

The extension of the couplings in Table III to vertices
involving Regge recurrences of the listed states is easily
made. For example, the SU(6)w-symmetric coupling
of two pseudoscalar mesons to a V recurrence (quark
spin 1) of spin J=L+1 will be

—d()M5(J) €sppyevenr(Prt p2)y(prt p2)us - - (D1t P2)us,
X ((P1PsV)—(P1VPs)).

(Here ¢ denotes the polarization of the V recurrence.)
The higher-spin indices simply couple to appropriate
momentum factors. In general, couplings for excited
states with a given quark-spin assignment may be
constructed by decomposing the spin of the states into
quark spin and orbital angular momentum and coupling
the quark spin according to SU(6)w. This will give a
unique result whenever two of the states have no
orbital excitation. In other cases there will be more than
a single coupling for each class of SU(6)-related
relations.

Note the presence in Table III of factors involving
the masses My, M5, and M 5. These factors have a simple
kinematic origin. Some of these, e.g., (M 1+M )2 —M 32,
arise because the SU(6)w symmetry relates vertices
involving different angular momenta. Other factors,
e.g., M3 in the P1P,V vertex, arise because the sym-
metry relates vertices involving vector mesons of
different helicities. The polarization vector for a vector
meson of zero helicity is proportional to 1/M y.'* Hence,
within a class of vertices related by SU(6)w, those
vertices involving a zero-helicity vector meson will
contain an extra factor of My relative to those not
involving a zero-helicity vector meson. This is the only
source of odd powers of meson masses; the angular
momentum factors will always contain factors of
(meson mass)2.

II. CONSTRUCTION OF REGGE AMPLITUDE

The presence of extra “kinematic” factors in the
vertex functions has important consequences when we
construct a Regge amplitude. In general, we find the
presence of fixed Regge cuts with branch points
coinciding with the zero-energy intercepts of the Regge
trajectories. This phenomenon has been discussed
previously for fermion exchange processes; here we find
cuts for boson or fermion exchange processes and predict
the relative strengths of the cuts in different processes.

The Van Hove model'® expresses a Regge amplitude

tions in a collinear frame, equating these values to those in
Tables I and II, and solving the resulting set of linear equations.
An alternative method would be to construct relativistic wave
functions and write down a covariant version of (1). See B. Sakita
and K. C. Wali, Phys. Rev. 139, B1355 (1965).

“Tor a meson with four-momentum (£; 0,0,q), F2—g?=My?,
the normalized polarization vector is &= (¢; 0,0,£)/My.

15 Details of the Van Hove construction are discussed by
R. Blankenbecler and R. L. Sugar, Phys. Rev. 168, 1597 (1968);
see also Ref. 6.
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TasLE III. Invariant vertex functions.

Vertex Function®
BBP $eL (M 1+M )2 — M 2] (iirysus) (S(BPB)~+(BBP)) ~ ~ ~
BBV ge{Le- (prp2) (dtzur) LM 1+ M) (S(BVB)+-(BBV)— (BB)XV)) —3M3(BVB)—(BBV)+(BB)(V))]
— (- eua) (M1 +M2)*— M1 (S(BVB)+(BBV)—(BBXV)))

DBP F3cM1p2, (1 tt2) (Dapy €7 B PY;)
DBV —3{L(M1+M2)2—M 5 Jes (diawystie) — pro(dhawysuz) 3+ (pr+po2)
F2M P2y (v - exystin) } (DapyB47B, V75)

DDP c{2p2u (i1 wystay) prv—[ (M 1+M3)2— M 2] (81 wystea) } (Dapy D*F2PY5)
DDV LM +Mo)2— M 2] (11y - esthan) — (M1 +Mo— M) (1 2,) €5+ (P14 p2)

— 22, (9 Y + €sthny) prot+2p2 (W thes) Prvess (Pr+pa) / (M1+Mo+M3)} (Dapy DV 75)
PP,V —dM3e3+ (p1+4p2) (PLPoV)—(P1VPy))
V1V,oP —1de! 7Py, (Pr+pa)verpers™ ((ViVaP) (V1P V)
ViVaVs LM 3(e* &) (&5 (Pr+p2)) —M2(a*- &) [e2+ (ps+p1) ]—M1(e2: &) Ler*- (pa—p3)]

Fea*- (pr—pa)er- (Pstpr)est (pr+p2)/2(M1+Mo+M3) J(V1Ve Vi) — (V5 Vo V1))

s M; and pi refer to the mass and momentum of the ith particle; =1, 2, 3. Particle 1 is outgoing; particles 2 and 3 are incoming.

as a formal sum of Feynman diagrams for the exchange = —iV2d(J) €1 7% ) oa*P (*) y P ()P ryus* * * Pwyuy

of all resonances along a given trajectory.'® Consider, X27 €y prugeeny, (14)

for example, the reaction . ..
Pe; for a p* of spin J. The mmp* coupling is

_vz_d(J)mp*(J)P(ﬂr)mP(W)nz' : 'P(w)uJZJé(P*)uxuz'"u./' (15)

mediated by p exchange (see Fig. 2). The coupling at The Feynman diagram for the exchange of a p* of
a wp*r vertex is spin J is therefore

41— '+,

1+' : 'pl-‘J+Tl-‘l"'l-¢JiVl""‘J(J)p5_pV2—' : ‘Pvz—Qve(w)a*ea””a

M(JT) =2id2(J)ym(J )47 e

t—m?(J)
2id*(J)m(J)47 ' , 51 )
= €(w)a P—ea v0— @ +, ), 16
t—m2(J) e J ops~ Shp7) (16)
where T,.,®/[t—m?(J)] is the Feynman propagator ) o
for a particle of spin J, using the abbreviation
prep Zp= 2ie(wya*Qyp~ 8BTS, 1
G)J(P+’P_)=4J(‘P+l \P_l)JPJ< ___) , (17) 8 1€ (w) Q*rP € ( 9)
Fanib The contour C is indicated in Fig. 3. If we assume that
gh s .
and f=Q% We assume that m.=m, to simplify the the ” is a linear function of J,
kinematics. Summing over J and transforming the sum m*(J)=(J —ao)/a, (20)

into a contour integral gives . .
gral g and that d*(J) is analytic, then we can open the contour

m=y mJ) in the J plane obtaining contributions from the pole
J at m2(J)=1 and the cut with branch point J=a,. This

ANmJ) 1 0 @s(pF, —p)
=1iZg / dJ - - , (18)
¢ 1—m2(J) J dps  sinmJ J] &, 0
7\ o
. . L ()
F16. 2. Kinematics for mr — 7w.
/ - P* \

+ A N

T/ (pY (pI\T

Fic. 3. Dashed line—initial contour; solid line—opened contour.
16 There is an ambiguity in the Van Hove model of Reggeization
corresponding to the ambiguity in the behavior of the propagator
and vertex functions off the mass shell. We eliminate this am-  including in the Van Hove sum (16) terms whose only tdependence
biguity by choosing to Reggeize {-channel helicity amplitudes and  is in the denominator t—m (N2
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gives

rd?(@) (/o' 1 9 @0
M= Zg— —®s(pt, —P“)—Zﬁ/ dJ

sinmra J dpg

A(NL-—m* )] 1 9

+,—p7), (21
[t—m?*(J)] sinw] J apﬂ—@J([) 7, @
where
a(t)=aota't. (22)
In the limit s= (pt4p7)2 >0,
wd®(a())b(a(t))a/sx 1
. («(b(a()a's Zapiti
sinmra(t)
ag 2 —m2 J 1/2b ] J—1
_z, B+/ a*(J)L—m*(J)J*b(J)s )
—o [t—m?(J)] sinw
where
b(J)=T(2J+1)/[T(T+1)]. (24)

It is clear that (23) consists of a moving Regge-pole
term and a fixed Regge cut. Nonsense couplings along
the trajectories are presumably eliminated in the usual
way by zeros of d2(J) at J=0, —1, —2, .. .. Therefore,
for negative {, we can approximate

dz(a(l))b(a(t)lz: _

sinwre(f)

do. (25)

Then (23) becomes

Me~wdoZgpat[ (/1) erf((e't Ins) /B se =1
+ (a7 Ins)—1/25%0—1]

Sao—l

2t(v/m)(a’ Ins)3/2

(oG]l oo

In Eq. (18) it is clear that the fixed cut arises from
the presence of an odd power of (/) and the assump-
tion that d2(J) is even in m(J), i.e., analytic in J. If,
for example, d%(J)=m(J)di(J), with di(J) analytic,
then the 7 — 7w amplitude would have no fixed cuts.
In this case, however, there would be fixed cuts in the
amplitudes 7r — 77 and mw— 7w. Hence the presence
of fixed cuts in some amplitudes is inescapable.

wdoZps* { (V)se®—1+

III. EXPERIMENTAL CONSEQUENCES

The presence of fixed Regge cuts has three important
experimental consequences. (a) Asymptotic behavior:
At sufficiently high energies, the Regge-cut term gives
an energy falloff independent of .7 (b) Polarization:

17 This may not occur until quite high energies. From Eq. (26)

we see that the leading term in the asymptotic expansion of the
cut dominates only when ¢ Ins>>1.

R. CARLITZ AND M. KISLINGER
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When signature is incorporated in the model by the
replacement

m(t’zl) - %[m(trzt)+ Tf)n(l, _Zl).__l )

Regge-pole terms will acquire the usual Regge phase,
but cut terms will have some complicated varying
phase. Thus there can be interference between the pole
and cut terms, and exchange of a single Regge trajectory
will be able to give nonzero polarization. (c) Wrong-
signature nonsense dips: The contribution from a
single Regge-pole term vanishes when the trajectory
passes through a nonsense value of the wrong signature.
The cut term does not vanish, however, so an amplitude
with a significant cut term will show no dip at wrong-
signature nonsense points.!3

A qualitative discussion of the third point is easy to
make. We will restrict our attention to processes
involving vector-meson exchange. In Sec. I we gave a
simple criterion for determining the presence of odd
powers of My in vector-meson vertices. The argument
required examining the vertex in a collinear frame.
Note that the t-channel c.m. frame is collinear for both
vertices, so we can apply the argument of Sec. I directly
to t-channel helicity amplitudes. The factors of #(J)
which will appear in #-channel helicity amplitudes
involving various p* or w™ vertices are given in Table IV.
Assuming the absence of a cut term in some particular
helicity amplitude, this table allows us to predict the
presence or absence of cut terms in other helicity
amplitudes. In general, a reaction will have no cuts in
some amplitudes and cuts in others. We must pay
attention to the relative magnitudes of the different
amplitudes in order to assess the importance of cut
terms in any given process.

In Table V we tabulate the magnitudes of the helicity
amplitudes and the factors of m(J) which lead to Regge
cuts for a number of reactions!® involving the vertices

@n

TaBLE IV. Odd powers of #(J) in vector-meson vertices.

Vertex V* helicity m(J) factors
NNo* +1 c()

0 m(J)e(J)
ANp* +1e c)
NNw* +1 c(J)

0 m(J)ec(J)
wrp* (0 m(J)d(J)
Tpw* +1b a)
Twp* +1b a(J)
n0p* +1b a)

a Only helicities allowed by SU (6)w.
b Only helicities allowed by parity and angular momentum.

18 Note that our approach to wrong-signature nonsense dips is
compatible with the argument that the exchange of a pair of ex-
change-degenerate trajectories will produce no dip.

19 Photoproduction processes are included in Table V, assuming
vector dominance. This is an unambiguous procedure for the re-
actions listed because the VVP vertex is automatically gauge in-

variant.



2 REGGE AMPLITUDE ARISING FROM SU(6)y VERTICES

341

TaBLE V. Wrong-signature nonsense dips for vector-meson exchange (see Ref. 19).

Relative
Reaction Exchange Helicities magnitude Cut Dip
TP — 1% p 1,0 SV2(v/Hg(J) none
0,0 3VIm(JN)g(J) weak yes
TP — wn p 1,1 Stg(J)/m(J) strong} no
0,1 3(VDg(J) none
atp — oAt p 13, 9,0 6(v/)g(J) none
13, —1),0 28 (v/)g ) none} yes
7tp — wATt ) 13, 9,1 3V2tg(J) /m(J) strong} o
1G, —9,1 (WO6)tg(J)/m(J) strong
w0p — p'% I 11 @B/ V2)tg(J)/m(J) strong .
0,1 9/V2) (W1 g(J) none} yes
pp — 7P ® 1,1 @/V2)tg(T)/m(J) strong b
0,1 (O/V2) (W1)g () none} yes
b —np I L1 (5/4/6)tg(J) /m(J) Strong} noe
0,1 (3/4/6)(\/1)g(J) none
wp— 7t p 1,1 Stg(J)/m(J) strong} 4
0,1 3(Vg) none no

s (do/dt) (r¥p — p*p) +(da/dt) (w™p — p~p) —(do/dt) (v~ — p'n).
A

o, bnd .
G DT deyay (yn — w1,

of Table IV. The relative magnitudes of the contribu-
tion of a spin-J V* exchange to the various /-channel
helicity amplitudes are given by

Plt=m?(J), )= ViOV,0e 0% WG().  (28)

Vi® and V™ are the SU(6)w vertex coefficients from
Tables I and II, and ;™ and e, specify the orienta-
tion of the quark spin of the V* at vertices 1 and 2,
respectively, in the ¢-channel c.m. system. Equation (28)
is obvious for J =1 and is valid for arbitrary J because
the higher-spin indices always couple to additional
momentum factors at each vertex. In the limit s—o,

[ 1™ 0] — | &% @ | /VIINHI
In Table V, then, we tabulate simply
| VOV ®e(T)d(T) NINHE | |
For convenience, we have defined
g(N)=c(1)d(J)/36m(7]).

Genuine kinematic factors (kinematics of 7V — 7N are
assumed for all reactions listed) are tabulated as /f or .
The factors of m(J) induced by SU(6)w are determined
from Table IV and tabulated in the appropriate
helicity amplitudes.

The qualitative features of the data for the reaction
7~ p— 7w indicate that the reaction is dominated by
a Regge pole in the #-channel helicity-1 amplitude.
Therefore, the function g(J) in Table V must be approxi-
mately even in m(J), i.e., analytic in J, so that the
helicity-1 amplitude is purely a Regge-pole term while
the helicity-0 amplitude contains a Regge cut as well.
This cut arises from the presence in the amplitude of a
factor m(J) and is referred to in Table V as a weak cut.

As can be seen in (26), the contribution to the scattering
amplitude of a weak cut [m(J)g(J)] at {=0 is sup-
pressed by a factor (wa’ Ins)~/2 relative to a pole term
[g(J)]. A cut arising from the presence of a factor
1/m(J) is referred to as a strong cut. The magnitude of
a strong cut [g(J)/m(J)] is larger than that of a weak
cut by a factor of 2o’ Ins.

Now in Table V we see that the helicity-1 amplitude
in #~p—wn contains a strong cut with a numerical
coefficient larger than that for the pole term in the
helicity-0 amplitude. Therefore, in this reaction, the
cut effects should be appreciable and we expect no
wrong-signature nonsense dip. Proceeding in this
manner, we may make the other predictions given in
the last column of Table V. These predictions agree
with experiment for all the reactions listed.20

IV. DISCUSSION

The qualitative discussion above should be largely
unaffected by the manner in which the SU(6) symmetry
of our theory is broken. Symmetry breaking will alter
the SU(3) factors and numerical coefficients in Table
III, but will not affect the mass factors, which arise
solely from kinematic considerations. In Table V it is
apparent that the question of dip or no dip depends
primarily on these mass factors. In a quantitative fit of
differential cross sections and polarization phenomena,
symmetry-breaking effects will be important and a more
detailed theory will be necessary.

» A summary of the data and an empirical rule for the presence
of wrong-signature nonsense dips in vector exchange processes is
given in a review talk on photoproduction by H. Harari, in Pro-
ceedings of the Fourth International Symposium on Electron and
Photon Interactions at High Energies, Liverpool, England, 1969
(unpublished).
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Aside from symmetry breaking, an important
question concerns the relation of our work to duality.
Since both schemes are based on identical quark graphs,
it seems likely that they may be fused in a unified
approach. After completing our work on the manner in
which SU(6)w leads to fixed Regge cuts, we learned that
Bardakci and Halpern?! have, in fact, constructed a dual
amplitude containing fixed cuts and have proposed that
this amplitude be utilized in the quark model. The
leading trajectory in their model couples according to

2 K. Bardakci and M. B. Halpern, Phys. Rev. Letters 24, 428
(1970).
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SU(6)w in the manner we have described. Ellis?® has
also investigated this problem, which we expect to open
a fruitful area of new research.
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An inherent ambiguity of broken SU (3) X.SU (3) symmetry is discussed. It is shown to arise from a discrete
unitary transformation in the SU(3) XSU! (3) space. For Hamiltonian models for which the symmetry-
breaking term transforms like the (3,3)+ (3,3) representation, we find that, in general, there are two such
terms which describe the same physical system. Some consequences of this result are discussed.

I. INTRODUCTION AND GENERAL DISCUSSION

RECENTLY the significance of the chiral SU(3)
X SU(3) symmetry has been clarified greatly by
Glashow and Weinberg,! and by Gell-Mann, Oakes, and
Renner.? They proposed that the strong-interaction
Hamiltonian density should be written as

H=H+H', 1)

where H is invariant under SU(3) X SU(3) rotations,?
and the symmetry-breaking term H’ is considered to
conserve the U(1)XSU(2) symmetry and to have
definite transformation properties under the SU(3)
XSU(3) group. In particular, GOR suggest that the
simplest form for H’ is

H’Z Ol(Mo‘{‘\/Z—fMg) , (2)

where a and 7 are real parameters, and #;,7=0, 1, ..., 8,
together with v;, transform like the (3,3)+(3,3) repre-
sentation of SU(3)X.SU(3). There may also be terms
transforming like (1,8)-+(8,1), (8,8), etc. However, so
far, very little is known about these other possibilities.

* Supported in part by the U. S. Atomic Energy Commission.

1S. Glashow and S. Weinberg, Phys. Rev. Letters 20, 224

1968).

( 2 M. Gell-Mann, R. Oakes, and B. Renner, Phys. Rev. 175,
2195 (1968). This paper will be referred to as GOR.

3 The notation used in this paper will be as follows. For the
‘“charges” of the vector and axial vector currents, we write
Fy ...gand Fy, ... The generators of the “left” and “right”
SU (3)’s are then % (F;£F;5). Also, we use Y5, I3, etc., to denote
the axial counterpart of V,Is, etc.

In the following we will concentrate on Eq. (2), but
will comment on the other choices when appropriate.

Now, as has been emphasized by Cabibbo and
Maiani,* the directions in the SU(3) X SU(3) space are
not fixed a priori. Indeed, there are an infinite number
of Hamiltonians which describe the same hadronic
world. These systems are connected by arbitrary rota-
tions R in the SU(3) XSU(3) space. Let us denote by
S the system described by Eq. (2). Then the system S,
in which a state |@) in .S becomes R|a) and an operator
O becomes ROR™!, is completely equivalent to S.
Physically, the unitary transformation from S to S
means that we must redefine internal quantum numbers
of the hadronic states, etc.

What are the effects of the electromagnetic and weak
interactions? As far as the hadrons are concerned, they
may be regarded as external fields. In considering rota-
tions in the hadronic world, we should leave the direc-
tions defined by the electromagnetic and the weak®
interactions unchanged. However, insofar as the direc-
tion of the hypercharge is not fixed, there is no @ priori
value for the Cabibbo angle either. Thus we may regard
the direction of the weak currents as arbitrary in con-

4 N. Cabibbo and L. Maiani, Phys. Rev. D 1, 707 (1970). This:
paper will be referred to as CM. In this connection, see also the:
related papers by R. Gatto, G. Santoni, and M. Tonin [Phys.
Letters 28B, 128 (1968)] and N. Cabibbo and L. Maiani [ibid.
28B, 131 (1968)].

® By the direction of the weak interaction, we are referring to
the Cabibbo angle. Nonleptonic weak interaction may be con--
sidered to arise from the current-current interaction.



