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As a natural. extension of the formulation of asymptotic SV(3) symmetry previously presented, a new
formulation of asymptotic SU(2) symmetry is proposed. Intuitively speaking, we assume that both the
SU(3) and SU(2) symmetries are well realized among particles of extremely high momenta where masses
are not important. This point of view is formulated by assuming that, only in the asymptotic limit, the
matrix elements of the SU(2) generators V + and V —and also the SU(3) generator V~ Lwhich, in the sym-
metry limit, are the isotopic-spin raising and lowering and the SV(3) raising operators, respectively)
behave, to a reasonably good approximation, as if the symmetries were not broken. Mass sum rules are
obtained by using these asymptotic SU(2) and SU(3) symmetries together with exotic charge commutators
which involve the time derivative of V + and which do not depend explicitly on the specific parameters of
symmetry breaking. Assuming that the basic (and not eRective) SU(2)-breaking interaction transforms
like an SU(3) octet, the exotic commntators are LV +,V +]=[Vapo,V -]=LVrc+,V +]=0, etc. From them
we reproduce almost all the SV (2) sum rules previously obtained on the assumption of eRective octet domi-
nance. However, contrary to previous results, the m+ and m', for example, are no longer degenerate in mass.
The mass diRerence is explained in terms of the q'-m' and q '-m' mixings. A study is also made of the exotic
commutators involving the axial-vector charges. The commutator LV +,A +j =0 is the least model-depen-
dent one. From this we obtain an intermultiplet baryon Inass formula involving the a decuplet and the b
octet: (5 )' (pf)' —(n&)2 (a and b are arbitrary). (pt) and (n&) denote the masses of the proton and neutron
of the b octet, respectively, (8 )'denotes the equal-squared-mass spacing of the a decuplet, i.e., (5 )'= (6 ++)'
—(6,+)'= (d„+)'—(6 ')'= (™,*0)'—(,* )'. The case of a =—,'+ and b =-,'+ coincides with the good sum rule
of SV(6). For bosons, the exotic commutators such as I V —,A~0j=LQ +,A~+j=0, which age more model
dependent than the P „+,A +j=0, produce the following general intermultiplet mass sum rule: (E„o)'
—(E +)'=const 0.004 (GeV}' (n is arbitrary}. Here (E 0) denotes the mass of the Eo meson belonging
to the ct octet. For the 0 and 1 octets, it implies {E')'—(E+)'= (E*)'—(E*+)', which is not inconsistent
with present experiment. %e also show that both the commutators, I V +,V +j=0 and I V +,A +1=0, give,
in general, the same mass sum rule when they are applied to the same SU(2) multiplet. Sum rules for the
axial-vector semileptonic hyperon decay couplings in broken SU(3) and SV(2) symmetries are also derived.

l. DITRODUCTION

HE concept of asymptotic SU(3) symmetry has
been applied by many authors. The idea was

applied particularly to the spectral functions of an
appropriately chosen combination of the vector and
axial-vector currents. ' Physically, the hope is that
the kinematical term will eventually dominate in the
high-energy region over all masses and interaction
Hamil tonlans.

Recently we have proposed another approach. ' We
single out the charge operator Vrc [which is the SU(3)
raising or lowering operator in the SU(3) limit] among
many other physical quantities. The reason is that, if
the application of the notion of asymptotic SU(3)
symmetry were indeed to be successful, such symmetry
should probably be reflected in the asymptotic behavior

*On sabbatical leave from Center for Theoretical Physics,
Department of Physics and Astronomy, University of Maryland,
College Park, Md. Supported in part by the National Science
Foundation under Grant No. NSF GP 8748.' S. Weinberg, Phys. Rev. Letters 18, 507 (1967);T. Das, V. S.
Mathur, and S.Okubo, ibid. 18, 761 (1967).For review of extensive
literature, see S. Weinberg, in P'roceedings of the Iiourteenth Inter-
national Conference on IIigh-Energy Physics, Vienna, 1968, edited
by J. Prentki and J. Steinberger (CERN, Geneva, 1968), p. 253.' For example, S. Matsuda and S. Oneda, Phys. Rev. 17'4, 1992
(1968);Nucl. Phys. B9, 55 {1969).

of the matrix elements of the charge V~. As the simplest
possibility we have chosen the asymptotic condition as
follows:

Even in broken SU(3) symmetry, the operator V~ still
behaves, to a good approximation, as if it were an exact
SU(3) generator. However, we assume this only in the
asymptotic limit, i.e., when we deal with the matrix
elements of Vz evaluated on1y in the zero four-
momentum transfer limit.

Since, in the presence of SU(3) mass splitting, this limit
can be realized only by taking an appropriate infinite-
momentum 1imit, this approach may also be viewed as
a kind of asymptotic symmetry. We have shown that
this approach not only can reproduce all the good
results of spectral functions sum rules, ' but can also
produce many other broken SU(3) sum rules, r 3 when
combined with the SU(3)SU(3) current algebra. ' We
have also shown that the study of the commutators
involving Vlf-. , the time derivative of V~, gives informa-

' S. Matsuda and S. Oneda, Phys. Rev. 158, 1594 (1967); 165,
1749 (1968); 169, 1172 (1968); 17'1, 1743 (1968); S. Matsuda, S.
Oneda, and P. Desai, ibid. 178, 2129 (1969};G. Fourez and S.
Oneda, Nuovo Cimento 59A, 65 (1969).

4 M. Gell-Mann, Physics 1, 63 (1964).
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tion about the pattern of. mass splitting of hadrons. If
we Gnd simple charge commutators involving the V~
which do not depend explicitly on the speci6c parame-
ters of SU(3) breaking, our asymptotic symmetry is
able to produce mass formulas in an algebraic way.
Vice versa, these mass formulas can also be viewed as
the constraints which produce, to a, reasonable approxi-
mation, the asymptotic symmetry discussed above.
We have suggested that such exotic commutators do
exist and have derived from them not only the Gell-
Mann —Okubo (GMO) mass formulas but also the inter-
multiplet mass sum rules which include the SU(6)
formulas as a special case. ' ' ' In this paper we wish to
extend our concept of asymptotic symmetry to the case
of broken SU(2) symmetry and to study the broken
SU(2) mass formulas. We find that the argument here is
almost paraBel to the argument in the case of broken
SU(3) symmetry. We assume asymptotic SU(2) sym-
metry for the isotopic-spin raising or lowering operator,
I+ or I, and look for the exotic commutators involving
the time derivative of I+ and I . In this way we cannot
only reproduce all the good results of the old treatment
based on the assumption of octet dominance but also
derive new sum rules, including, in particular, the
general intermultiplet mass sum rules. In our approach
the x~ and mo, for example, are no longer degenerate in
mass. The m+-z mass difference can be explained in
terms of the go-xo and q'0-mo mixings. The results seem
to be a significant improvement of the previous broken
SU(2) sum rules.

11. ASYMPTOTIC 8U(2) SYMMETRY

The third component of the isotopic spin, Is (in our
notation Is= Vo), is conserved —if we deal with only the
strong interaction and SU(2)-breaking interactions such
as the electromagnetic interaction. However, the
isotopic-spin raising and lowering operators, I+ and I
(I+= V~+ aIld I:=V~ 1—11 0111' notation)) are 110 lollgel
conserved in broken SU(2) symmetry. Our asymptotic
SU(2) symmetry can be stated roughly as follows:

Even in broken SU(2) symmetry the charges V + and
V,—still act as exact SU(2) generators' but only in the
appropriately chosen in6nite-momentum limit.

The spirit of the approximation may be seen as follows.
Consider, for example, the following matrix element
ofV-:
(&'(p')

I
V--I &'(P))= (2x)'~'(P —P')(2Po2Po')'"

&&[F+(q')(Ps+Ps)+F-(q')(po —P')7 (1)

where q'= (p —p')„'. In exact SU(2) symmetry where
rnx+=rrsxo, q' is always zero and F+(0) and F (0) take
the SU(2) values F+(0)=F+'(0)=1 and F (0)=F '(0)

' S. Matsuda and S. Oneda, Phys. Rev. IV9, 1301 (1969).
6 S. Matsuda and S. Oneda, Phys. Rev. D 1, 944 (1970).
73y this we mean that the U + and U — connect only the

members of the same SU(2) multiplet and the values of these
matrix elements take the exact SU(2) values.

=0) 1.c.~

W'(p')
I V--I&'(p)&=(2 )'&'(p —p')F+'(0) (2)

Now, in broken SU(2) symmetry, q' is, in general, no
longer zero, because of the mass difference, and the
values of F+(q') and F (q') will be dilierent from their
SU(2) values. However, if we take the in6nite-
momentum limit lpl = ~, we can still deal with ordy
thc P+-type form factoI' of thc matrix clement of V
evaluated at the zero-momentum-transfer limit.
Namely, we still have in broken symmetry

» W'(p')
I
V--I &'(p) & =(2 )'~'(p —p')F+(o) (3)

Iul

Now our asymptotic symmetry requires that even in
broken symmetry the value of F+(0) is, to a good
approximation, not renormalized, i.e., F+(0)=F+'(0)= 1,
and that the V, + and V, — act as if they were exact
SU(2) generators. However, this is assumed only in the
in6nite-momentum limit. We note that we do not need
to impose any condition on the Ii form factor since it
is multiplied by a factor (ps —po ) which vanishes in
our limit. The approximation involved looks reason-
able) especially in hght of the following proof of the
Ademollo-Gatto theorem. ' I et us symbolically denote
the strength of the SU(2)-symmetry-breaking inter-
action by e. Insert the equal-time commutator of the
isotopic-spin operators, [V +,V, -7=2V, o, between the
states «+(q) I

and IX+(q')& with lql = ~. We then
obtain

(A"IV. l~ &«'lv--IA &

+Z« IV.
I &( Iv.-l~ )

—P (a+
I V.-I ~'&(~'I v. I

A+&

=2(X+I V,oIK+&, with Iql ~~.
The right-hand. side of this equation is 1 [apart from
the factor (2rr)'8'(q —q')7. On the left-hand. side the

ndoingoaalnmtrai lxeeemt n(Is+ItV In&+, (If+I V -Ie'),
etc., are at least of the order 0(e). Using Eq. (3), we thus
obtain F+'(0)+0(e') = 1. This gives the Ademollo-
Gatto theorem, ' F+(0)=F+'(0)+0'(e'). In the above
proof it is important to notice that the F (0), which is
of the order 0(e), does not contribute. This is only
poss1ble when we take the limit

I q I
~~ . Thus we have

explicitly seen that the effect of symmetry breaking is
indeed apparently minimal at the points nea.r q'=0
where our assumption of asymptotic symmetry is

We assume that the F (q') does not have a singularity of the
form 1/q'. This is quite unlikely.

9 M. Ademollo and R. Gatto, Phys. Rev. Letters 13, 264 (1964).
Our argument here is along the lines first discussed by Fubini and
co-workers: S. Fubini and G. Furlan, Physics 1, 229 (1965);
S. Fubini, G. Furlan, and C. Rossetti, Xuovo Cimento 40, 1111
(1965); G. Furlan, F. Lannoy, C. Rossetti, and G. Segrr:, ibid. 40,
597 (1965). We may even think of a possibility that the 0(~') or
0'(s') term is proportional to qs so that F+(0) F+'(0) to a very
good approximation.
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effectively made. The 0'(e') term will be exactly zero'
if the nondiagonal matrix elements of the V + vanish in
the asymptotic limit. If this is close to the real situation,
the V, + act as if they were the exact SU(2) generators
but, of course, only in this asymptotic limit. We do not
offhand know to what extent this approximation is
valid. In broken SU(3) symmetry we have demon-
strated' that the asymptotic SU(3) symmetry for the
V~ is compatible with having the GMO mass splitting.
This is quite satisfactory. In the above argument the
possible SU(2) particle mixing has not been considered.
Our asymptotic SU(3) and SU(2) symmetries are
essentially equivalent to assuming that the "in" and
"out" states of a particle transform linearly according
to a definite irreducible representation of the group, but
that this is best justified in the asymptotic limit de-
scribed above. If the symmetry-breaking interaction is
able to induce mixing of particles which belong to
different irreducible representations in the symmetry
limit, the proper "in" and "out" states must be con-
structed by diagonalization. We can consistently take
into account this effect of mixing in the asymptotic
limit. For illustration let us consider the g'-z' mixing
assuming that the g' [I=O, SU(3)-singlet P meson)
does not exist (For. the inclusion of the g' see Sec. V.)
We consider the matrix element

( '(q) I[V. ,V--7I '(q'))
=2&~+(q) I

V-'Iz+(q')& with
I
ql~~.

We obtain by picking up now the ~ and g' intermediate
states

(-'(q) I V. I-'&&-'I V.-I-'(q')
&

+ & +(q)
I
v-

I
~'&&~'I v--I +(q')&+0(")

= 2(2 )'~(q-q') (4)

Formally, the above q' term is also of the order 0(&').
However, this term can no longer be ignored. In broken
SU(2) symmetry, &m.+I V +lg'& is no longer zero. We
write, in the frame

I cl
I

—+~, the physical &z'I and &q'I

states in terms of the SU(3) states,

(m'(q)
I

= cose&vr8'(q)
I +sin8(gs (q) I

and

&v(q)l = »no&~8'(q)l +cose&n8'(q)l

Here xo —+ m8 and q'~ q8' when e —+0, and we assume

& '(q) I
V--

I
'(q')) =o

fef

lim (m ~'(q)
I
V -I z+(q')) = (2~)'5'(q —q')G+(0),

where G+(g') is the form factor analogous to F+(q').
Corresponding to Eq. (3), we now have

»m &~'(q) I V.- I
~+(q')& = (2~)'8'(q —q') cos8 G+(0)

lcI

lim &g'(q) I
V -Im+(q')& = (2n)'6'(q —q') sing G+.(0) .

l~l

Then from Eq. (4) we again obtain G+(0) =G~'(0)
+0(~'), G+'(0) being the exact SU(2) value, —K2. This
is the modification of the Ademollo-Gatto theorem when
particle mixing takes place. We take into account
the SU(2) mixing always in the matrix elements of the
vectorcharges V +, and thisis always carried out in the
infinite-momentum frame where the actual value of the
mass of a particle is not relevant.

IIL USEFUL EQUAL-TIME COMMUTATORS
INVOLVING TIME DEMVATIVE

Previously we have shown" ' that the combined use
of charge commutators involving the time derivative of
the SU(3) charge Vz with our asymptotic SU(3) sym-
metry can yield not only the GMO mass formulas but
also the intermultiplet mass formulas, which include
the SU(6) formulas as a special case. In our approach,
where the infinite-momentum limit is always utilized,
the time derivative of a charge operator taken between
two states, such as lim~~| „&A (p) I

Vz
I 8(p)&, gives rise

toafactorlim~~~ „[(p2+m~2)'~ —(p'+ma )'~ 7, which
produces a factor (mg' —m~')/I pl in the limit. There-
fore, useful mass sum rules may be derived if we find
the commutators involving V which are not explicitly
dependent on the specific parameters of the symmetry
breaking. The mass formulas obtained by using such
"exotic" commutators are least dependent on the model
of symmetry breaking and may be the only sum rules
which can be obtained in a purely algebraic manner.
We first review the commutators' ' ' used for deriving
the SU(3) mass sum rules, since the situation of broken
SU(2) symmetry will be quite analogous to that of
broken SU(3) symmetry. We use here a quark model as
a guide though we believe that the result derived here
will also be obtained in a more sophisticated model.
Once suitable commutators are established, we may
forget about their derivations, since only these commu-
tators are relevant to our arguments.

We assume as usual that the SU(3)-breaking Hamil-
tonian density H'(x) transforms like the I= F=O
member of the SU(3) octet. We stress that our H'(x) is
not meant to be the effective Hamiltonian density. We
then find the following "exotic" commutators as first
noted by Fubini and co-workers, '

[Vz', Vz'7= [Vz', Vz 7
=[V.—,Vz 7=[V...Vz 7=0, (5)

and their conjugate complex equations. We have shown
previously' that [Vzo, Vzo7=[Vz+, Vz+7=0 will give
rise to the GMO mass formulas, including mixing if it
exists. Next we search for the "exotic" commutators of

' C. A, Nelson, Phys. Rev. 181, |946 (1969).
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the form [A;,Vrr]=0. For this we need to specify the
form of H'(x).

Consider the SU(3)-breaking Hamiltonian density
H'(x), which has the following rather general form' s '
in a quark model under consideration:

H =aSs(x)+Pds' J '(x)J„'(x). (6)

Here Ss(x) =g(x)Xsq(x), the simplest mass splitting
interaction in the quark model. d;;~ is Gell-Mann's
d symbol, and J„'(x)J„'(x) can be written in general" as

J„'(x)J„&(x)= V„'(x) V„'(x)+yA s'(x) A „'(x). (7)

For arbitrary values of the coefficients n, p, and y, we
find the following "exotic" commutators.

Group (A):

[Vsco,Ax'] = [Vrr', A sc'] =0

(n, p, and y are arbitrary). (g)

In our model these "exotic" commutators are the safest
ones to use. We may consider a more restricted form of
symmetry breaking, for example, y=1 (chiral invari-
ance for the vector and axial-vector currents). We then
find, in addition to the group-(A) commutators,

Group (8):

[Vrro, A -]=[Vxo,Air ]=[Vx+,A +]=0
(n and P are arbitrary, but y=1). (9)

The Hamiltonian of Gell-Mann, Oakes, and Renner"
(GOR), H'= —Ns —Cus, is not a,s general as the one
given by Eq. (6). Their model leads not only to the
group-(A) commutators, but also to the group-(8)
commutators. The use of the group-(A) commutators
and the asymptotic SU(3) symmetry gave rise to
general intermultiplet mass formulas' between a
decuplet and an octet of baryons which take the form
in the absence of SU(3) particle mixing

( )'—(Z,)'= (bs)'= const

(a and b are arbitrary). (10)

Here (,) and (Z,) denote the masses of the and Z
members of the a octet (a specifies the quantum number
of the a octet) and (8&)' is the equal-squared-mass
splitting of the b decuplet. The case a= ~+ and b= 2+
coincides with the SU(6) formula. " '4 However,

"Here we have assumed that the quark 6elds are the only basic
6elds. Instead we may consider a basic system consisting of quarks
and octet (or nonet) vector mesons p„'(x) and axial-vector meson
P„'(x). We may then introduce SU(3)-breaking interaction of the
form dssjV„'(x)p„j(x) and dgj'Ap'(x)p„&'(x). The inclusion of the
d8,j term is necessary to distinguish the group-(A) commutator
from group (8).

"M. Gell-Mann, R. J. Oak.es, and B. Renner, Phys. Rev. 175,
2195 (1968).Earlier references will be found here.

"See the summary by B. Sakita, Advarfce il Particle P/zysics
(Interscience, New York, 1968), Vol. 1, p. 219.

"Also see, for survey of extensive literature on SU(6), A. Pais,
Rev. Mod. Phys. 38, 215 (1966).For a quark model prediction see,
for example, S. Ishida, K. Konno, P. Roman, and H. Shimodaira,
Nucl. Phys. 82, 307 (1967), and papers cited therein.

Eq. (10) goes further, i.e., these spacings are universal
among any octet and decuplet baryons as long as we
neglect mixing. One may now naturally ask: .How far
can one trust the results obtained by using the group-
(8) commutators which are more model dependent?
According to our previous work, '56 the use of the
group-(8) commutators and our asymptotic: SU(3)
symmetry gives rise to the Z-A. degeneracy in the baryon
mass sum rules. Therefore, in the GOR model our
asymptotic SU(3) symmetry encounters the problem
of Z-A. degeneracy. This reminds us of the similar
situation met in the simple SU(6) symmetry in which
the H'(x) is simply taken to be Ss(x)."Thus, to the
extent that we tolerate the Z-A. degeneracy, we may use
the commutator (8) for baryons. For bosons the use of
the group-(8) commutators (which are also valid in the
GOR model) gives a seemingly good result, such as
(If)2(ir)2(Its)2(p)2(+ss)2(A)2(p)2(~)2
etc. (the particle symbol always denotes the mass of the
particle). The group-(A) commutators give, for example,
a formula such as (E)' —(x) '= (s) ' —(5) ' (s and 5 denote
the I= ', and I-= 1 0+ mesons, respectively) if we dis-

regard the octet-singlet mixing. ' "In the boson case, it
is not easy to distinguish the result based on the com-
mutators belonging to the group (A) from tha, t based
on group (8). This is partly because we do not meet a
situation similar to the Z-A, degeneracy in the boson case
(the Z boson and the A boson have different 6 parity)
and partly because the bosons usually form a nonet, so
that the singlet-octet mixing gives more para, meters.
However, we think that it is a remarkable fact that the
group-(8) commutators [which s,re more model
dependent than the group-(A) commutators] give a
nice result for bosons if we take into account mixing. "
As will be shown later, a similar situation also takes
place in broken SU(2) symmetry. Further study for the
cause of this is certainly desired.

We now wish to study broken SU(2) symmetry.
Analogous to Eq. (6), we may consider the SU(2)-
breaking Hamiltonian of the following general form in
addition to the SU(3)-breaking one, II'(x):

H" (x) =n' S(s)x+P'ds;, I„*(x)I„&(x), ('11)'
where Ss(x) =g(x)4q(x) and J„'(x)J„'(x)= V„'(x)V„'(x)
+y'A„'(x)A„&'(x). The Ss term is the simplest SU(2)
mass-splitting interaction in the quark model. Under
the usual assumption that H" (x) belongs to an SU(3)
octet, the p' term may provide the next more sophis-
ticated model of SU(2) breaking in this model. 'r The
SU(2) breaking need not be entirely due to the electro-

"For the comprehensive study of the use of the commutator
/V~0, A~0/=0, see G. Fourez, Ph.D. thesis, University of Mary-
land, 1969 (unpublished).' If we discard mixing we obtain an absurd result. The problem
of f-f' and p-co mixing has been treated in Ref. 2. See also Ref. 15.

"Such terms will naturally be present if we consider a system
of quarks and octet for nonetg vector and axial-vector mesons
(considered in Ref. 11) which will interact with the electro-
magnetic field.
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magnetic effect. We emphasize again that H"(x) is not
meant to be the effective Hamiltonian density. For the
commutator of the type [V,V]=0, we always find

[V.+, V.+]=[V.—,Vrr']=- [V + Vrr+]= 0, (12)

as long as H"(x) belongs to an SU(3) octet. For the
commutators of the form [V,A]=0, we again distinguish
two groups analogous to those in the SU(3) case.

Group (A'):

[V ',A, +]=[V —,A„-]=0 (n', P', and y' and also

e, P, and y are arbitrary). (13)

These are the comrnutators in our model which can
be used with the utmost confidence. We also have some
which are more model dependent.

Group (8'):

[V —,Arro]=[V, +,Ax']=0 (n' and P' and also

n and P are arbitrary but y=&'=1). (14)

Note that with H=H'(x)+H" (x) group-(A) commuta-
tors always hold. However, for group (8), [Vxo,A&+]= 0
requires y=1 and [Vxo,A -]=[Vrr+,A +]=0 requires
y=y'=1, although n and P and also n' and Ig' are
arbitrary.

Minimal quark electromagnetic interactions or
simple quark magnetic moment interactions of the form
g(x)&r„„q(x)t„„(x)lead not only to the group-(A') com-
mutators but also to the group-(8') commutators. As
in the case of group (8) for SU(3), the domain of
validity of the group-(8') commutators is smaller than
that of the group-(A') cornmutators, and they are not
very useful in the baryon case as will be shown below.
However, they seem to be still useful in the case of
bosons as was the case for the group-(8) commutators
for SU(3).

In the next sections we study predictions obtained
from these "exotic" commutators and our asymptotic
SU(2) symmetry.

IV. BARYON SU(2) MASS DIFFERENCES

A. ~+ Baryons

Consider the matrix element

(Z+(q))[V.+,V.+]~Z (q))=0, with ~q~
= ~.

With the prescription described in Sec. II, we need to
consider only certain intermediate states in our asymp-
totic symmetry,

+( 'IV
I

'&( 'IV-'I
-(~ IV- l~')(~'IV. l~-)

—(Z+
f V. [Ao)(A'[ V. (Z-)=0.

In order to take into account the electromagnetic Z -h.

mixing, we write

(Z'(q)
~

= cosg(Z '(q)
~
+sing(A& (q) ~

and
(h. (q) ~

= —sing(ZS'(q) t+ cosg(c4 (q) ~,

in the limit
( q (

~~ . Here (Z'~ ~ (Z& [ and (A' [~ (A&' j

in the SU(2) liinit. We note, for example, that

&'~'(q)
I V-

I A(q)) - Ã(~') —~(A')](~'(q) I V.
I A(q)),

where E(Z+) = [q'+ (Z) ']'" while

hm (Z+(q)
~
V '

~
h. (q)) =v2 sing.

lel

We then obtain a sum rule

[(Z )2 —(Zo)2] cos2g= [(g ) —(g+) ]cos g

+[(&+)'+(~ )'—2(A')']»n'g

Since g is small and [(Z )'—(Z )'] and [(Z )'—(&+)']
are already of first order in the SU(2) mass difference,
the sum rule, Eq. (8), can be written as

[(~-)'-(~')']=[(~')'-(~')']
-[(~')'+(~-)'-2(A')']g'. (»)

The term involving 0' exhibits the effect of Z'-A mixing.
However, as will be shown below, the effect is small in
this case (this is partly due to the small Z-A mass
difference) so that to a good approximation (less than
3% error) we obtain

In our asymptotic symmetry we get quadratic mass
formulas rather than linear mass formulas, even for
baryons. Since we are using commutators of the form

[V,V]=0, the term neglected in our asymptotic sym-
metry is at least of the second order in the symmetry
breaking. Therefore, the discrepancy between the quad-
ratic mass formula obtained and the true mass relation is
of second order in the symmetry breaking. " If we use
the experimental values" (Z ) '= 1.434, (Z)'= 1.422, and
(Z+) '= 1.412, in GeV' then Eq. (10) reads 0.012=0.010,
in GeV'. The mass sum rule, (Z )—(Z') = (Z') —(Z+),
has been obtained previously in a tadpole model of
Coleman and Glashow" and also by assuming that the
electromagnetic mass differences are dominated by

~
AI

~

= 1 transitions. "We now derive the mass formula
analogous to the other Coleman-Glashow formula' and
also the value of 0. Consider now the following matrix
elements in the limit

~ q I

= ~:
(Z (q) ~[vx;V, ]~=--(q))=0, (17)

' In a soluble model one can explicitly demonstrate this. One
of us (S. O.) wishes to thank Professor H. Umezawa for the dis-
cussion on this point.

"N. Barash-Schmidt, A. Barbaro-Galtieri, L. R. Price, A. H.
Rosenfeld, P. Soding, C. G. Wohl, M. Roos, and G. Conforto, Rev.
Mod. Phys. 41, 109 (1969)."S. Coleman and S. L. Glashow, Phys. Rev. Letters 6, 423
(1968); Phys. Rev. 134, B671 (1964). See also, S. Okubo, Phys.
Letters 4, 14 (1963)."R. E. Marshak, S. Okubo, and E. C. G. Sudarshan, Phys.
Rev. 106, 599 (1957).
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&p(q) ILv, v, ]le-(q)&=o,

&&(q) I [Vx,V-'71~+(q) &
=0,

&&-(q)
I [v,V--]l=-'(q)&= o

(19)

(2o)

[(22)2 (P)2]+[(~—
)2 (~0)2] (g—

)2 (gy) 2 (27)

These relations are rather impressively satisfied by
experiments '2 If we use ( ) =. 1.746, (" ) =1.728,
(n)'=0.882, and (p)'=0880, in GeV' then Eq. (25),
for example, reads 0.020= 0.020, in GeV', and Eq. (27)
reads 0.020= 0.022, in GeV'. In the above derivation of
sum rules we have neglected the possible SU(2) or
SU(3) mixing between the —,'+ baryons under considera-
tion and the higher-lying ~~+ baryons the existence of
which is now rather well established. From our point of
view this will give the most important correction to our
sum rules obtained above. One may first attribute the
small discrepancy with experiment to this effect. From
Eqs. (21)—(24), we can evaluate the value of 0. We
obtain a value of 8 0.02—0.03. Therefore, the 0' con-
tribution in the sum rule, Eq. (15), is not important.
[The effect. of SU(2) breaking on the Cabibbo sum rules
for the semileptonic hyperon decays has been discussed
by Matsuda, Oneda, and I)esai. ' See Appendix A.]We
have shown that our asymptotic condition for the V +

(which is the only assumption involved) gives rise to
an effective octet enhancement in the mass sum rules.
Note that our SU(2)-breaking Hamiltonian density
given by Eq. (11) is not meant to be an effective
Hamiltonian density and that we are not using a
perturbation theory.

We now use our asymptotic SU(3) symmetry for the
operator Vz and the asymptotic SU(2) symmetry for
the operators V +. We obtain to order 8

[(~—
) 2 (~ 0)2]+[(gW) 2 (+0)27

=~»[(~')'-(A')'7, (»)
[(~')'-(~-)'7+[( )'-(p&'7

=~3I [(A')'-(~-)'7 (22)

[(~')—(p')7+[(~")'—(~')'7
=v30[(A0) ' —(z+) '7, (23)

[(=--)'-(=-')'7+[(~')'-(~-)'7
=~38[(~-)'-(A')'7 (24)

By eliminating II from Eqs. (21) and (23), we obtain

[(22)2 (P)27+ [(~~—
) 2 (~~0) 27 —2[(g0) 2 (y+) 2] (25)

and from Eqs. (22) and (24),

[(~)'-(P)'7+[(=--)'-(=-')'7=2[(~-)'-(~')'7 (26)

Equations (25) and (26) are consistent with Eq. (16),
and, if we use Eq. (16), they lead to the following sum
rule, which corresponds to the Coleman-Glashow mass
formula":

gives (A+)' —(d0)'= (A')2 —(A )'. We thus have

(g++) 2 (g+) 2 —(A+) 2 (AO) 2 —(AO) 2 (A
—

) 2 (28)

In a similar way, &V+(q) I [V +,V, +]I 7' (q))-=0 with

I q I
= ~ gives rise to

(V+)'-(V')'= (V')'-(V )'. (29)

Now we consider the SU(3) version of the mass
formulas. We can consider

&v+(q) I [«,v- ]I=. *(q))
=&~'(q) I[Vx,V* ]I V (q)&

=&~"'(q) l[v,v. ]l v'(q)&=0,
and also

&V-(q) ILV-,V--]l=-"(q))
= &~'(q)

I
[Vx', V--7

I
V'(q) &

= &6
—

(q) I[Vrro, V -]I V'(q))=0, with Iql = ~.
We use asymptotic SU(3) symmetry for the Vz
together with the asymptotic SU(2) symmetry applied
to the V +. The sum rules obtained are all consistent
with each other, and combining them with the ones
given by Eqs. (28) and (29), we finally obtain a simple
prediction

(&")'-(A )'=(& )'-(~')'=(~')'-(~-)'
=(V')' —(V')'=(V')' —(V )'
= (=-*')'—(=-"-)'—= (s)'. (3o)

These results have also been obtained, for example, in
the tadpole model of Coleman and Glashow. '0 Present
experiments, "which have large errors, cannot test the
above formulas unambiguously. According to the
Rosenfeld table, " (6') —(5++)=0.45&0.85 MeV,
(A )—(6++)= 7.9&6.8 MeV, (V+) = 1382&1 MeV,
(V )= 1388&3 MeV, ( ~') = 1528.9&1.1 MeV,
("* )= 1533.8&1.9 MeV. The sum rules, Eq. (30), can

B. ++ Decuplets

The preceding argument can be extended to the case
of a ~+ decuplet. In this case the electromagnetic mixing

analogous to the Z -A. mixing does not arise. Of course,
we again neglect other possible types of mixing: the
mixing between the 2+ decuplet under consideration
and the higher-lying 2+ baryons through the SU(2)-
and the SU(3)-breaking interactions. We may attribute
the discrepancies between our mass formulas and
experiment, if they exist, to the neglect of such mixing,
before blaming our asymptotic symmetry. Consider the
equation

lim &A++(q)
I [v. ,v. 7 I A0(q)& =0.

Iel

This gives a constraint on the masses, (A++)2—(&+)'
= (5+)2—(A0)2. Also, the equation

lim &~+(q) I [V-'~V '7
I
~ (q)) =0

I el ~~
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be said to be consistent with present experiment and,
in particular, the sign seems to come out right.

We also note that in the above derivation the spin
and parity of the baryons are irrelevant. Therefore, the
sum rule of the form of Eq. (24) holds for any decuplet
with an arbitrary J~ if we neglect the mixing mentioned
before.

C. Intermultiylet Mass Formulas

We now show that the use of commutators,
[V +,A +]=0 and [V +,A +]=0, enables one to derive
the SU(6)-like intermultiplet mass formulas. Since
A + is not an SU(2) generator in the SU(2) limit, the
truncation of the intermediate states sandwiched be-
tween the factors V,+ and A„+ mainly" depends on the
asymptotic behavior of the V +. Therefore, the use of
[V +, V,+]=0 is safer than that of [V +,A +7=0 since
the selection of the intermediate states is carried out by
two V +. However, we first note that even if we replace
the commutator [V +, V +]=0 by [V +,A +]=0 in the
discussion of the —,'+ decuplet made in Sec. IVB, we

again arrive at the same decuplet mass formula,
Eq. (30). This certainly lends good support for our
asymptotic symmetry for the V +."Let us now insert
these commutators between the appropriate 2+ octet
baryon state and the ~+ decuplet state. Consider the
equations with

I q I
= ~,

&~"(q) I A.
I p&&p I

v-'I ~(q) &

= &~"(q) I v- I ~'&&~'IA-'I~(q)& (»)

&&++(q)
I A.

I p&&p I
v.

I (q) &

= &~++(q)
I V-

I
~+&&~+IA- 1.(q)& (32)

These are consistent only if the energy relation

E(P) E(22)=E(A++) —E(h —) is satisfied in the limit

I q I

= ~, which gives the mass formula

about the spin and parity of the baryons. Therefore~
the formula holds between any SU(3) decuplet baryons
and any SU(3) octet baryons. Therefore, the mass
formula, Eq. (30), is universal, i.e.,

(~)'=(~)'=" =&p)'-(.)'
=(p)'-(~)'=(p-)'-(~-)'=, (36)

where the subscripts a,b, . . . and l,m, . . . denote the
kind of the decuplet baryons and octet baryons,
respectively. This simple prediction may be tested by
future experiment. We think that these intermultiplet
mass formulas are the most trustworthy ones which can
be obtained from our approach. This is, of course,
because the commutator utilized, [V +,A +]= 0, is most
trustworthy. The discrepancy from experiment, if it
exists, should 6rst be attributed to the neglect of the
SU(2) or SU(3) mixing between the baryons which
have the same J~ but belong to different SU(3) multi-
plets. In the present intermultiplet case where we use
the commutator [V,,A,]=0, the sum rules will involve
this mixing angle 0 through the terms proportional to
cosg and sin&, whereas in the case of the SU(2) multiplet
mass formulas, where one can use the commutator
[V;,V~]=0, the dependence of the sum rules on the
angle 0 is proportional to sin'0 and cos'0. Therefore, the
intermultiplet mass formulas will be more affected by
the presence of the mixing. As shown before, the
validity of the group-(8') commutators, such as
[V +,Ax+]=0 and [V —,Axo]=0, is less certain than
that of the one used here, [V +,A +]= 0. If we use these
commutators, we obtain not only the formula (p)' —(n) 2

=(V) —(Y ) which is consistent with Eq. (35),
but also

(~~0) 2 (~~ —
) 2 —(V+) 2 (VO) 2 —(VO) 2 (P'—) 2

(g+) 2 (g0) 2 (g++) 2 (g+) 2 —(g+) 2 (il 0) 2

(~")'-(~')'= (p)'-( )'. (33) (g
—

) 2 (+0)2 —(g—
)2 (+0)2 —(g—

)2 (+0)2

(~)'=(p)'-(~)' (35)

This is not inconsistent with present experiment. In
deriving this sum rule, we did not use any information

"Of course, the selection by the chiral charge A + will also be
important. However, according to our experience the selection is
not as good as by the SU(2) or SU(3) charges, V„and Vz.

"In broken SU(3), both the commutators I VIf.o, V~oj=0 and
/V~0, 3~0)=0 al.so lead to the same GMO mass formula for the
decuplet and also for the -', + octet. See also Appendix B.

If we also take these commutators between the states
&p(q) I

and 16 (q)) with
I q I

= ~, we obtain

(~')'-(~-)'= (p)'-( )' (34)

Equations (33) and (34) are apparently consistent with
Eq. (30).We thus predict that the equal SU(2) squared-
rnass spacing between the decuplet states, (8)2, is equal
to the spacing between the proton and neutron:

The last two equations lead to the Z'-A' degeneracy.
Formulas of this kind have also been obtained in the
SU(6) symmetry theory with an assumption that only
considers the charge operator to second order. However,
SU(6) mass formulas with the weaker assumption that
considers both the charge operator and the magnetic
operator to second order are very close to our sum rules
given by Eqs. (30), (33), and (34), although our results
are more general. (Compare these with the results
listed in Ref. 14.) Therefore, we conclude that the
exotic commutators of the form [V +,A +]=0 and
[V —,A,-]=0 are most trustworthy and they lead to
the intermultiplet inass sum rules given by Eq. (36).
The use of group-(8') cornmutators in the baryon case
leads to unsatisfactory results. This is understandable
since the group-(8') commutators have a smaller
domain of validity than the group-(A') commutators.
The seemingly good results of SU(6) are reproduced by
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these group-(A') commutators. Of course, we do not
assume SU(6) symmetry. Thus baryon intermultiplet
mass formulas favor the group-(A') commutators
rather than the group-(8') commutators —a situation
similar to that of broken SU(3) symmetry.

and

[(~)'-( )'1»[( )'-( ')')

[(~')'-( )'1»[( ')'-(-')'],
'4 5. Oneda, H. Umezawa, and Seisaku Matsuda (unpublished).

V. BOSON SU(2) MASS DIFFERENCES

A. 0 Mesons

It is well known that in a simple model (in the simple
tadpole model' or when the mass-splitting interaction"
transforms like a linear combination of scalar and vector
terms in isotopic-spin space), the 2r+ and 2r0 masses are
degenerate. In our approach this is also true if we
neglect the broken SU(2) g-2r and q'-2r mixings as seen
below. However, the eBect of these mixings should not
be neglected in our approach, and, as a matter of fact,
the correct sign and the magnitude of the x+-z' mass
difference can be explained by reasonable values of
these mixing angles. A general treatment of this three-
particle mixing and its application to the problem of
the violation of the

I
AI

I

= —,
' rule in the E,2 decays w'ill

be discussed elsewhere. '4 For completeness and also for
application to similar problems for bosons, we give a
brief summary in this section. Let us first study the
matrix element &2r+(q)

I [V +,V +] I2r (q)) =0 in the
limit

I q I

= ~. According to our asymptotic symmetry
we need to consider only the following terms:

&~+
I
v. 'I ~&&~ I

v. 'I ~+&+ &~+
I
v-"

I ~&&~ I
v-"

I
~+&

+&-'I v- l~'&(~'I v- I-'&
—(terms obtained by V +~~ V +) = 0. (37)

In order to take into account the mixing, we write the
physical m, p, and p states in the infinite limit, approxi-
mately, as follows:

I ~& = [1—2(p'+ v')] I ~2&+p I v2&+v I nl&,

p'Ilrs&+ill ns&+bl gl), (38)

v'I ~ &+2lnc0&—+d
I nl&.

In the SU(3) and SU(2) limits, Ilr&~I2r0), Ig)~lqs),
and

I
g')~l ql). p, y, p', andy' denote the SU(2) mixings

under consideration. a, b, c, and d are of the order of
SU(3) mixing. Up to the second order in the SU(2)
mixing, we have rl'+b'+P"= 1, +cd'+y"= 1,
P'=aP+by, y'=cP+dy, and P'7'+ac+bd=0. Then to
this order we obtain, from Eq. (37),

(~+)2 (~0)2—[(~)2 (~+)2]P~2+ [(~~)2 (~+)2]~~2 (39)

This equation already exhibits the importance of the
effect of mixing in the 0+-meson case. Since

even small values of the mixing angles P' and y' should
contribute to the right-hand side of Eq. (39).Note that
the sign of the m+-m mass difference is always correctly
predicted by these mixings.

Next we consider

(40)

We have written, according to our approximation,

[(~')' —(~+)'](1—P' —v') (1—~3P)

=[(-) -(-.) ](I-~~p&.

We may also consider the equation

»m «+(q) I[Vx,V- ]l~-(q)&=o,
lq. l

(42)

and obtain, to the same approximation,

[(~0)2 (~
—

)2]( 1 v3p)+ [(~)2 (~—
)2]~3rlp&

—[(g) —(2r ) ]P~ +[(g~) —(2r ) ]v3c'y~

[(~&)2 (~+)2]~12 (A0)2 (++)2 (43)

From Eqs. (41) and (43), Eq. (39) again follows, which
indicates the internal consistency of our calculation.
We choose as the two independent sum rules from our
approach the one given by Eq. (39) and the following
one obtained from Eqs. (39) and (41):

[(2r+) 2 —(2r0) 2]spy [(7f)2 (2r+) 2]~3gp~

+[(n')' —(~')']v3cv'= (&')'—(It+)' (44)

If there is no q' meson, then P=P', a=1, y=b=y'
=c=d=0. Equation (39) then reduces to

(~+)2 (~0) 2 —[(~)2 (~0)2]p2 (45)

while Eq. (44) reduces to

[(2r+)2 —(2r0) 2+ (g) 2—(2r+) 2]~3p= (g 0) 2—(It+) 2 (46)

Equation (46) is equivalent to the g-2r transition mass
given by Okubo and Sakita. "If we compute the value
of P from Eq. (40), we obtain IPI 0.067, whereas
Eq. (46) gives P 0.0082. The former value of P seems
somewhat large as a value of the electromagnetic
mixing angle (we have obtained in Sec. IVA the Z-h.
mixing angle of the order 0 0.02—0.03) while the latter
value is small. Therefore, with the g meson only, we
cannot satisfy Eqs. (45) and (46) simultaneously. We
now wish to see how the inclusion of the q' meson
changes the situation. We here make an approximate

"S.Okubo gnd S. Sakita, Phys. Rev. Letters 11, 50 (I963).

By using the asymptotic SU(3) symmetry for the Vrco

and the asymptotic SU(2) symmetry for the V, — we
obtain from Eq. (40), to the same order as Eq, (39),

[(~0)2 (~+)2](1 v3P)+ [(~)2 (2r+) 2]~3gP~

+[(~)2 (~+)2]pI2+ [(~&)2 (~+)2]v3 c7~

y [(~&)2 (~+)2]~~2—(It 0) 2 (++)2 (41)



calculation assuming that the SU(3) t)-t)' mixing is
much larger than the SU(2) mixing. Namely, we take
ts cosg, b~s1nHj o —s1118, d~cosH, P' P cosH+V S1118j

and v'= —P sin8+v cos8, where 8 is the t)-t)' mixing
angle. "Although this shouM be usually a good approxi-
mation, it is not very accurate in this case, since the
SU(3) t)-t)' mixing angle is known to be small. Equations
(39) and (44) then read

L( )'-( ')'j=[(q)'-( ")'l(p- 8+v .8)

+[(t)')'—(s+)sj(—P sinH+v cosH)' (47)

[(~')' (~')—']~~p
+[(q)'—(~+)'gv3 cos8(p cos8+v sine)

+[(t)') ' —(tr+) 'jV3 (—sinH) (—P sinH+ v cosH)

= (E')'—(E'+)'. (48)

From the GMO mass formula for the pseudoscalar
mesons, which can be obtained by using the commu-
tator [Vx~,Vx~]=0, we have sinH a0.18. [Actually,
by using Eq. (38) we can compute the modification of
the GMO formula due to SU(2) breaking. ssg By solving
Eqs. (47) and (48) for this value of 8, we obtain the
following values of p and v:

(I) For sinH=+0. 18,

(i) P= 0.022 and v = 0.038

(ii) P= —0.0064 and v= —0.038.

(II) For sinH= —0.18,

(iii) P = 0.019 and v = —0.032

(iv) P = —0.0061 and v =0.038.

Because of our approximation only the 6rst 6gures of
the numbers for P and v may be trusted. These values
of p and v are of reasonable order of magnitude. The
magnitude of the t)'-tr mixing angle

I v I
1s tn fact larger

than that of t)-~ mtxtng angle I PI, and on the right-hand
side of Eq. (47) the t)' term indeed gives the dominant
contribution There is n«pri«i reason th«

I pl & lv I.
In a tadpole model, if the magnitude of the bye coupling
is smaller than that ot the Ht)'tr coupling (8 is the
isovector 0+ nleson), we obtaiil

I pl ( Ivl. The relative
sign of P and v is also not ts Priori fixed. One place where

one can test the above result will be the g —+3m decay.
It is easily seen that in our approach the g ~3+ decay
amplitude is dominated by the diagrams involving the

I By considering &E'(q) llg~~o yI,.O](Ito(q)) 0 with Iql ~m
and Eq. (38), the following modification of GMO mass formula
to order P2 and y2 is obtained:

L(+0)2 (~0)2)P(I P2 ~2) ~3P+ 3P2j+L(+0)2 {~)2j

&& (sP"+~o8'+so')+L%')' —(n')'3
& (2V"+~3&V'+2&') =0.

The eGect is around 5$& to decrease the absolute value of the
angle 8,

g-x and g'-x transitions. '~ This will be discussed else-
where. The other place where one may hope to detect
the larger value of P (P~0.02) is in the violation of the

I
AI

I
=-,' rule in the K,s decay. "

I p) [=1 s—(p '+v ')]
I ps& +p'. Ies&+v. I~»,

lq»=-p. 'I "&+~.I~.&+I.l &, (49)

I~&= —v.'I p.)+o.l4s&+d. I~».

» the SU(3) and SU(2)»mit, lp)alps&, @~ lys&,
and Ioj) ~ Ioj». The sum rule corresponding to the one

given by Eq. (40) is

(')' —( ')'=[(~)'—(')')p."
+L( ')' —(p+)'Ev ' (50)

Namely, the p+-po mass difference comes essentially
from the p-jjj and p-co mixing. If (oP) & (p+), as suggested

by the Rosenfeld table, "Eq. (50) indicates that the p+

is heavier than the p'. Corresponding to Eq. (44), we

obtain

[(p')' (p')'j~~p—.+[(4')' (p')'j~~o—.p. '

+[(~')'—(p')'X~o.v.'= (&*')'—(&")' (51)

In terms of the usual co-P mixing angle 8„u„b„c„
and d„are expressed (to a good approximation, con-

trary to the case of the pseudoscalar meson) as
a„=COSH„, b„=sinH„, o, = —sinH„, and d„=COSH„. P„'
and y, ' are given by

P„'= Pco SH+ vsinH.

v„'=P.(—sin8. )+V, cos8. .

(52)

(53)

Therefore, if we know the correct masses of the 1

mesons, we can evaluate the values of p„' and v„' or the
values of P. and v. from Eqs. (50) and (51). On the
other hand, if we know the values of P„' and v„' or of
P„and v„ from other processes (such as the jib

—+ m++m

and oj ~ s.++tr decays), we can test the sum rules (50)
and (51).This will be discussed elsewhere. These argu-
ments can, of course, be extended to other mesons of
higher spin. Generalization of Eqs. (39) and (50) im-

plies that if the mass of the I= I meson is smaller than
that of I= Y=0 members of the nonet, then the charged
I= 1 meson is heavier than its neutral counterpart.

"It is known that in the pion-pole model of q —+ 37r decay, the
magnitude of the q-x transition matrix element given by Ref. 25
is too small to explain the magnitude of the g ~ 37'- branching ratio.
The larger value of P found here may be helpful.

B. 1 Mesons

Results analogous to those obtained above in the
case of 0 mesons also hold for other mesons. %e here
consider the 1 rnesons. Corresponding to Eq. (38), we

write the physical p-, @-, and ~-meson states as follows
in the infinite-momentum frame:



ASYMPTOTIC S U(2) SYMMETRY. I ~ ~ ~ 333

(E )2—(rr )2~const (n is arbitrary). (54)

Here E and x denote the masses of /=~~and /=1
members of an n octet meson, respectively, with an
arbitrary spin and parity.

We shall show below that the situation is very similar
even in the case of broken SU(2) symmetry. I,et us first
study the group-(A') commutator, i.e., consider

&p+(q)I[v. ,A. ]I -(q))=o, (55)

with
I ql = ~ and use asymptotic SU(2) for the V +.

Matrix elements involving the charge A +, such as
(p+(q) I

A +I rr'(q)), can be related to each other by using
the charge algebra instead of using exact SU(2) sym-
rnetry. [For explicit examples, see, for instance,
Eqs. (59), (60), and (64).] We then arrive at the
following intermultiplet mass relation:

[(2r+) 2—(2r0) 2] [(7r+)2 (rj)2]P'2

[(~+)2
(~ )2]~ 2 —[(p+) 2 (p0) 2]

[(p+)2 (g) 2]P ~2 [(p+)2 (~)2]~ I2 (56)

However, from Eqs. (39) and (50), Eq. (56) is certainly
valid but takes the form 0 0. Thus no new information
is obtained. In SU(3), the equation

&I~'*+(q) I[Vx' Vx']Ilf' (q)&=o with Iql = ~

led" also to a relation which takes the form 0~0. Even
in the case when we obtain a nontrivial sum rule by
using the group-(A') commutators, the sum rule is
always complicated by the /= V= 0 singlet-octet
[nonet] mixing, and it is not very useful at present.

We now study instead the consequence of the use of
group-(8') commutators. Let us consider

&It*(q) ILv„-Axo]I~+(q)&=o wit Iql =

If we neglect the nonet mixing, we also arrive at the formula
given by Eq. {54) by using the group-{A) commutators. See
Ref. 15.

C. Intermultiplet Mass Formulas

It is certainly interesting to see whether the use of
the exotic commutator [V +,A +]=0 leads to inter-
multiplet mass formulas similar to the sum rules for
baryons given, for example, by Eq. (34). The corre-
sponding exotic commutators for SU(3) are the group-
(A) commutators such as [Vrro, Argo]=0. For octet
bosons these commutators gave" rise either to the
intermultiplet sum rules which are complicated by the
/= Y=O singlet-octet meson mixings or to the ones
which take a form A =8, but with A~O and 8 0 owing
to the GMO mass formulas derived by the use of
[V%0 Vrro] = 0 and asymptotic SU(3) symmetry. On
the other hand, the group-(8) commutators such as
[Vrro, A -]=0, which apparently depend more on the
model of SU(3) breaking, gave' the following general
intermultiplet mass formulas free from the parameters
of singlet-octet (nonet) mixing":

We obtain, using asymptotic symmetry,

&It*'(q)IA
I )& lv--I '&

n=x0, 27, 27'

=&ft*'(q)IV--Il~*'&&It*'IAx
I

"& (57)

We erst rewrite (X*0(q) IArroln(q)). Using the charge
algebra, Argo= —2[A 0, Vxo], we obtain for Iql = ~ by
our asymptotic SU(3)

«*(q) IA I
&= —2«*(q') IA" Il~'&«'I v

I &

+2 Z «*(q')lv l~&VIA"I-&.
P=p, ~, 4

For n.=x, g, and g', the second term of the right-hand
side of the above equation vanishes because of charge
conjugation invariance. (Throughout this paper we
assume this invariance. ) The vanishing of this term is
essential for the derivation of our formula below. Thus
the left-hand side of Eq. (57) can be written as

—2Z «'(q)IA- Il~'&«'lv
I && lv--I +),

which, after using the relation

&z0(q) I[vx,v.-]l~+(q)&=o wit

becomes

—2«*0(q) IA- IIt0&(lt0I V--I&+&«+I V
I

'& (»)
On the other hand, the right-hand side of Eq. (57), after
using again the commutator A rr~ = —2[A o, Vrro],
becomes

«*'(q)
I
v--I It*+&(—2&&*+

I
A-

I
1~+&(It+

I
v

I
+&

+2&I~*+I Vx'I p+&&p+I A" I ~+&) .
The nonvanishing of the matrix element &p+ I A, o

I
rr+&

in Eq. (59) under, for example, G invariance is also
important for our derivation. We now derive sum rules
which relate the matrix elements (X*0(q) IA OIX0&,

(X*+(q)IA;IE+&, and (p+(q)IA lrr+& in the asymp-
totic limit. By using the commutator 2A o= [V +,A -],
we obtain"

lim (E*'(q) IA oIE'(q))
I el

= ——,
' lim &%*0(q) IA.-IK+(q)& (6o)

lel

and

»m &Z*+(q) IA..IZ+(q))
I el

=l »m «*0(q) IA--I&+(q)& (6I)

We need one more relation. We consider, with
I q I

~00,

«*'(q)
I
v l~&&~IA--l~+)

cx=p, co
& f

=(&*'(q)
I
A.-

I
&+)&It'I Vxo

I
~'&. (62)

We rewrite the left-hand side of this equation by using
again the commutator A, -=[V —,A o]. It becomes

2~ Note that we are not using exact SU{2) symmetry.
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equal to

(E*'(q)IVx
I && IV--lt')(t'IA-

I
+)

rx=p ~
~0

~ 4'

and finally reduces to

(E"o(q)lv lto&&to[ v.-lt+&&t+IA.
I

+&

wit I ql = ~. (63)

In obtaining Kq. (63), we retain only the term n= p'
since the contributions of other terms, n=co and p,
are much smaller

I
of the order of SU(2) breaking]. Thus

from Eqs. (62) and (63), by noting a,iso

and

»m (t '(q) I V--lt'(q)&= —v2,
lql

lim {E+(q)I Viol+(q)& = —I,
lql

Thus by equating Kq. (58) to Eq. (59), utilizing the
sum rules Eqs. (60), (6f), and (64), and using the
asymptotic values of the matrix elements of the charges
V —and V~o, we 6nally obtain an intermultiplet sum
rule

(E')'—(E')'= (E*')'—(E")' (65)

The use of another commutator belonging to the
group (8'), i.e.,

&E+(q)ICV. ,A 3[~-(q)&=0 wit [ql=~,
leads also to the same sum rule by using a similar argu-
ment. Sy following exactly the same steps we can also
derive an intermultiplet sum rule between the J~~= 1
and 2++ octets. Namely, from

&E**'(q)
I CV.—,Ax'jl p'(q)&=0 with [ql ="

we obtain

(E*')'—(E*+)'=(E**')'—(E*"+)'. (66)

E*~ denotes the E~(1420).i9 In fact, the procedures
used to derive these sum rules are quite general and
almost independent of the spins and parities of the
octets involved. Consider two octet bosons n (~,E, t)r
and P (ere, Ee,ge). The conditions that the above
procedures of deriving the sum rule, Kq. (65), will go
through in the general case are as follows.

(a) The two octet bosons n and 48 must have opposite
charge conjugation parities.

(b) The matrix element (E' 0(q) I
A 0[Ep'(q)& exists,

i.e., it does not vanish, for example, by the requirement
of parity conservation.

we obtain

»m (t+(q) I
A-

I ~+(q) &
lql ~—lim (E*'(q)

I
A —

I E+(q)) . (64)
l q[ ~co

(c) The matrix element (~ +IA 0[me+) also exists,
i.e., it does not vanish by G invariance.

Therefore, for such a pair of octets n and P which
satisfies these conditions (a)-(c), we obtain a general
intermultiplet mass formula

(E 0)2 (E +)2—(E 0)2 (E +)2 (67)

If we assume that both the octets with normal and
abnormal charge conjugation parity always exist, "we
then obtain a universal formula for octet bosons

(E ')' —(E +)'= const I
n is arbitraryj. (68)

From the known E -E+ mass difference, we then
predict that the neutral member of the octet kaon is
always heavier than the charged one and that their
quadratic mass spacing is universal and is of the order
~0.004 GeV'. For the 1 octet, present experiment"
indicates (E*')'—(E*+)'=(0.01&0.007) GeV' which
is consistent with our prediction, Eq. (65). The above
mass formulas have taken into account the effect of
the I= V=O singlet-octet (nonet) mixing. However,
one should bear in mind the fact that they are subject
to the limitations mentioned before, i.e., the neglect of
mixing other than the above nonet mixing and the
validity of the commutator utilized. The general SU(2)
intermultiplet boson sum rule, Eq. (68), can be com-
pared with the SU(3) one given by Eq. (54).

VI. FINAL REMARKS

We have shown that our asymptotic symmetry
Lboth SU(2) and SU(3)7 an.d the use of exotic commu-
tators of the form LV, Vj=0 reproduce all the good
results of the effective octet dominance models or the
Coleman-Glashow tadpole model. We stress the fact
that we did not make a perturbation argument, i.e.,
we did not use the assumption that the effective Hamil-
tonian transforms like an octet. Therefore, without
assuming it, the octet dominance, in fact, effectively
comes out from our asymptotic conditions. The mass
degeneracies between the I=1 charged and neutral
bosons are removed. In our approach this is achieved
by the effect of mixings, which is again the result of
effective octet dominance. Therefore, the assumption
that the basic (not effective) SU(3)- and SU(2)-break-
ing Hamiltonians transform like members of an octet
seems to work quite well. We have also obtained general
simple intermultiplet mass formulas which include the
SU(6) result as a special case. Their validity is not as
certain as that of the GMO mass formulas since they
are more affected by particle mixings (but not by the
nonet mixing). However, they will be useful as a first
guide in hadron spectroscopy, and they certainly fix
the scales of the hadron mass splittings which are
realized in nature.

"For bosons already known to us, we do not need to use this
assumption in deriving the sum rules Eq. (67}which include them.
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APPENDIX A: SUM RULES FOR SEMILEPTONIC
HYPERON DECAY COUPLINGS IN

BROKEN SYMMETRY

Define g„q(0) and f„q(0) by

»m (p(q) I
Ax'IA'(q')&

the Z'-A. ' mixing angle in our approach. The value of 8
is estimated to be around 0.02—0.03. Although 8 is small,
the determination of 8~ is, in some cases, affected rather
seriously by the effect of SU(2) breaking. For example
the determination of the Cabibbo angles from the
h. ~p, Z+~A, and n~ p decays is not very sensitive
to the effect of the 8 correction whereas that from the
Z —+e, Z —+A, and n +P d—ecays is rather sensitive. "

APPENDIX B: 8U(2) MASS SUM RULES FOR
OCTET BARYONS FROM COMMUTATOR

[V +, A.+7=0

Consider the equation

»m (z'(q) I[v-,A-']Iz (q))=o.
lel

We then obtain from our asymptotic SU(2)

(z+(q) I v- I~&&~l A- Iz-)
n=ZO h0

= (2~)'8'(q —q') (~./E.)"'(~~/E~)"' n'=50, ho

and
Xg„~(0)~„(q)y4yalg(q') with

I q I

= ~. We then obtain

(p(q) I
V "IA'(q')&

= (2~) '5'(q —q') (m„/E ) 'I'(mp/Ep) 'I'

)&f„p(0)u„(q)y4uz(q'),

respectively. Then G(+2)g„z(0) sin8& and G(Q~)f~z(0)
Xsin8y will be the observed axial-vector and vector
coupling constants [at zero four-momentum transfer]
for the A.o ~p+ e +I decay, respectively. We note that
the usual chiral SU(3)SU(3) charge algebra still
holds even in the presence of SU(3)-and SU(2)-breaking
interaction. Therefore, by using our asymptotic SU(3)
and SU(2) symmetries for the charges Vz and V„+,
respectively, we can derive sum rules for the g's and
f's from the algebra. The sum rules thus obtained are
compatible with the SU(3) and SU(2) hadron mass
splittings discussed in this paper. For example, we
obtain

g -(o) = (v'l)(I+~»)g. .(0)+(I+2v38)g. (o)

and
f„g(0)= —(gg) [1—(gs) 8], etc.

Here 8 is the Z'-h. ' mixing angle de6ned in Sec. IVA.
The complete set of sum rules were listed in our previous
work. "The effect of SU(2) violation appears through

"S.Matsuda, S. Oneda, and P. Desai, Phys. Rev. 1'78, 2129
(1969). The Z0-A0 mixing angle 0" defined there is related to the

vZ cos8g, , [(Zo)'—(Z-)
+~2(—»n8) gz ~[(A')' —(Z

—)']
= —42 cos8g, ,-[(Z+)'—(Zo) ~]

+V2 (sin8) gzz-[(Z+) ' —(Z') '7.

Again 8 is the Z'-A. mixing angle and the g's are defined
in Appendix A. By using the sum rules for the g's, which
can be obtained by using the SU(3)SSU(3) charge
algebra and the asymptotic symmetries, we can
eliminate g's from the above .equation and finally
obtain a mass sum rule,

[(Z )'—(Z')'] cos'8= [(Z')' —(Z+)'] cos'8

+[(Z+)'+(Z )'—2(A.')'] sin'8.

This was also obtained in Sec. IVA by using the
commutator [V,+, V +]=0. The same argument holds
for any octet baryons. Thus both the commutators,
[V +, V +]=0 and [V +,A +]=0, give the same mass
formula when they are applied to the same SU(2)
multiplet. The A + is not an SU(2) generator in the
SU(2) limit. Therefore, the above result indicates that
the asymptotic SU(2) symmetry for the V + is a very
good one. The same arguments also hold'' for the
commutators [Vrro, Vrro] =0 and [Vino, Axo] =0 and
they also suggest that the asymptotic SU(3) symmetry
for the U~ is a good one.

present 8 by 0"=—8. Equation (14) of this reference should be
replaced by one of Eqs, (21)—(24) of this paper.


