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We consider interacting quantum electrodynamics with the electric current j& unspecified and compute
the homogeneous Lorentz group transformation laws of the "vector" potential A& in the radiation gauge. We
show that A& decomposes uniquely into a direct sum of an in6nite number of linear, in6nite-dimensional,
nonunitary, indecomposable representations of the homogeneous Lorentz group. One of these representations
has spin-multiplicity 2, belongs to a class of representations recently analyzed by Gel'fand and Ponomarev,
and may be the first recognized physical example of this class of representations. Finally, the noninteracting
limit is shown to reduce correctly to the free-field case in which the transformation properties of the "vector"
potential are already known.

I. INTRODUCTION
' "N the study of interacting quantum electrodynamics
~- one faces an apparent dilemma. In the Lorentz
gauge the "vector" potential A& has a well-defined
(vector) transformation law but the Hilbert space of
states is complicated by the lack of a positive-definite
metric and thus the space contains unphysical states.
On the other hand, in the radiation or Coulomb gauge
(the unique gauge in which the Hilbert space metric is
positive definite and all fields are completely determined

by the independent fields') the infinitesimal transfor-
mation law of A& [see Eq. (2)] is so complicated that
heretofore it was not clear if the radiation gauge was
even covariant (that is, if A& obeyed a linear I.orentz
transformation law).

In this paper we show that the above dilemma is only
apparent. In the radiation gauge, A ~ decomposes
uniquely into a direct sum of linear, indecomposable
representations of the homogeneous Lorentz group.
Thus, the radiation gauge is just as covariant as the
Lorentz gauge.

Specifically, in the notation of Gel'fand, Minlos, and
Shapiro, ' which we explain in Sec. II, we prove that the
Coulomb potential A transforms as the spin-0 com-
ponent of

In Eq. (1), (0,2j) and (1, &2j&1) are in6nite-dimen-
sional, nonunitary, operator-irreducible representations.
(1, &1)„=s are spin-multiplicity-2 representations be-
longing to a class of indecomposable representations
recently analyzed by Gel'fand and Ponomarev, ' and, in
fact, these may constitute the first recognized physical
example of this class of representations.

The question of covariance of the radiation gauge
was first raised by Strocchi, 4 who showed that the vector
potential in free-field quantum electrodynamics cannot
transform as a vector. Bender' then discovered that the
free field A ~; transforms as the spin-1 component of the
(1,1)63(1,—1) representation. This result was later
rederived by Frishman and Itzykson. ' Both Bender and
Frishman and Itzykson noted the importance of ex-

tending their results to the interacting case and also the
difficulty of performing such a task.

To demonstrate why the interacting case:is so much
more dificult to handle than the noninteracting case,
we first give the infinitesimal transformation laws'7 of
A' and A~; in the presence of a current:

i(Ao(x—) Josj
= (x"8'—x'Vs) A'(x)

+VsBeV 'Ae(x)+ 'V 'A s(x) (2a)

E+(0,2j)
j=0

and that the transverse potential A~, transforms as the
spin-1. component of

(1a) i(A r, (x),Sosj
= (x"8e—xoV,)Ar (x)

+V BeV 'A s(x)+(8 s—V VsV ')A'(x). (2b)

6(0,2j)&PS(1,2j—1)SP $(1, —2j+1)
j=0 j=1 j=1

6(1,1)„sB(1,—1)„s. ( 1b)
~ Research sponsored by the National Science Foundation

under Grant No. GP-16147.
' J. Schwinger, Brandeis Lectures, 1964 (Prentice-Hall, Engle-

wood Clips, N. J., 1965), p. 147.
2 I. M. Gel'fand, R. A. Minlos, and Z. Ya. Shapiro, Representa-

tions of the Rotation and Lorentz Groups and Their Applications
(MacMillan, New York, 1963), pp. 188—197.

2

3 I. M. Gel'fand and V. A. Ponomarev, Usp. Mat. , Nauk 23, 3
(1968) LRussian Math. Surveys 23, 1 (1968)j; see also D. P.
Zhelobenko, Dokl. Akad. Nauk SSSR 121, 586 (1958).

4 F. Strocchi, Phys. Rev. 162, 1429 (1967).
' C. M. Bender, Phys. Rev. 168, 1809 (1968). This paper also

gives the transformation laws of the transverse potential for
noninteracting massless field theories of arbitrary spin.

6 Y. I'rishman and C. Itzykson, Phys. Rev. 180, 1556 (1969);
183, 1520 (E) (1969).

~ We use the metric (+, +, +, —) and de6ne V 'f(x) =——(4x) ~

Xj' y~dx y( 'f(yl J&" i—s the gen.erator of the homogeneous
Lorentz group.
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A' and A; satisfy the field equations'

A'= —V' 'j'

~2AF . 'F .

where j~; is defined by

j '—= (ti'p &'&—p& ')j a

(3b)

(3c)

II. SURVEY OF INDECOMPOSABLE
REPRESENTATIONS

Below, we list very briefly some characteristics of the
indecomposable representations of the homogeneous
I.orentz group. These representations are described in
terms of their spin content, where each spin component
is an irreducible representation of the rotation subgroup.

and the transverse potential A; obeys the radiation-
gauge condition

V';A ~;=0. (3cl)

Next we recover the noninteracting limit of the theory
by taking j& —+O. Equation (3) implies that in this
limit A' ~ 0 and Q'A~, —+ 0. Hence, in this limit the
transformation laws in Eqs. (2) decouple and Eq. (2a)
disappears entirely, leaving

—iLAr (x) JoP7

= (x"8' xÃ—p)Ar, (x)+V';BpV 'Arp(x). (4)

Note that an infinitesimal algebra which closes under
Eq. (4) can no longer close under Eq. (2). This unusual
behavior (which is a direct result of minimal coupling
and is not observed in massive field theories) accounts
for the added complexity in the interacting theory: The
transformation properties of the vector potential depend
upon the presence of the electric current

The correct approach to this problem arises from the
observation that repeated commutation of, say, A with
J'~ gives an infinite sequence of spin-0 components:

A', Bp'V' 'A', (9p'7—'AP, . . . .

Thus, A' cannot transform as a finite direct sum of
indecomposable representations. While this observation
suggests that the solution to the problem is not simple,
it also suggests a technique which works: First, we
construct indecomposable representations of the Lorentz
group out of infinite linear combinations of terms of the
form Bp'~V '~A'. Then, we recover A' from an infinite
linear combination of these indecomposable repre-
sentations. This technique is used repeatedly to achieve
the complete and unique solution given in Eq. (1).

Our paper is organized as follows: Section II gives a
quick survey of the properties of the representations
encountered in this paper and of the terms used to
describe them. (This section is included to make the
paper self-contained. ) In Sec. III we analyze a simple
example to demonstrate the technique described above
of taking infinite linear combinations of infinite linear
combinations. Then this technique is applied in Secs. IV
and V to determine the transformation properties of AP

and A ~,, respectively. Finally, in Sec. VI we discuss the
noninteracting limit of Eq. (1), discuss possible con-
tinuations of this work, and comment briefiy on the
intricate structure we have unearthed in our quest for.
covariance.

A. Irreducible Representations

Irreducible representations are uniquely specified in
the notation of Gel'fand, Minlos, and Shapiro' by a pair
of numbers (tp, li). tp is the lowest spin contained in the
representation and is thus a non-negative integer or half-
integer. /& can be any complex number. The sequence of
spins contained in an irreducible representation has the
form

tp, tp+ 1 /o+2, to+3, (6)

This sequence terminates if and only if the representa-
tion is finite dimensional, and in that case the highest
spin contained in the representation is ~ti

~

—1.
One can picture the infinitesimal algebra of an irre-

ducible representation schematically as

Xlg ~ ~la+1 ~ XEO+2 ~ alp+3 ~ ' ' '
~ (7)

In Eq. (7), xi is the tth spin component and each arrow
indicates one commutation with J'~, the generator of
pure I.orentz transformations. In and only in an
irreducible representation every X~ is connected to
every other X& by a sequence of arrows going in both
directions, as in Eq. (7).

Irreducible representations fall into two classes.
(i) Nonsingular class. li to is not—a nonzero integer.

All nonsingular representations are infinite dimensional.

(ii) Singular class. 1i lo is a —nonzero integer. If
l~ &lp, the representation is finite dimensional and if
l~ (lg, the representation is infinite dimensional.

Singular representations can be organized into pairs by
switching tp and ti (with a sign change in the event ti is
negative):

(tp, ti) is paired with P( ti(, (sgn /i)to7 (g)

One member of the pair is finite dimensional; the other
(called the tail of the finite-dimensional representation)
is infinite dimensional.

B. Indecomposable (Noncomyletely Reducible)
Representations

Indecomposable but not irreducible representations
(representations which have invariant subspaces but
which cannot be decomposed into a direct sum of
irreducible representations) occur because the Lorentz
group is not compact. To construct indecomposable
representations one "glues" together several irreducible
representations having the same infinitesimal trans-
.formation laws.

(i) Nonsingular class. One can glue together n replicas
of a nonsingular representation (to, li) pThe resultin. g
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representation contains all spins /, lo&-l( ~, each spin
occurring e times. There is, up to equivalence, only one
way that these ts (ls, lt) replicas can be glued together
indecomposably. Thus, three numbers, lo, li, and e,
uniquely label these representations. Figure 1 gives a
schematic picture of the infinitesimal algebra that
results when ts (the spin multip/icity) is chosen to be 2.
In Fig. 1, the (Rs,) span the invariant subspace which
starts at spin 1 and the (Si) comprise the rest of the
representation. We will encounter this representation in
Sec. U. When we decompose the transverse potential 2 ~

into indecomposable representations Lsee Eq. (1b)], we
find a representation of the type shown in Fig. 1.

(ii) Singular class. Since the infinitesimal algebra of
a representation (/„lt) depends upon /s and it sym-
metrically (that is, it depends on lslt and les+its), ' a
representation and its tail have the same infinitesimal
transformation law. Thus, one can glue a representation
to its tail. In general, one can glue mo replicas of the
finite-dimensional (ls, lt) to trr replicas of its tail. The
resulting representation contains all spins 1, i,& i&

~
ltl—1, ns times, and all spins 1, l lt l

&1& oo, Ni times. The
singular case is more complicated than the nonsingular
case because lo, l&, no, and e& are not sufhcient to specify
up to equivalence the complicated subspace structures
which can occur. A string of integers and a complex
number p are also required.

Fortunately, in massless field theory the most com-
plicated representations which have occurred have
Is=mr=1. These representations are called operator
irredlci Me. ' Operator-irreducible representations have
just two possible subspace structures. Either is&i&

l lrl—1 or lire &i& ~ constitute an invarian. t subspace.
Thus, these representations are completely specified
when one states whether it is the finite part or the tail
which forms the invariant subspace. ' We diagram below
the infinitesimal algebra of an operator-irreducible
representation which has an infinite-dimensional in-
variant subspace:

Xlp ~ alp+1 ~ +—Xl lil —2 ~ XI lil —1 +

Xl 4I ~ XI 41+i+ ' ' (9)

III. ILLUSTRATIVE EXAMPLE

I et x& be a vector having nonzero norm s:
x[s—(xo)s=s~o

To illustrate the techniques used in Secs. IU and V, we
will determine how (xs) transforms (n is a complex
number).

These representations are discussed in I. M. Gel'fand, M. I.
Graev, and N. Ya. Vilenkin, Generalized Functions (Academic,
New York, 1966),Vol. V, Chap. III.

'Operator-irreducible representations of both kinds are con-
structed and discussed in detail by C. M. Bender and D. J.
Gri%ths, Phys. Rev. D 1, 2335 (1970). The stress tensor for all
free massless field theories of integer spin L&2 is the direct sum
of two operator-irreducible representations: I (0,1) "glued" to its
tail (1,0), with (1,0) the invariant subrepresentationg Q+L(0,3)
"glued" to its tail (3,0), with {3,0) the invariant subrepre-
sentation j.

The infinitesimal transformation laws for a vector x&

JOk. +0~ &k

Jok. &i~ yak&0

Using Eq. (11),we observe that repeated application of
J's to (x') gives an infinite sequence of spin-0
components:

(x'), s(x') ' s'(x') ' . . . . (12)

This sequence, which is similar to that in Eq. (5), hints
that (x') transforms as the spin-0 component of the
direct sum of an infinite number of indecomposable
representations. "

Equation (12) motivates the definition

P'=—(x') 2 f (N)9(x') ']"+', j =0,1,2 " (13)
Ã 0

where the f, (N) are numbers and the superscript 0
indicates that P carries spin 0.

Using Eqs. (12) and (13), we will show in the calcula-
tion which follows that (a) there is a unique expression
giving f, (N) in terms of f, (0) for which P/ transforms
as the spin-0 component of the LO, lt(j)]representation
and (b) there is a unique choice of f, (0) for which

Q Pi'=(x')
j=0

We will then conclude that (x') transforms as the
spin-0 component of

(I) [0 lt(j)].
j'=0

A. Determination of P,' in terms of f, (0)

Boosting PP twice with J'" Lusing Eq. (12)] and
extracting the spin-0 part of the result (isolating the
term with a nonzero trace) gives

(*') 2 L~(x') ']"+'t fJ(N)(~+»~+—2i)
Ã 0

+ ',f,(N)(rr+2N+-2j)(n+1+2N+2j)

+',f,(N —1)(rr —2+-2N+2 j)(rr —1+2N+2 j)], (14)

where f, ( 1) is 0. —

"Ifs were zero, the sequence in Eq. (12) would terminate after
the first entry. Then (xp) ~ would itself be the spin-0 component
of an indecomposable representation. tThis case is treated in
detail in Ref. 9, where {x') is shown to transform as the {0,1—o.)
representation. j Note the beautiful symmetry between (a) the
transformation laws of free massless fields (which describe particles
constrained to the light cone and which transfor. m as single
indecomposable representations) and interacting massless fields
/which allow virtual particles to leave the light cone and which
transform as a direct sum of indecomposable representations as in
Eq. (1)g and (b) the transformation properties of (x') ~ for s=0
and s/0.
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R
0)

I go. 1. Schematic picture of the in6ni-
tesimal algebra of a spin-multiplicity-2
indecomposable representation. An arrow
indicates commutation with JO". The
subscript on E.O or 5 is the spin carried by
that component. The lowest spin con-
tained in this representation is 1.

We want E,' to transform as the spin-0 component of
the [O,li(j)] representation. For this to be true, the
expression in Eq. (14) must be equal to —,{[ii(j)]'—1}
times the expression in Eq. (13).' (We are demanding
that the infinitesimal algebra close under commutation
with P".) Thus we obtain a set of difference equations
which f;(S) must satisfy.

The first of these equations (the one corresponding to

»r=O) is an indicial equation [f,(0) is nonzero, of

course] which determin. es li(j):

ii(j)=+(~-1+2j)

We substitute Eq. (15) into the rest of the difference

equations (those corresponding to»i = 1, 2, 3, . . .) and

get a unique solution for f, (») in terms of f;(0):

(—1)"f~(0)p(»'+ j+k~)p(»'+ j+2~+k) I'(~+2 j)
j,(»') =

»!r(~V+ +2j)r(j+-; )r(j+-', +-,')
(16)

Then, defining
s=——s(x') '

Substituting

~—=—lsil+k(1 —s)'"] '
and substituting Eqs. (16) and (17) into Eq. (13), we

obtain
into Eq. (20) simplifies Eq. (20) to

2 f (0)(4~)'=(I+~)(1—~)
j=0

" & I'(&+i+2~)p(»t+i+k~+k)
(18)

N!I (X+n+2j)
The summation in Eq. (18) can be performed ex-

plicitly. "The result is

»'= J (0)(z') (—s)'(1—s) "'
X[-,'+-,'(1—.)'i']'-=' . (19)

Equa, tion. (19) gives the 6nal expression for»0 in terms
of j,(0).

(2j+~—1)P(j+~—1)
f (o)=-

4'j!r( )
(23)

This completes the calculation for this subsection.
Thus, we have uniquely decomposed (x') " alge-

braically:

The right-hand side of Eq. (22) has a power-series ex-

pansion in v which has almost the same form as the
power series in s in the right-hand side of Eq. (18)."
Comparing terms having the same power of v gives a
unique solution for f,(0):

B. Determination of (x'} "in terms of PP

We must now show that there is a unique set (j,(0)}
which solves the equation

(z')
j=0

and group theoretically:

(24a)

2 f (0)(-s)'(~') (I-s) "' (x') transforms as P $(0, n+2j —1). (24b)

for all s.
X [-', +-,'(1—s)"']'——"= (x')— (20)

'~ See A. Erdelyi, %. Magnus, I'. Oberhettinger, and F. G.
Tricomi, Higher Transcendental Iiunctjols I,'McGraw-HiH, New
York, 1953), Vol. 1, Chap. Il.

Finally, we note that when ++2j—1 is not a nonzero

integer the representation (0, n+2j—1) is infinite

dimensional and irreducible, and that when 0.+2j—1

is a nonzero integer the representation (0, u+2j—1) is

infinite dimensional and operator irreducible with an
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infinite-dimensional invariant subspace starting at spin

l
~+2j—11

where

Qio= Q z~+&f,(1V)A', j=0,1,2, . . .
Ã 0

(25)

(26)

Following the procedure in Sec. III A, we commute
twice with J'" using Eq. (2), and compute that QP
transforms indecomposably (the algebra closes) if and
only if

When Eq. (27) is satisfied, Qio transforms as the spin-0
component of the (0,2j) representation. (0,2j) ~,=o is
infinite dimensional and irreducible. (0,2j)

~
j=i,g, fl, .. . is

operator irreducible and contains an infinite-dimen-
sional invariant subspace starting at spin 2j.

Next, we plug Eq. (27) into Eq. (25), sum the series, "
and get

Q 0= f~(o)s'Lb+ k(1—&)'"?"
&&(1—s(2t+1) '[1+(1—s)'~'] '}A'. (28)

Finally, using the substitution in Eq. (21), we calcu-
late the ueiqme set. of numerical values for f, (0),

fo(0)=1, f, (0)= —2(2j—1) '(—4) ', for j)1, (29)

which satisfy the equation

A'= Q Q'
j=o

(30)

We conclude that the Coulomb potential A' trans-
forms as the spin-0 component of a direct sum of
infinite-dimensional representations:

IV. TRANSFORMATION LAW OF
COULOMB POTENTIAL A

We now use the techniques developed in Sec. III to
determine how A' transforms. The sequence in Eq. (5)
motivates the definition

components of the Q, representations derived in Sec.
IV. The R-type terms are a new set of indecomposable
representations whose lowest-spin component is 1 Lthey
are the (1, &2j&1),j= 1, 2, 3, . . . , operator-irreducible
representations with infinite-dimensional invariant sub-
spaces]. The S-type terms are nonsingular, spin-
multiplicity-2, indecomposable (1, &1)„2 representa-
tions. In this section we find the most general collection
of indecomposable representations which (i) have a
spin-1 component and (ii) could possibly add up to give
A ~;. We then show that there is a ueiqme way to add all
these representations together to get pure A ~;.

A. Q-Type Terms

In Sec. IV we introduced the Q-type representations
whose sequence of spin components takes the form

.0 .m .mn .tn n y (32)

where m, e, p, . . . are three-space indices. Q,o was given
in Eqs. (25), (28), and (29). The Q-type representations
are the most general set of indecomposable repre-
sentations whose lowest-spin component is 0 and whose
spin-1 component could give pure A ~; in our final sum.

We get Q, , the spin-1 component of the Q repre-
sentations, from the commutation relation

—~LQ,',J'"]=(z-a' —x'V )Q o+ Q
- (33)

and from Eqs. (2), (25), (28), and (29). The result, after
some algebra, is

Q "=&(j)s'L +2(1—s)"'] "
&& (L&—&'(2l+1) 't:1+ (1—s)'"] ']A '-
+L2+ (2/ —1)(1—s) '"—2s(2l+1) '

XL1+ (1—s)"'] ']cjoV~V 'A'} (34)

where z is given in Eq. (26) and E(j) is an undetermined
numerical constant which reflects the arbitrary nor-
malization of Q, ' relative to Q, . We will determine Z(j)
in Sec. V D.

B. 8-Type Terms

Since the most general three-space vector that one can
construct from A and A; is a linear combination of
~o~m~ A

y
A my and

&mph'~

~p~pA q~ we are»«i-
vated to define

Z(0, 2j).
j=o

This verifies the assertion made in Eq. (1a).

(31)

Ri = Z s"+'Ea, (X)BOV V 'A'+b, (1V)A—r
Ã 0

+c,(Ã)e „,BOV„V 'Ar, ], j=0,1,2, . . . . (35)
V. TRANSFORMATION LAW OF
TRANSVERSE POTENTIAL A

The transformation law of A r; [see Eq. (1b)] is more
complicated than that of A'. A; transforms as a direct
sum of three different types of terms which we call

Q, R, and 5 type. The Q-type terms are the spin-1

By demanding that E., belong to an indecomposable
representation without a spin-0 component, we are
guaranteed to find representations different from the
Q-type representations.

In this subsection we look for irreducible and operator-
irreducible representations, that is, for representations
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having just one spin-1 component. (In Sec. V C we will
look for representations having several spin-1 compo-
nents. ) Our procedure is to commute RJ once with J'"
and demand that the resulting expression contain no
spin-0 component (be traceless), and that it contain
R, as the spin-1 component. In other words, multi-
plying the resulting expression by e, I, must give
something proportional to Rj' itself. If the representa-
tion to which R, ' belongs is labeled by L1,l, (j)], then
the proportionality factor is exactly il&(j)

To do this calculation, we must solve three coupled
difference equations for u, (N), b, (N), and c,(N). After
summing over E, we find that R, takes the form

R m=D(j)s&(A;(s)80V V' 'Ao+B, (s—)Ar„
+C, (s)o „,BoV„V 'A,]. (36) it Si +ok] (~kdo goV )S~+@~o (41)

part S. S', the spin-1 component of S, is given by

S'=C( L(PX—1)s(1—s)
—' '+ (1—s)'"]80V,V-'A'

+L1+Xp 's+2s](1—s)'"A —p(1—s)' '
+PA's(1 s—)-'~']0;„.aoV„V 'A-r.}, (39)

where C is an over-all multiplicative constant, P=ili
=%i, and P is an arbitrary constant which gives the
relative normalization of Eo to S. For simplicity we
choose X=P ' Then

S'= C(2(1 s)—80V,V 'A'+ (1—s)"'(1+s)A r;
P(1 —s) "'—0;„.—80V„V 'A r„}-. (40)

The result in Eq. (39) follows from the commutation
relation

D(j) is an over-all multiplicative constant which will be
determined in Sec. V D and A, 8, and C are explicitly

and from the equation

0" C'o=R '+PS' (42)

A (s)= —Ll+o(1—s)"'] "
XL1+ (1—)"'+(j-l)j-"(1- )-'"],

f~~(s)=0L0+o(1—s)"'] "
X P2j—1—s+ (2j—1—

&j 's) (1—s)"'],
C ()=—-"l V)A, (),
where"

The infinitesimal algebra that R satisfies is given in

(37a) Sec. V B. Figure 1 gives a schematic picture of the
infinitesimal algebra of the (1, &1) =0 representations.

(37b) D. Addition of Q-, R-, and S-Type Terms

It remains only to choose the coefficients C in Eq.
(40), D(j) in Eq. (36), and E(j) in Eq. (34) in such a
way that

l~(j)=W(2j—1). (38)

In Eqs. (37) and (38), j=1, 2, 3, . . . . We have ex-
cluded j=0 to avoid repetition. When j=0, we find
that A o(s) = —2s(1—s) ' ', Bo(s) = s(1—s)'", and Co(s)
=il&s(1—s) '~'. This implies that Ro ——D(0))D(1)] '
X (R& )".Hence, we take j to run from 1 to ~ without
loss of generality.

We have thus discovered that the representations
(1, &2j&1), j= 1, 2, 3, . . ., contribute to the sum in

Eq. (1b).

C. S-Type Terms

Although a large number of representations have
already been found which contribute to the trans-
formation law for A ~, , it is still not possible to choose
D(j) and E(j) in Eqs. (36) and (34) such that the sum
of the spin-1 components of all these representations
gives A, . Since we have identified all spin-multiplicity-
1 representations which could contribute to A ~;, we
look for spin-multiplicity-2 representations.

We have discovered one of these representations )it is
labeled (1,1) =0 and its conjugate is (1, —1) =0] and we
describe it below.

The subspace part of the representation is Ro which
transforms as (1, &1).LR0', the spin-1 component of R,
is given in Eqs. (36)—(38).] We call the nonsubspace

"The ~ sign identifies a conjugate pair of representations. See
Ref. 2 for details.

P Q,'+g R,'+S'+H. c.=Ar .
j=0 j'=1

(43)

LWithout loss of generality, we choose not to sum over
Ro (see Sec. V C) in Eq. (43) because we showed in
Sec. V 3 that Ro is proportional to R~*.]This calcula-
tion involves much tedious algebra. We list the Neiqme

result below:

D(1)= o (44b)

D(j)=L(j—1)(2j—1)'] '(—4) ' j&2 (44c)

E(0)= —2, (44d)

E(j)=—4t (2j+1)(2j—1)'] '(—4) ', j&1 (44e)

Equation (44) implies Eq. (43), which implies that A
transforms as the spin-1 component of the direct sum of
representations

P @(0,2j)gg g(1, a2ja1)g(1, a1)„=,. (45)
j=o j=1

We have thus verified the assertion made in Eq. (1b).

VI. OBSERVATIONS

A. Reduction to Free-Field Case

In free-field radiation-gauge electrodynamics Ao van-
ishes and A~; decomposes into left- and right-handed
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helicity states

where
A r,=C~+C,*,

C C.*=-'Ar a,'~e;, y8oV V' 'Arp (46b)

and C; and C;* transform as the spin-1 components of
(1, &1).'

We check that the transformation laws in Eq. (1)
reduce in the noninteracting limit to Eq. (46). As the
current j&~ 0, A' ~ 0 and sA r, ~ 0 [see Eq. (3)j.
Hence, QP, Q,~, and R, vanish for all j. The only
nonvanishing contribution to 2 ~; comes from the
noninteracting limit of 5' in Eq. (40) which is precisely
the expression in Eq. (46b). Thus, the noninteracting
limit of electrodynamics displays a remarkable phe-
nomenon: As j& —+ 0, the irreducible subrepresentation
Ep of the multiplicity-2 representation dissolves away,
leaving S', which in this limit becomes irreducible. In
short, the "glue" which connects Eo' and S' when j&/0
becomes "unstuck" when j&=0.

of l~'s. This would be a dificult task since the fields
associated with these values of t~ are dependent fields.
Nevertheless, our results are suggestive and merit
further investigation. "

(ii) Because we have discovered a set of fields which
systematically display in covariant form the physical
content of electrodynamics and which do not suffer any
sort of gauge transformation, we have completely
eliminated gauge transformations and gauge invariance
from quantum electrodynamics. Hence there is now no
structural difference between electrodynamics and mas-
sive field theories. I.ow-energy theorems and Ward
identities which are ordinarily proved using gauge
invariance and covariance should be directly provable
in this new framework.

(iii) It would be interesting to extend the present
formalism to include magnetic charge.

(iv) Using this work on interacting massless spin-1
particles as a model, one might try to formulate a theory
of interacting massless spin-2 particles (gravitons).

B. Other Areas of Research

Ke list below some possible continuations of this
research.

(i) It is remarkable that l~ for the representations in
Eqs. (24b), (31), and (45) always increases by steps of
two. Of course, this is not sufficient to indicate Regge
behavior because one would also have to find a sequence
of increasing masses which corresponds to the sequence
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» One possible continuation might be found in the study of
light-cone commutators. For example, R. A. Brandt /Phys. Rev.
Letters 23, 1260 (1969)7 has drawn physical consequences from
the connection between Regge theory and light-cone commutators.
The assumption that commutators on the light cone behave like
(x0} ~ corresponds neatly with the example in Sec. III.


