2 BOX DIAGRAM FOR THE

IV. CONCLUSION

A method of general applicability was developed to
evaluate, in terms of single dispersion integrals over
closed-form analytic functions, the contribution of box
diagrams for interactions involving particles with spin.
In particular, it was applied to a case of frequent
interest: the interaction of spin-3 fermions of mass M
with pseudoscalar bosons of mass u. The technique for
evaluating the absorptive parts with relative ease was a
type of partial-fraction expansion yielding numerators
free of angular dependence in the phase-space integrals.
The correctness of the result was ensured in two
different ways. (a) The terms in the absorptive parts
which themselves have an imaginary part were checked
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by explicit calculation of the double-spectral functions
via the s and ¢ channels independently. (b) The other
terms in the absorptive parts were checked by ensuring
their cancellation, upon passing to the double-spectral
integral form, by the residues of the absorptive parts at
the spurious kinematical singularities.

Several surprising factorizations occurred, bringing
out natural positive subtraction points. We underlined
the care needed to use them in the presence of kine-
matical singularities. Another unexpected result derived
by explicit calculation lies in the improved convergence
of the absorptive parts under the usual substitution
made for the convenient evaluation of partial waves. It
was shown that this allows one to do away completely
with the subtraction in this useful representation.
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We study two simple ways of adding an infinite number of direct-channel two-particle thresholds' to
the Veneziano picture, which usually contains only resonances in the direct channel. We investigate the
high-energy behavior, positivity, and /-plane structure of the resulting amplitudes, which turn out to have
Regge cuts in addition to Regge poles in the crossed channel.

I. INTRODUCTION

LONG time had to pass, during which numerous

data fits were made, and a deeper understanding
of the nature of Regge cuts achieved, before it was
realized that cuts in the angular momentum plane
could not be neglected in Regge theory. The situation
was different with Veneziano theory, which was known
from the outset to violate unitarity by giving rise to
zero-width resonances.!? In fact, it was introduced as a
first step of a bootstrap procedure in which complete
crossing symmetry was given priority over unitarity,
which was to be treated as an approximation'in a further
step. Many attempts at unitarization have been made,
and it seems that any reasonable unitarization pro-
cedure would either result in cuts or have to use cuts
as an input.®* The cuts in the models we are planning
to investigate are introduced in simple ways, and it
will be obvious that unitarization is not the immediate
objective. Nevertheless, it will be seen that to study
such cuts is not totally unreasonable, since they lead
to interesting new ideas.

! For a comprehensive review of narrow-resonance models, see
D. Sivers and J. Yellin, Rev. Mod. Phys. (to be published).

2 For a short review of the Veneziano model, see J. D. Jackson,
Rev. Mod. Phys. 42, 12 (1970).

3 A. Martin, Phys. Letters 29B, 431 (1970).

4 For a_comprehensive list of references to works on unitari-
zation, see Ref. 2.

We will explore. the possibility of generating Regge
cuts in the crossed channel through the introduction of
an infinite number of direct-channel two-particle
thresholds with real square-root branch points.® We
will find that, just as we can imagine a world composed
of an infinite number of zero-width direct-channel
resonances, which Reggeizes as the direct-channel
energy increases giving rise to Regge poles, we can
equally well imagine a world composed of an infinite
number of direct-channel two-particle thresholds with
real branch points, that gives rise to Regge cuts in the
crossed channel. It will be seen that the latter picture
possesses novel properties similar to those possessed
by the former: crossing symmetry, Regge behavior,
likelihood of positivity, absence of fixed poles, etc.
It also suffers from similar diseases: lack of Regge
behavior on the real axis (except on the average),
branch points and trajectories can only be real, etc.
In fact, the two pictures, instead of being introduced
separately, may be interconnected in a “cross-duality”
scheme wherein direct-channel resonances give rise to
Regge cuts, and direct-channel thresholds give rise to
Regge poles in the crossed channel. Furthermore, it
appears that the ‘“cross-duality” picture may have
certain advantages over the ‘‘direct-duality” one, in

5 M. O. Taha, Nuovo Cimento Letters 3, 861 (1970); Phys.
Rev. D (to be published).
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which resonances give rise to Regge poles and thresholds
give rise to Regge cuts.

We stress again that unitarity is not sought in the
models we are about to discuss. The poles and cuts in
one channel are introduced separately and not allowed
to interact, in order that the cuts may push the poles
into the second sheet, as is usually the case in a smearing
procedure.® However, these models may be looked upon
as a first step of an approximation scheme, in which
cuts are ‘introduced on the same footing with poles,
simply to provide freedom from meromorphism. An
obvious next step would be to allow the poles and cuts
of one channel to interact with each other, in an effort
to rid the models from some of their diseases.

II. INTRODUCTION OF AMPLITUDES.
DISCUSSION OF HIGH-ENERGY
BEHAVIOR AND POSITIVITY

The scattering amplitude for two spinless equal-mass
particles may be written in the form

M (s,tm) =A(s,0)+A @Fu)+A(sm), 1)

where
A(s,)=A(,s).

If we restrict ourselves to zero-width resonances in the
direct channel dual to Regge poles with linear Regge
trajectories in the crossed channel, the simplest form
of A(s,t) will be given by the well-known Veneziano
term B(—a(s), —a(t)), where the o’s are the Regge
trajectories in the energy plane. Now that we want to
enlarge the picture by allowing for an infinite number of
two-particle thresholds, we give ourselves the liberty
to split 4 (s;£) into two parts®:

A (s,t) = Ax(s,1) +A2(s,0) - @

Obviously there is more than one possible way of
writing 4; and A4.. Nevertheless, we can distinguish
two extreme possibilities. (1) Resonances and thresholds
are contained in separate parts; more precisely, A4
contains the resonances and A, the thresholds. (2) 4,
contains the s-channel resonances and ¢-channel
thresholds, while the ¢-channel resonances and s-channel
thresholds are contained in 4,. These two possibilities
will be referred to henceforth as “direct duality” and
“cross duality,” respectively, and will be discussed
separately below. To simplify writing we will adopt the
following notations for the leading cut and pole
trajectories:

X=at(s)=a(s—s0), Y=a°()=a(t—t),
x=a?(s)=b(s—s0), y=a?{)=b(t—1),
W =ac(u) =a(u—uo),
w=a? (1) =b(u—u),

3)

6 The splitting of 4 (s,f) needs to be justified. In a work on a
generalized interference model R. Jengo [Phys. Letters 28B, 606
(1969) ] stated some sufficient conditions which, if satisfied by 4,
and A,, would justify the splitting. The amplitudes 4; and 4.
introduced below do not satisfy Jengo’s conditions. Thus they
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where so=4m? and sp are the first threshold and reso-
nance in the s channel.
A. Direct-Duality Amplitudes

The resonance part 4; in Eq. (2) is given by the
Veneziano term

A1<S)t) = T(x7y) =C1B(_x7 '_y)
=CI(=2)T(=9)/T(—2—y), (4)
while the part that contains the thresholds, 4., is
given by

Az(s,f) = T(X, Y)

=C2/ AN N2 AB(N—=X,\—7) (5a)
0
® dg 77X (1 —g)~ Y1
—Cr ) / , (b
o [g—Ins(1—3)]*2

where ¢ is a parameter used to adjust the decrease
of the exponential. This amplitude was proposed
by Taha?’ and also by Matveev, Stoyanov, and
Tavkhelidze” with a slight difference in the integrand.
The transformation between (5a) and (Sb) is achieved
through the identity

/ AN Nl =T (3)q*.
0

The Veneziano term (4) contains an infinite number of
resonances in the direct channel and Reggeizes as the
direct-channel energy approaches infinity, except on
the real axis, where Regge behavior holds only for the
average of the amplitude. An analogous picture emerges
when we consider the amplitude 7(X,¥), which can be
written in the form :

0

T(X,Y)=7rC2/ ax

0

XAM2e= M cotwr(A—X) +cotr(A\—¥) ]
D(X+YV+1—2))
T(X—ADDY —A+1)

On expansion, the part of T'(X,Y) singular in X—\
yields an infinite number of equally spaced s-channel
thresholds at X=n (s=so+n/a, n=0,1, ...):

TX,¥)=CY | dr

n=0 /g

I(Y =\ +1+4n) 1
T(n+1)T(Y = A1) A= (X —n)

have no relation to Jengo’s interference model, as Taha (Ref. 5)
suggested the case might be.

‘V. A. Matveev, D. T. Stoyanov, and A. N. Tavkhelidze,
JINR Report No. E2-4978, 1970 (unpublished).

X)\l/Ze—-q)\
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As X -« (s> )8 T(X,¥) Reggeizes in the crossed
channel (we exclude the real axis), giving rise to an

infinite number of equally spaced Regge cuts at
a’()=¥Y=n=0, 1,

© dN AV2¢~ cotr(A— V)X T
TX,V)— 7rC2/
0 T(Y—x+1)

® © I\ )\1/26-qu—)\
—Co XY Y _—
n=0Jo [A=(Y—n)]
The discontinuities across these cuts are proportional to
1 X
I'(n+1) (Ingx)»?’

and have the expected Regge behavior. X and V are
defined in (3).

Thus, we conclude that the above choice of 4, and
As results in a duality between direct-channel reso-
nances and crossed-channel Regge poles on one hand,
and a duality between direct-channel thresholds and
crossed-channel Regge cuts on the other hand.

B. Cross-Duality Amplitudes

The second possibility is achieved by pictorially
breaking each of T'(x,y) and T(X,Y) into two halves
and attaching the resonances in x with the thresholds
in ¥ and the thresholds in X with the resonances in ¥.
Thus we obtain

Ai(s,)=T(x,Y) =Cf A\ N2~ DB(—x,A\—Y) (7a)
0

© dg g~ 1(1—z)~ Y1
=CT(3) )
0 [g—Inz]?/2

As(s,t) =A:1(t,s)=T(X,y). (8)

These amplitudes were proposed by Taha (with ¢=1)
and called by him “cross-duality’”’ amplitudes.® Upon
expansion in direct-channel (s-channel) singularities,
we find T'(x,Y) to be composed of an infinite number of
equally spaced zero-width resonances, while 7'(X,y)
is made up of an infinite number of equally spaced
thresholds with real square-root branch points:

(7b)

) 1 1 i
T(x,¥)=C ax
(=¥ Eor(n—l—l) x—n./o
T(V —An+1)
XA ——— . (9)
I'(Y —\+1)

8 We note that taking the limit X — « inside the integral, where
A can also be very large, is justified since only small values of A
contribute appreciably to the integral. The latter fact will be used
repeatedly tI})lroughout our work.

AMPLITUDES WITH CUTS 3075
»  T(y+n+1) °°
IrXy=C —
S TEADTG+D) Jo
XA2g—ar (10)
A\—(X—mn)

On the other hand, as x, X 5 o (s > x), T(x,¥)
and T'(X,y) Reggeize in the crossed channel, giving
Regge-cut and Regge-pole behavior, respectively:

T(x,Y)—>C

n“O T(n+1) Jo
—

X)\1/2e—q)\,

oy W

—n)

with discontinuities across the cuts proportional to

1 x¥
) (12)
T'(n+1) (Ingx)3/?
T(X,5) > T(3)g*2XY/T(y+1). (13)

Thus we obtain from Egs. (9), (11), (12), and
(10) and (13) the following picture: Direct-channel
resonances are dual to Regge cuts, while direct-channel
thresholds are dual to Regge poles in the crossed channel.

We conclude this section with a remark concerning
positivity. The various amplitudes 7'(X,Y), T(x,Y),
etc., are not smearings of the Veneziano amplitudes
T (x,y), as one might think, and thus we are not free to
conclude, as was proved by Martin, that positivity
should hold for the former wherever it holds for the
latter.® On the other hand, the integral forms of these
amplitudes, (5a) and (7a), may be looked upon as
infinite sums over the Veneziano-type terms

I(—X)T'(\—T)/T(2N—X—T),

=4AN, j=0,1, ... (14)
with the exponentially decreasing factors Aje~97 that
enhance the contribution from small values of . If
the tails of these infinite sums beyond \;~1 are made
negligible by choosing the parameter ¢ to be large
enough, the necessary condition for positivity,® in this
case

A<1—a%(0),

will be satisfied. Obviously the detailed discussion of
positivity for terms of the type (14) follows the line
intended for an ordinary Veneziano term.! It is hoped,
however, that a summation (or, alternatively, an
integration) over such terms with appropriate weight
factors is more likely to satisfy positivity than a single
Veneziano term.

? R. Oehme, Nuovo Cimento Letters 1, 420 (1969).
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III. I-PLANE STRUCTURE OF DIRECT-
DUALITY AMPLITUDES

From Egs. (1), (2), (4), and (5), we obtain for the
full amplitude in the direct-duality case

AD(S;t;u') :[T(x)y)+T(X)Y)]+[:T(w’y)+T(W)y)]
+[T(xw)+T(X,W)]. (15)

Our aim is to project the partial-wave amplitudes in
the ¢ channel. We will ignore the last square bracket in
(15), which has neither poles nor cuts in the physical
t channel. Furthermore, it can be demonstrated that
this bracket goes to zero faster than any power as
s, w — for fixed {, if we exclude the real axis: If we
define

v=3(x—w)=x—f=—w+t/,

V=3 (X=T) =X —g=—Wg,

where fand g are linear functions of ¢, the desired result
follows immediately:

T(xw) =CT(—y— )T (—f)/T(=2f)

xC y—2—1

o T(=2f) si ’
(=21) sinw(v+) Im[s| >0
T(X,W)=CIr(A—v"—g)T(\+v"—g)/T(2N—2g)
7rC 1/2)\‘-2/'———1
v T(N—2g) sina(/+f—N)
k Im|v'|>0.

If we ignore the last square bracket in (15), the expan-
sion of Ap in terms of its right- and left-hand singulari-
ties in s will have the following forms:

R.(y)
Ap®(stu)= C12~y~
n=0 #—X
© w R, (Y—N\)
+C2/ AN N 2g— o Z —, (16)
0 n=0 >\+’Hz~X .
g Rn( )
ADL(S,If,M) =C1 Z y
n=0 1 —W
+csz DN Y k¥ "3‘2, an
0 =0 \+n—W
where
R.()=T(¢+»n+1)/T(»n+1)r¢+1).  (18)

The partial-wave amplitudes are given by the formulal®

1 1
@Dﬁ:(l,l) = 5/ Pz(Z,)ADi(S,t) dzy, (19)

-1
1o P. D. B. Collins and E. Squires, Springer Tracts in Modern

Physics: Vol. 45, Regge Poles in Particle Physics (Springer-Verlag,
New York, 1968).
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where : v
2=142s/(1—t)) =14+-2[ X —a°(0) /¥
=1-+42a[x—a?(0)]/bY,

and Ap* give the even and odd parts of 4 p, respectively:
ADi(S)t) =ADR[t,S (Zg,t)]iADL[t,S ( 2y, t)] . (21)

We finally obtain the following result for the partial-
wave amplitudes:

bY/2 ,LZOR"@)QI( __;;/p??)

(20)

Ap(l,l) =

o

ANNZE N S R (V=)

0 n=0

><Qz<1+ @—2—_;(0)) (22)

Ce
+—
1y

where @p is identical with @p* and @Gp~ at even and
odd /, respectively. .

Let us investigate the behavior of @p in ! and L.

(i) @p possesses fixed poles in 7 at I=—1, —2, ....
The residues of these poles are proportional to

_._ap(()))
bY/2a

By~

© S RPea(t
bY/Zanzo -0) ”"( +

Ca [ .
+~1—; / DD S Ro(V—N)
0

n=0

2

—a¢(0
n+A—a( )). 23)

2

XPN~1(1+

This is a consequence of the fact that the Legendre
function Q; has fixed poles at-I=—N with residues
proportional to Py_i1. The first part of (23), which is
the contribution of the Veneziano term, was shown to
vanish by Fivel and Mitter."! The second part may be
shown to vanish in a similar manner. We only have to
notice that (23) cannot be continued as it stands to
negative / irrespective of the values of y, ¥, and X.
Consider, for example, the case I=—1 (N=1). The
integrand in (22), in this case, contains the following
infinite sum:

Y DV A/ TV A+ DT F1),  (24)

which converges only in the region Re(¥V—\)<—1.
It is easy to show that the infinite sum (24), and
therefore the residue 81, vanishes in this region. If we
now introduce an analytic continuation of (22) to
I=—1 valid in the region Re(¥Y—\)> —1, then by
analyticity the corresponding §; will have to vanish

4 D. I Fivel and P. K. Mitter, Phys.‘ ‘Rev. 183, 1240 (1969).
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in this region. Thus it follows that 8; vanishes for all
values of A and V. A similar argument may be used for
N>1.

(il) @p contains moving smgularmes that appear as
divergences of the infinite sums in (22):

ap(l)~ Z w1 LA (L) +Br(L)n 0% ]

o

X[AeUN)+BeNDn 102 ] -

dan i p¥—M1-1

n=0

Ar(l1) Br(l1)
I—y  I—(y+1)

0 VL (AW)) Be(I\D)

+/ dx[ T +] (25)
0 A\=(0=Y) I=(-Y-1).

In deriving (25) we used the following formulas:
~g 1l (g—w),

i Qu(z) ¢ ) 26)
3 wr=1/(x—1)4(terms regular in x) .
n=0

We also made use of the fact that only small values of A
contribute appreciably to the integral.®

Thus, just as an infinite number of direct-channel
resonances diverge, giving rise to (moving) Regge poles
in the crossed channel, an infinite number of direct-
channel thresholds diverge in order ‘to give rise .to

(moving) Regge cuts in the crossed channel. The leading

Regge pole and Regge cut are found from (25) to be

V=a(l—t),

while the nonleading (satellite) poles and cuts are
=y+n, Lr=Y+n, n=12....

A7 and B? in (25) are the residues of the leading and

af=y= =b(t—Ig), a°=

first satellite poles, while 4¢ and B¢ are the discontinui-.

ties across the leading and first satellite cuts.

(iii) As we investigate the threshold behavior of

@p, we should keep in mind that the first part of (22)
is contributed by the amplitude 7'(x,y), which has only
poles in £. Even though this part may be shown to
contain the correct threshold factor ¥~ (i—#p)?, it is
not relevant to speak of its threshold behavior since
T(x,y) has no cuts in £ On the other hand, the second
part is contributed by T'(X,¥), which possesses cuts in
¢, as we have already seen. If we restrict ourselves to the
latter part and make use of formula (26) near the
elastic threshold, i.e., near ¥ =a({—?o) =0, we obtain

@D~C2(%Y)l/ a\

’ o T(=Mnt1)
X)\llze—q)\ Z
PO T(— DT (n+1)

X[ —a(0) 1.

27
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Thus we conclude that @p has the correct threshold
behavior, Y~ (t—ip)’. However, we can safely make
this conclusion only in the regions of 7 and X where the
above sum converges. In regions where the sum di-
verges a suitable analytic continuation must be intro-
duced before we can draw a conclusion about the
threshold behavior of @p.

(iv) From (25) we find that the discontinuities across
the Regge cuts are proportional to.

(I—Y —n)'2 exp[ — (1—¥ —n)]

and thus have the right behavior dictated by unitarity:
They vanish at the branch points as square roots and
fall off to zero away from the branch points. This
behavior, however, is a result of deliberate construction
and should not be taken to reflect some degree of
unitarity existing in the model.

By construction, the Regge cuts in -the crossed
channel arise, as we have already seen, from summing an
infinite number of direct-channel two-particle thresh-
olds. In reality we are not certain that such thresholds
do give rise to Regge cuts. In fact, we know for sure
that the first (elastic) threshold (s=s,=4m?) is never
responsible for Regge cuts in the ¢ channel.2

IV. I-PLANE STRUCTURE OF CROSS-
DUALITY AMPLITUDES

Equations (1), (2), (7), and (8) give the following
form for the full amplitude in the cross-duality case:

ACR(Satau) =[T(x7Y)+T(X)y)]+[T(wa)+T(W:y)]
HT(x,W)+T(Xw)]. (28)

For the same reasons stated in Sec. III, we drop the
last square bracket of (28), as we intend to study the
partial-wave amplitudes in the ¢ channel. The cross-
duality analogs of Egs. (16) and (17) of Sec. III are

0 R.(Y—))
ACRR=C[ AN V2~ q)\Z__________
0 n=0  p—x
* @ Ra(y)
+C f ey 0L
0 n=0 N\ — X
0 R, (Y—))
ACRL=cf dizea 3 Y
0 n=0  N—wW
) P n )
+C / ANN2g Y T Ry
0 n=0 A\~ — W

where R,(¢) is given by Eq. (18). Substituting these
results into Egs. (21) and (19), we obtain the following

12 R. Oehme, in Scottish Universities’ Summer School in Physics
(Oliver and Boyd, London, 1964).
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result for the partial-wave amplitude:

C * ®
Qcr(lt) = / dANV2e 3= R.(V—))
b /20/ 0 n=0
n—a?(0)
o 220)
bY/2a

n=0

2

c [ o
+ / AN T R,(y)
0

”_——————H:ap(o)) . (29)

2

XQz(H—

In a manner similar to that of Sec. III we can prove
the vanishing of the residues of the fixed poles and
discuss the threshold behavior of Qcr(l,f). To investi-
gate Qcr for moving singularities in the ! plane, we
again make use of Egs. (26) and (27) and obtain the
following form for Gcr:

C 0
@cn(l,t)’\’ / d
bY/Z(l 0

)\1/28—41)\

A
(Y —A41)

> i o
X5 (bma) [14+0(1/n)]
C o0
—_— d.
+%Yr(y+1>/o :
v 5 () [1+00/m)
ovien £ () Drou/m),
® Fe(I\0) Ge(l,\0)
N/o d)\[x—(l—Y)+)\—(l—Y—1) ]
FrQlp)  Ge(Li)
— Tisp-n T
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Thus, in contrast with the case in Sec. ITI [cf. Eq. (25)],
we are dealing here with (moving) Regge cuts which
appear as divergences of an infinite sum over direct-
channel resonances, and (moving) Regge poles appear-
ing as divergences of an infinite sum over direct-channel
thresholds. The positions of the poles and the cuts are
the same as those found in Sec. III.

So far we have discussed the direct-duality and cross-
duality pictures in the realm of properties where they
appear equally valid or invalid. Let us now comment
on the possible advantages of the cross-duality picture.
The direct-duality picture was realized by the simple
addition of a threshold Regge-cut duality scheme to the
already existing scheme of resonance Regge-pole
duality. The sole achievement of this simple addition
was freedom from the meromorphism dictated by the
narrow-resonance model. None of the novel properties
of this model was altered, and no cures were provided
for its diseases. The pole trajectories are still strictly
real. Furthermore, we had to make the assumption
that direct-channel two-particle thresholds give rise to
Regge cuts of the crossed channel. Obviously the cross-
duality picture does not make use of this dubious
assumption. Moreover, as can be seen from (9), the
residues at the resonances in x=a?(s) are polynomials
in Y=a°(t) instead of y=ar(f). This gives us the
liberty to make the pole trajectory o® complex without
risking the introduction of ancestors, as would in-
evitably be the case in the direct-duality picture where
the residues at the resonances in a”(s) are to be poly-
nomials in a?(f).5
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