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The charged scalar static model is studied from the viewpoint of dispersion theory with the aim of in-
cluding two-meson effects in the binding energy between two nucleons at zero separation. The method of
analysis is that due to Blankenbecler and Cook, who advocate the use of vertex functions for investigating
bound-state properties. In this case a deuteron vertex is examined in terms of Bronzan's one-nucleon two-
meson solution which possesses two- and three-particle unitarity and a crossing-symmetric scattering
amplitude. On the one hand, matrix elements containing the deuteron state at one end and two- or three-
particle states at the other are contracted with respect to mesons. In this approach a summation over
intermediate states involving two nucleons and zero, one, or more mesons is neglected. On the other hand,
this summation may be avoided by contracting nucleons, but it appears that this approach leads to an
intractable system of coupled integral equations. For this reason, only the simplest matrix element is treated
this way, and even then some two- and three-particle contributions are ignored. Under these conditions,
it is found that a factorization property of the one-nucleon two-meson connected scattering matrix leads
to inhomogeneous Omnes equations having solutions which transform the two-meson dispersion expansion
of the deuteron vertex into a condition for the determination of the binding energy.

I. INTRODUCTION

HE well-kIlown charged scalar static-source model'
has recently been studied in the one- and two-

meson approximations via the methods of dispersion
theory, ' and a modi6ed Tamm-Dancoff approach. 3 The
two-meson solution presented in the former treatment
is distinguished by its two- and three-particle unitarity
and a crossing-symmetric scattering amplitude. This
work precludes dynamical bound states by assuming a
suKciently small meson-nucleon coupling. Another
version4' which retains these states tends to be un-

reliable for large values of the coupling. ' The latter
formulation mentioned above, although subject to the
complete absence of crossing symmetry, demonstrates
the possibility of bound states in the spectrum of the
theory on the basis of conventional Lee-model results.

The system under consideration in these investiga-
tions consists of charge-conserving s-wave interactions
between relativistic charged scalar mesons and a spin-
zero static nucleon source which can exist in either
positive or neutral charge states. Electromagnetic
forces are neglected. The present paper is concerned
with incorporating two-meson effects in the interaction
between two such nucleons. For this purpose, we employ
vertices of the type pointed out by Blankenbecler and
Cook' which allow the use of the techniques of dis-
persion theory. For simplicity, we examine the two-
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nucleon problem in the zero-range limit while assuming
that both heavy and light particles are bosons.

It is hardly necessary to say that a model field-theory
calculation of this kind is rather incapable of yielding a
realistic two-nucleon potential, and we shall not dwell
on the many unsatisfactory aspects that make this so.
Indeed, a detailed determination of the corresponding
interaction energy is not the main reason for this
treatise. Instead, we take the attitude that static models
containing two sources provide an interesting oppor-
tunity to examine bound states and dispersion tech-
niques in a simpli6ed but nontrivial framework of ideas
reminiscent of fully relativistic theories. Numerous
papers have already pursued the question of a meson-
theoretic derivation of a static two-nucleon potential.
In particular, we mention the nonrelativistic fourth-
order (two-meson-exchange) perturbation calculation
of Gartenhaus, ' who used the Chew-Low' extended. —

source (cut-oB) P-wave nmdel to develop a potential
which was successfully applied to the deuteron problem.
This potential does not seem to be reliable at inter-
nucleon distances of the order of half the pion Compton
wavelength since many-pion exchange, relativistic
effects, and heavy-meson exchange are predominant in
that region. ' Furthermore, it is also not unexpected
that the absence of nucleon recoil rules out the possi-
bility of a spin-orbit interaction. " In spite of these
misgivings, it should be instructive, in a future paper,
to explore a dispersion-theory description of the inter-
action between two sources in the Chew-Low model.

In an earlier Lee-model work, " we succeeded in
carrying out a dispersion analysis of the bound state

S. Gartenhaus, Phys. Rev. 100, 900 (1955).' G. F. Chew and F. E. Low, Phys. Rev. 101, 1570 (1956).
"M. Taketani et a/. , Progr. Theoret. Phys. (Kyoto) Suppl. 3

(1956)."B.P. Nigam, Progr. Theoret. Phys. (Kyoto) 23, 61 (1960)."LM. Scarfone, Phys. Rev. 174, 1903 (1968).
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formed by the interaction between two V particles.
Even though this interaction entails the simultaneous
exchange of two mesons, a contraction scheme was
devised which used only the states found in the one-
meson sectors, V and Vg, as intermediate states. In
this way the more complicated two- and three-particle
states of the V8 sector were avoided. It is a result of the
selection rules in the Lee model that the possibility of
solution with dispersion theory is traced to the emer-
gence of a finite set of coupled integral equations. To
obtain a similar situation in charged scalar theory, we
choose a two-meson approximation leading to equations
which owe their solution to a factorization property of
the one-nucleon two-meson scattering matrix. 2 The
scattering matrix in the VO and 2V sectors of the I.ee
model also has this property. " "

In Sec. II, we introduce an expression for the deuteron
vertex (rtI f~I«), henceforth called I'. Because of the
syrrunetry in the theory I' is taken equal to (pI f I

d).
In these matrix elements,

I p), I
I), and

I d) denote the
physical "proton, " "neutron, " and "deuteron" states,
while f~ and f„are the proton and neutron current
operators at zero time. We see at once, in the two-meson

approximation, that two pairs of matrix elements arise
for consideration. It turns out however, that there is

only one independent function in each pair. Since one
of these functions is contracted in two different ways,
we must solve three Omnes integral equations.

In Sec. III, we calculate the matrix elements contain-
ing the vacuum state at one end and two- or three-
particle states at the other in terms of the Omnes
functions appearing in the one- and two-meson solu-
tions. The first procedure in Sec. IV for evaluating the
matrix elements with the deuteron state at one end and
two- or three-particle states at the other is essentially
the same as before. The Omnes equation in this case
divers from the previous one only in the inhomogeneous
term. Another contraction scheme aimed at recovering
information on the binding energy lost in the first
approach is also explored. If all contributions in the
two-meson approximation are retained, then one faces
difficult mathematical complications which frustrate
further progress. To continue the calculation, we use the
most convenient integral equation for one of these
matrix elements while maintaining the earlier integral
equation for the other. On collecting results in Sec. V,
we see that I' cancels out of its original expression and
there remains an eigenvalue condition for the deter-
mination of the binding energy including two-meson
effects. We conclude with some general observations
about the static two-nucleon potential problem.

"J.B. Bronzan, Phys. Rev. 172, 1429 (1968).
~ J. B. Bronzan, M. Cassandro, and M. Vaughn, Xuovo

Cimento 46, 128 (1966)."L.M. Scarfone, Phys. Rev. D 1, 584 (1970).

II. DEUTERON VERTEX

In terms of conventional notation, such as that used
in Ref. 2, the current operators in the model are given by

(
y, (t)—= I

—i—+m IP, (t) = —bmP, (t)
dt )

P„—(t) P X(o))I ai(t)+bI (t)7,
Z fc

f„(t)= I

—i—+m IP„(t)= —bmP. (t) —~„(t)
dt i Z

xp X(~)La~'(t)+bl, (t)7, (1)

(i(t)—=x '( )I -t-+
dt

(d=x '( )I i—+ Ib '(t)= ge.'(t—)a,«)
ddt

The operators p„Q „~) and p„Q „t) are the renormalized
annihilation (creation) operators for the internal p and
rt states of a static source. For convenience, both p and
e are assigned the energy m; Z is the source wave-
function renormalization constant, and bm is the mass
renormalization counter term. It is assumed that the
renormalized coupling constant g is not large enough to
form meson-nucleon bound states. The operators
ai, (an't) and bi, (bit) annihilate (create) positive and
negative mesons, respectively, of three-momentum k
and relativistic energy cv = (k'+ti')'"; p is the rest mass.
The quantity X(~) is an abbreviation for the ratio
f(co)/(2a&Q)'I', where 0 is the volume of quantization,
while f(~) is a real and. positive-definite cutoff function
that vanishes in the high-energy limit. The equal-time
commutation relations are

B.(t)4"(t) 7 =Lk-(t),4"'(t)7 =z '

La(t),ai'(t) 7=
I b~(t), b~'(t) 7 =bin"

We see from Eq. (1) that the theory is invariant under
the simultaneous replacements p ~ n and s.+ ~~ s. .

On applying the contraction technique to the e
particle in F, we obtain the integral form

" '(OILf. (t) f 7~(t) Id)«t

where 0(t) is the usual step function. We insert inter-
rnediate sta, tes Is) to get the representation

I'=2 «If. l )( If.l«)

1 1
x + I, (4)

F, m i e F.,+m Fg+ie)— — —
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itive num er o eb . t b treated as infinites-where c is a positiv
will be writtenhe deuteron energy Ed, wiim. ally small. The eu

h teraction energy.+ ~, gfinin cog as t e in era
is ne ative. In arriving a

d b Ked the invariance mentione a
in mind that (0 I f„I

e) vanisnes, we nex
in continuous space as

r = — p(~)E, (~)D, (~) I

—+

scattering matrix. he i.elation-two-meson connec e
here comes aboutship between i

l'j tjons mentioned previ-o y y a '"
h ous terms in theously. 3ec

f p 't follows that the solu-
ause the inhomogeneous

equations conta jn a factor o
tor. Thus r md D2 also carry this ac o .tjons for Di an 2

h' h then convertsof Fq (5 w 1ceventually cancel « . '

This procedure

jmin ation f two vertices from wo
'

lds the desired condition.algebraic rela, tions yie

p (471)p (~2)E2 (~1)~2)D2 (~1)~2) III. K FUNCTIONS

Ey(M) =-
z

tr

1 "p(~')Eg(cu')LT ((u') —M+((u')]der'

Z r p

P (M M2) E 2 (CO y, COg) d4J ydM g1 p(Ky p M2 My

~12 47+1f

1 "e"+'"'sinb~((u')E~((o')d~'

M —Q)+ZE

+
2

1 1 is section we rs1 1 „is fi t obtain a coupled pair of
p p

X Mt

d
hen simplified by kernel~12 ~12M —Mg

d i h Ap di~the t e iscusse
ho

'
h E

d t f E an energy factor,

an p —= . The functions
and then combined into showing

whele coy2=coq M2 an p

constant, a product o q, a
appearing in q.

E~(~) =& '(~)(0I f-IP~~

is solved a,f er
'

gr

fter a brief summary of t e iago
E2(Gay, Q)2 = COy 2

7a) of the connected two-meson sca erin
Contraction of the m on in E i lds

D (M2y, QJ2) =X (COy) (C02 Kp~ 2 . bx- ~,)(~~„+~„If,I-d) (7b).
00

-'- (0II f., i(~)10(~)
I p)d~, (8)

ar "out" designation will notAlthough the customary ou
two- and three-particle states are —00

' pay

term on the right-hand side comes fromdh h h. h fiD es ectively an t
ral e uations an equal-trme con

t 'd"t' 't'tes '"df this kernel is in erme
'

n kernel. The origin o ig m
aced to a factorization property o e o

p

6 (a),)A~((u2)-(, )= —I:T-( ) —M+( )l

— and side. The amplitudes M~(&u and M ((o)

d' l h h'ft 8 ()
(10p((o)M~ (u =e'

h at the lower (g) andan be chosen to vanis a e-(—) p
(

a,nd satis y e 'g 'o +

I' F ft fAlso oun iated roduction amplitu esAlso found there are the associa, te ro

,co, are defined bywhere the Omnes functions 6+ co

N dc' 8y(GD )
a~(co) =exp—

CO GO
—

CO —'l 6
(12)

&co& a roach a constant.In the high-energy limit, d+~co appr
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To secure the other equation interrelating E~ and E2, we contract the positive meson in E2. This leads to

E 2(M1,(d2) = —ZX ((d2) e '""(0~t f„,jz(t))8(t)]zzzr2, )dt. (13)

Proceeding in the usual manner, we then find

1 p(M)Q (Co C02)EZ(M)dM
E2(MlyM2) El(M2)+

CO
—M12+ZC

This equation incorporates the following de6nitions:

1
" "p( M)p( M)R *(MZ,M')M)E2(M, M')dMdM'

M+M —M 12+3 2

1 e (3-("& sin(l (M)E2(M, M2)d(o

M —M i+3e
(14)

Q *(Mi,M-Z) =X '(Mi)X '(M2)L(P~. , li'1~~3, )+g~ , 3]3,

R (Coi M2 (O3) X (MZ)X (C02)X (M )$(ZZZI 3 +Zr&,
~ j ~

ZZZr&, ) 3 (&3—,X( 3M)M (M3))— (16)

In Ref. 2 it is proved that
((d 2)6 (M 1

—CO 2)
PT (M,) —M, (M,)]-

Mi —(d2+'l C

(17)

gP (COZ, CO2)dy (Mi)6 (CO23 —Coi)
R (CO()M2)M3) =

(CO23 M 1+—3()6+ (COZ 1)

In the next step we eliminate the last terms on the right-hand sides of Eqs. (9) and (14) by the kernel transforma-
tions referred to above. This procedure immediately yields a new pair of equations which provide the relation

g+— (M1)++ (M2)E1(M12)
E2(MZ, MZ) =

M 1++ (M 12)
(19)

Using this result in the transformed version of Eq. (9), and introducing the function E(M) defined as the ratio of
EZ(M)A+(~) to ~*(M), we obtain

g 1 "p(M')t T ((O') —M~(M'))e —"3+("'&E(M')dM'
E((d) = ——+-

8 cd —co+'1 2

"dM'(T (M') M, (M')]I (M')—E (M')(tM'

, (20)
zl 2& (M —M+ze)LA+(M ))

where the integral I(co) is given by
g' "—& p(M')p(co —(o')

~
t1 (M')6+(M —M') ~2dM'

I((o) =—
7l p GO

(21)

It can be shown that Eq. (20) has the foun of an Omnes equation. Similar demonstrations have been given
elsewhere. "" In the present context the problem is that of solving the eigenvalue equation of the connected
S matrix S, in the pzr channeL There exists of course a similar eigenvalue problem in the pzr+ channel. The result
is that the eigenvalues X of S, are determined by the equation

pT (M) —M~(M))I(M)- pT ((a) —M~((o)]I(M)
X2—2X 1+ip((o)T (M)+i- +2ze2(3+(~) +2ip((a)T (M)+1 =0. (22)

t ~+(M)]' P.( )]'

Calling the two nontrivial solutions of this equation P &
——e"~& and X2 =e"~2, and noting that their product X&X2 equals

the determinant of S„while also equaling the X-independent part of Eq. (22), we find with the use of Eqs. (46)
and (48) in Ref. 2 tha, t

T-(M) T-*(M)
detS, =XgXg = — —1

M~(M) M~*(M)
(23)
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It is equally noteworthy that

Xgh 2e "~+—1

2i

p'-(~) —~+(~)jI (~)
=e'i '+ ' + sin(8i+82 —8+) =p(~)LT (co) —M+(cu)]e 2'i+&"&+

C~+(~)7'
(24)

By virtue of the last result, we may now rewrite Eq. (20) in the standard form

g 1
"e''"'"'+02&"' '+'"'' sin)8, ((a')+8, (~d') —8+(co')]K((u')d(g'

K(~) — + (25)

In view of the relation inkiX2=2i(8i+82), the deter-
rninant of S, also equals A(a&)/A~(&g). This fact, and the
equality h~(ao)/6~*(~)=expL2ib+(&u)j, are useful in
verifying the solution of Eq. (25), namely,

K(~) =—

Finally, it follows that

g~*( )~.(-)
ZA+*(u&)A(~)

(27)

g tP(cu)
Ki(63) =

Z h(~)
(28)

Kg(cubi&&dg) =—g'~*(~»)~-*(~i)~+"(~2)

ZA (~ )uriA+*((ui2)
(29)

The pion-nucleon coupling constant g is defined by the
matrix elements

&nl jlp)= —g, &i(0)= —
g (3o)

With this normalization ZA(~) equals unity, as shown

by Eq. (28). To show the equality between (n l jl p) and

Ki(0) contract the n particle, make a two-meson ex-

pansion, and compare with Eq. (9).
Diagonalization of the one-nucleon two-meson con-

nected S matrix continues its vital role in the solution
of Omnes integral equations for D& and D2 formulated
in accordance with the provisos indicated earlier.

IV. D FUNCTIONS

%e now under take an evaluation of the remaining
functions D & and D2 by employing the simplest pro-
cedures enabling us to relate these functions as in the
previous case. In one development, we completely
neglect summations carrying intermediate states with
the quantum numbers of two nucleons and zero, one, or
more mesons. We see by another approach that it is
possible to avoid these states and presumably a more
accurate two-meson binding energy would result;

The solution to this equation can be written down at
once in terms of the Omnes functions 6+(id) and A(~),
where the latter is defined by

co der'E8, (~')+82(~') 3-
A((v) = exp — . (26)

co (M —M —te)

however, the ensuing coupled integral equations for D&

and D2 are quite formidable from the standpoint of a
complete solution. To continue along the path of least
mathematical resistance, we omit certain terms from
the D& equation and return to the D2 equation used
previously.

If we think of retaining the one-meson approximation
in the summations mentioned above, then it appears
that we have the additional problem of determining
vertex functions and scattering amplitudes involving
meson-deuteron scattering states. Actually, we have
already learned how to contract the bound state of two
static particles. For example, the 2V state lB), with
normalization constant Z~, can be contracted in terms
of the operator fe defined by Pa=(Ze/V2) 'PvPr»
Analogously, the deuteron state

l d) can be represented,
in the usual definition of an asymptotic state, by the
operator fd Ze ' f„f„,——where Ze is the corresponding
normalization constant. This prescription will be useful
in a discussion of meson-deuteron scattering to be
examined elsewhere.

In Ref. 12 we were able to secure the binding energy
of one two-nucleon bound state (2V) in terms of that
of another (VX). The latter is a one-meson problem and
is established independently of the former. This one-
meson approximation which is automatic in the Lee
model would require the existence of a dineutron or
diproton in charged. scalar theory.

Assuming that we wish to treat D& and D2 syrronetri-
cally and excluding contraction of the deuteron itself,
we have then the option of contracting mesons or
nucleons. The latter approach is concerned with an
attempt to remain within one-nucleon channels,
whereas the former introduces states with the quantum
numbers of two nucleons. In the final part of this
section we combine D~ and D2 obtained from the
nucleon and meson contractions, respectively.

We proceed by contracting mesons in D& and D&. Let
us first consider the former. We have

gF
D, (cv) = +i

Zco g

e'"'(p
l pjt(t)J„$8(t) l

d)dt. (31)

The first te~ on the right-hand side of Eq. (31) comes
from the equal-time commutator

& '(~)(p l Lb&,f„gd) = —(g/Z)(p l p. l d) = gI'/Za&a. (32)
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Inserting a sum over a complete set of states in each
term of the commutator and performing the time
integrations as before, we get

gr (p I j I s)(s
I f„ld&

Di(~) = + E
ZMd ~ F~g —SS—M

&Plf. ls&&sl j'Id&
(33)

F~g I~8 M

The s states in the erst summation on the right-hand
side of Eq. (33) have the quantum numbers of an
e particle, while those in the second summation have

quantum numbers of two p particles. ln confining
ourselves to the erst sum and then to the s states as
before, we continue to operate within the framework of
functions already introduced. Note that in doing this we
lose information carried by terms containing the binding
energy explicitly. Under these conditions, the above
expression for Di(~) becomes

1 1 1 "p((u')I T *(co')—M~*(a&'))D, (a)')d(v'
Di ((d) =gF + —+—

ZMd M 7j' M M 26

1
" "p(~1)p(ia2)P *(~1,~2)D2(iai, &o2)d~id~2 1 "e "+i"' sint1+(~')Di(a&')d22'+- +- (34)

M12 —M —'l 6 —M —
tt 6

where, once again, we have added and subtracted a term.
Next, we contract the m+ meson in D2 to obtain

D2((01,&2) =ZX (M2) e'""(m.2, I Lj(t),f„j8(t) I
d)dt. (3-')

Sy a familiar process, this equation expands into

&~~2 I jls&&slf. ld& &~~" If.ls)&sl jld&
D2(M1&1d2) =X (M2) P —X—'(o)2) P

F8—52 —M 12—16 s E~tj Ett M] L6

(36)

The s states in the first and second summations on the right-hand side of Eq. (36) have the qua, ntum numbers of
one e particle and two tz particles, respectively. Repeating the procedure adopted above for B1, we And

FT+ (co ) 2gD1(032)
D2(M1,(d2) =—

M]2

1 p(M)Q (G&,M2)D1(M)dCO

M —M12 —Z6

1
" "p(co)p((u')R (co2,(u', co)D2(1d,cu')d(u(ku'

%+K &12 ZE

1 e 'i i"i sinb ((o)D2((u, (o2)dry

(37)
M —M] 'l6

In arriving at the first term on the right-hand side of this equation we have used the two-meson approximation

amplitude T+ instead of its one-meson counterpart M+. Eliminating the third integrals in Eqs. (34) and (37) by
means of kernel transformations, we again obtain a new pair of equations which lead to

where C(ar) is given by

D 2 (M 1,M 2) =6 (M 1)6+ (M 2)

f C'(~12) gD1(~12)
+

M 16+(N 12)

g
C(o)) = ——

~+(~)~-(—~)
(39)

The function 4' vanishes if T+ is replaced by M+. Next, we obtain an Omnes equation for the function D(cu)
dehned by

D(~) =Di(~)/~+(~).
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E s. 34 and (38), we haveFrom Eqs. j g an. (11) d (24) the transformed version of Eqs. ( )

c 1 "~(~')I T-'"( ') —~+'(~')

where

1 '~2'~"'+22' '' 2+&"'i~ sinL01(co')+82((d )—b~ co D cd «e '

M —(d —ZE

g
" "P(&)P(~ ~)l~—(~)~+(~ ~)l ~'(~

J (1d) =—

(41)

(42)

The solution of Eq. (41) yields "J (~')LT-*(~')—~+*(~')3«'

h'l D (&d cu2) is specified by Eq. (38). We have now
completed a derivation which approximates e
eemen s p
Eq. (5), in terms of the functions arising in e o
two-meson solutions o e m1

'
f the model with a single static

nucleon. Note that the B functions carry F as an over-
s E . ~5~ to becomeall factor. This characteristic causes q, , o

an eigenvalue condition for the binding energy.
To continue isth' discussion of the D functions, we

'
n brou htld 1'k to consider briefly the situation broug

a oub t by contracting nucleons in ~ an 2. peci-
call, we shall be content with examining here
sequences of contracting the p particle in B~, since the
contraction of the e particle in B2 leads to m' any more

In this approach we circumvent inter-
ediate states with the quantum numbers o wo

nucleons and zero, one, or more mesons. n
hand, the resulting coupled integral equations do not
suggest a me o oth d of solution consistent with the two-
meson approximation. For D~ we get

In the first place, we get

x—
'(a))(2r2

—
I f„ln)

—Z

Z
e'-'(OILf„, g(t)]S(~) In)d~. (45)

X '(~) (2r&
I

f—„I
p7r& )— —

=X(~')T-*(~')+2 «I fels)(sly» IP~2 )

Since t e t eory is invarin 'nvariant under the simultaneous
interchanges ~as, j~ ', '

pairs j~ jt it follows by comparing
Eqs. (45) and (8) that

x-'(-)(-.-If. l )=~.(--) («)
Next, we consider the matrix element

'
nt in the 6rst

summation on the right-hand side of Eq. (44). It is
found that

1 1)
& (~)= —I'x '( )(~2 lf. ln) —+ —

)I Notice tha, t the summation in Eq. (47) vanishes when
e ual. That this is notthe meson energies cu and co are equa. a

unexpected follows from a comparison between the two
forms of the scattering matrix element (p»r Jg' oilt
x lp2r& m o ta, ine yb

'
d b contracting the in-meson and

the in-proton.
le1 we turn to the matrix element in the ou e

f E . 44. In thissummation on the right-hand side o q. . n
case we get

+X '(~) 2 X(~')(~2 Ill p~~ )Di(~')

+X—'((o) p p X((ui)X(a)2)(2r2 I f„ln»r2, +2r2, )

To roceed further, we must enquire after the three
rem.emaining matrix elements in q.

f letel disclosing the co dependence on gon the ri ht-
iate to contracthand side of this equation, it is appropriate to

the mesons on the left-hand side in each of these.
x

' — ' ). (~s)
~

~

F. +10 ~12 m+i r: F- m i—e——

1 1
+ —

I
(44) X—'((o)(~2—

I f„ln»r2, »r2,-)XD2((di, &2)
%12 M ZE G012 ~d

X '((d)X(cd )K (1di)+X(cdi)X((d2)P *((Oi)(O2)

+P (0 I f, I s)(s I
j»

I n7r2, +»r1,)—
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Note that both the first term and the sulnmation on the
'd f E . (48) give no contribution w en

Goj2 and cv are equal. Again, this is predicted y e w

,+ t ~~ pn. in) obtained. by separately
the articles on the right-hand. siue.contracting e par

'

the substitu-The dis ersion relation resulting from e su
e 44 will not be

of th
f the above expressions into q.

d' 1 d here in its entirety. It is a conseq
fi t t on the right-hand side of q.rst erm on

not onl in simple denominator factors and a

variable in the other unknown function D2. Simi ar y,

in trying o wri et .'te an integral equation for B2 in one o
its vana es, we nDl, - 6nd that that variable cannot e con-
fi d onl to denominator factors and known functions,
but is also present in D~ and D2 on the rig - an
of the equation. It is not at all transparent that one can
so ve1 this complicated system of co p qu led e uations. It

~ ~ ~

atrixis convenient, although an obvious mutilation of m

1 ce of the left-hand sides of Eqs.
47), and (48), respectively. In that case we ge

interesting equation

Di(a)g) gI' 1
Di(s) = — + —+—

2 8 7r

"p((v')LT "((u') —3E~*(a&')]Di(o)')chal'

p (Mi) p ((d g)P (M i&Cd 2)D2 (COi&COg)did iifM 2 1 "e—*'+&"'& sinb+(co')Di((o')des'
(49

Ct) y2
—S7r2

f D. As we shall see the solution of q. prs we, ' E . 49 rovides atte form wh ch stresses he y panal tic roperties o ~. s we
49 evaluated

wri en in
~ ~

,co ~. The definition o q mq, w
ere is iven in'1 A' 1

' fh k. h
con i ion o

could also be used for this purp ose but not as easi y. simp e v
of the VS potential problem. The las

'
gt inte ral in

at s=oog, cou
ine the equation characteristic o e

r D but now com-th li fo d
e p

38 . This
E (49) may be eliminated in the usua y.

find that D& again has the form of Eq.d e uation for D~, we n a
le uation,

bining i wit ith the revised, and transforme q
' di er onl in their co~ depend. ence. s e ore,. A b f re D satisfiesanOmnes integra qis expected. since the two D&'s di er on y in eir co&

the solution of which is

Di(~~) gr
+ +

2i1(~) s

I" "J(co') LT *(~')—cV„(ca')]du&'-

~'(~' —s) t:~+*(~')]'
(50)

own uan i y is i ~ . hat E . (50) itself provides the means for securmg this
quantity. Simply evaluate it. at s=cuq and so ve or ~ co~ .

2ra(~g)a(~) —
g

Di(~~) =
2A(~) —i1(cod) (ug

"~(~')LT-'(~') —~+*(~')]d~'

co'((o' —cod) PA~*(a) ')]' (51)

'n an over-all factor of F.N t that this result contains anoe
In this section we have considere ptwo ossi e

0 of these leads to an encounter witfunctions. ~ne o es
1 ons and zero,ediate states containing two nuc cons an

off some information on the binding energy. e o er
these intermediate states by

hannels containingonenucleon, ut ea sremaining in c an
to an intractable system of coup e in egra e
It is not without interest to gne lect certain two- an

r - '
in one of these equationsthree-particle contributions in on

~ ~

and to solve i in con&and 1 t '
n&unction with an ear ier equation.

of the information referredIn this way we recover part o e i
to above.

V. FINAL RESULTS AND CONCLUDING REMARKS

For the urpose of illustration anand for the sake ofor ep
d now to present eigenvaluecompleteness we procee~ now o

d' '
f the determination of the binding energyconditions or e e

here wit a e ai8 cause we are not concerne
examination of these conditions, and becaus e of the
corn

'
ns it will be convenient to

express t e resu inh lt in general form. This complexity
at wouldes as a hint to the mathematical e6ort that wouserves as a in o e

is ersion calcu-be demanded by a realistic two-meson isp
lation of binding energy.

From Eqs. (5), (28), (29), and (38) we find

1
p(~) ~*(~)D&(~) —+

La&Di ((o)+rA„(a))J((v)]
A*(co)

~~ ~
I ~+(") I
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In Kq. (52) we must insert either Eq. (43) or Eq. (50).
The cancellation of I' and thus the emergence of an
eigenvalue equation from Eq. (52) rests on the presence
of I' as an over-all factor in Dt. In the case of Kq. (50)
we recall Eq. (51). Of course, we have not established
the existence of a two-nucleon bound state in the the ry.
In order for this to be so, Eq. (52) must have at least
one appropriate root. From the beginning we have
assumed. that

~
d) is one such state. Besides giving the

eigenvalue equation, dispersion-theory formalism can
also yield the detailed structure of the bound state. An
example of this is given in Ref. 12. Note that Eq. (52)
has been derived without appealing to the bare state
expansion of ~d). This is also a convenient point at
which to note that one can go back and easily make the
appropriate simplifications leading to the one-meson
analog of Eq. (52).

In this paper, which is intended to be a sequel to
earlier ones, ""we have been interested in studying the
properties of composite particles in terms of matrix
elements which may be examined by the methods of
dispersion theory. We have restricted these considera-
tions to the realm of two static nucleons in interaction
with each other at zero range through the exchange of
relativistic scalar mesons. On the one hand, dispersion
calculations in the I.ee model have led to eigenvalue
conditions due to the exchange of one meson in the VlV
case, and to two mesons in the 2V case. Because of the
special nature of this model, it was possible in the latter
problem to avoid the complicated states of the VO

sector. If the contractions are such as to implicate these
states, then one faces technical problems akin to those
found in the present case when nucleons are contracted
in D~ and D2. On the other hand, one of the many
shortcomings of the I.ee model is its lack of crossing
syxrlmetry. In the present work we have turned to the
charged scalar theory in order to include this aspect in
our dispersion calculations of bound-state parameters.
In this connection, we have incorporated the two-meson
solution developed by Bronzan which has both two-
and three-paltlcle unltarity and a crossing-sylnmetrlc
scattering amplitude.

A factorization property of the two-meson scattering
matrix enables us to write dispersion relations for
various matrix elements as Omnes equations with
different inhomogeneous terms. Thus, the vertex func-
tions E~ and E~ involving the vacuum state at one end
are obtained in the two-meson approximation, without
omitting any terms. The more complicated functions
Dj and D2 containing the bound state at one end are
first treated by dropping terms which implicate inter-
mediate states with two nucleons and one, two, or more
mesons. This treatment is somewhat unsatisfactory in
that the neglected terms possess further information on
the binding energy. In another approach we improve on
this situation by calculating a new D~, but all contri-

'~ L. M. Scarfone, Nucl. Phys. 39, 658 (1962).

butions in the two-meson approximation are not taken
into account. It seems that the most satisfactory situ-
ation would be to include these terms and to calculate
D2 in the same way. However, it is not evident that the
resulting integral equations for Dj and D2 are soluble,
and in fact one may be forced into compromises such as
that made in obtaining Eq. (49).

As mentioned before, we do not address our attention
to the roots of Eq. (52). Instead we have been interested
in pursuing various contraction possibilities presented
by the methods of dispersion theory for including
higher-order effects in a meson-theoretic description of
the interaction between two static nucleons within a
fairly tractable context. As far as we know, the present
work is the first instance of a two-meson dispersion
calculation of a composite particle in a theory with
crossing symmetry. We have looked for these possi-
bilities by following Blankenbecler and Cook, v.ho
advocate the use of vertex functions as a means of
examining bound-state properties. Their program aims
at providing "a potential which is chosen to yield the
bound-state properties, not low-energy scattering
properties of field theory. " In another dispersion-
relation approach, ' an effort is made to calculate
nucleon-nucleon scattering directly in terms of one-
meson- and two-meson-exchange contributions. Take-
tani and his collaborators" have proposed on the basis
of pion theory that the nucleon potential be divided
into three regions, namely, classical (x) 1.5), dynamical
(0.7(x&1.5), and phenomenological (x(0.7), where
x is the internucleon distance in units of the pion
Compton wavelength. In the dynamical region the
two-pion-exchange potential competes with and exceeds
the one-pion-exchange potential. The former depends
very much on recoil effects, the type of coupling (p wave
or other), the nucleon form factor, and the higher-
energy pion field cutoG procedure, not to mention
multiple-scattering effects and radiative corrections.
Therefore, it would be very presumptuous to assert that
our static-model considerations have prepared us for a
realistic dispersion calculation of two-meson effects in
the two-nucleon potential. Since we have been bound to
the two-meson solution of the charged scalar theory
developed by Bronzan, the limitations of his solution
and methods are also present in our work. As a result,
it appears doubtful that we could proceed in the same
way to include two-meson effects in the interaction
between two nucleons in static models such as sym-
metric scalar" and neutral pseudoscalar' theories.
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APPENDIX

written. He is also grateful to Dr. M. Hergere for useful written in a form which stresses the analytic properties
discussions. of R. In this equation 8(o~) is the phase shift for E8

scattering, while R(p&p) is given by

Here we reexamine a vertex function treatment of the
bound state I» formed by the interaction between a
V and N particle, both considered to be bosons situated
at the origin of coordinates. In Ref. 16 it is shown that
the vertex

1=(&lf I» (A1)

expands, on contracting the V particle, into the ex-
pression

I'=& (o
I fv-I»'8~)(»'8~

I f~ I
&), (A2)

where the out-state
I
cV8s) describes the scattering of a

8 particle by an 37 particle. The matrix element
X '(&u)(OI fvI»T8&) is the complex conjugate of the
Goldberger-Treiman" function E'(&o). Hence, we have

2gl" 2 "e 'Pi"'i sin8(a&')R(oo')dpi'
R(o~p) = +- (A7)

Gap CO
—

GO p

cop is the negative interaction energy between V and E.
The quantity R(&up) is an unknown constant which can
be obtained in two different ways. One of these is simply
to evaluate the solution of Eq. (A6) at z=oop and solve
for R(orp). The other is to insert the solution of Eq. (A6)
into the right-hand side of Eq. (A7), which then reduces,
after integration, to an algebraic condition for R(o&p).
Having found R(o~p), we then put it back into the solu-
tion of Eq. (A6), thus determining R. These procedures
differ from that used in Ref. 16, where Eq. (A6) was
first reduced to the quantity gl"/~p with I" representing
the vertex (Ã I fv I

&).
The solution of Eq. (A6) is

x- ( )(olf I»'8, (A3)
1 R (cop) gl'-

R(s) = Z- +—
1 —P(s) 2

(A8)

where the integral function P (p&) is given by

p(oo )dpi

)
M (d —M —Z6

In arriving at this result we have used the asymptotic
value 1—P(oo) =Z, where Z is the V-particle wave-
function renormalization constant. Carrying out the
procedures described above, we find"

p(&o) and X(oi) have the same meaning as in the text.
The other matrix element in Eq. (A2) is defined, as

gF Z
R(o~) = — —+

1—P(oi) -oi 2o~ol 1 —P(oio)j—ZoIp
(A9)

R( ) =X '( )(»r8pl f~IB). (A5)

On contracting the E particle, one 6nds the Omnes
equation

As expected, I' appears as an over-all factor in R (u) and
subsequently cancels out of Eq. (A2). The remaining
integration leads to the binding-energy condition

R(ooo) gr
R(s) = — +—

2 5

1 "e '"N'i sinb(o~')R(oo')d~o'
(A6)

"p(~o)dpig2
) (pip) =

X~p ~ CO
—Mp

1—P(&op) = —) (cup),

where X(&op) is defined by

(A10)

(A11)

'M. L. Goldberger and S. 3. Trieman, Phys. Rev. 113, 1663
(1959).

'll A related development of Kq. (A9) has been given by S. Sen,
University of Maryland Report No. Md DP-TR-70-058, 1969
(unpublished).


