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The charged scalar static model is studied from the viewpoint of dispersion theory with the aim of in-
cluding two-meson effects in the binding energy between two nucleons at zero separation. The method of
analysis is that due to Blankenbecler and Cook, who advocate the use of vertex functions for investigating
bound-state properties. In this case a deuteron vertex is examined in terms of Bronzan’s one-nucleon two-
meson solution which possesses two- and three-particle unitarity and a crossing-symmetric scattering
amplitude. On the one hand, matrix elements containing the deuteron state at one end and two- or three-
particle states at the other are contracted with respect to mesons. In this approach a summation over
intermediate states involving two nucleons and zero, one, or more mesons is neglected. On the other hand,
this summation may be avoided by contracting nucleons, but it appears that this approach leads to an
intractable system of coupled integral equations. For this reason, only the simplest matrix element is treated
this way, and even then some two- and three-particle contributions are ignored. Under these conditions,
it is found that a factorization property of the one-nucleon two-meson connected scattering matrix leads
to inhomogeneous Omnes equations having solutions which transform the two-meson dispersion expansion

of the deuteron vertex into a condition for the determination of the binding energy.

I. INTRODUCTION

HE well-known charged scalar static-source model!

has recently been studied in the one- and two-
meson approximations via the methods of dispersion
theory,? and a modified Tamm-Dancoff approach.’ The
two-meson solution presented in the former treatment
is distinguished by its two- and three-particle unitarity
and a crossing-symmetric scattering amplitude. This
work precludes dynamical bound states by assuming a
sufficiently small meson-nucleon coupling. Another
version®® which retains these states tends to be un-
reliable for large values of the coupling.® The latter
formulation mentioned above, although subject to the
complete absence of crossing symmetry, demonstrates
the possibility of bound states in the spectrum of the
theory on the basis of conventional Lee-model results.
The system under consideration in these investiga-
tions consists of charge-conserving s-wave interactions
between relativistic charged scalar mesons and a spin-
zero static nucleon source which can exist in either
positive or neutral charge states. Electromagnetic
forces are neglected. The present paper is concerned
with incorporating two-meson effects in the interaction
between two such nucleons. For this purpose, we employ
vertices of the type pointed out by Blankenbecler and
Cook” which allow the use of the techniques of dis-
persion theory. For simplicity, we examine the two-
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nucleon problem in the zero-range limit while assuming
that both heavy and light particles are bosons.

It is hardly necessary to say that a model field-theory
calculation of this kind is rather incapable of yielding a
realistic two-nucleon potential, and we shall not dwell
on the many unsatisfactory aspects that make this so.
Indeed, a detailed determination of the corresponding
interaction energy is not the main reason for this
treatise. Instead, we take the attitude that static models
containing two sources provide an interesting oppor-
tunity to examine bound states and dispersion tech-
niques in a simplified but nontrivial framework of ideas
reminiscent of fully relativistic theories, Numerous
papers have already pursued the question of a meson-
theoretic derivation of a static two-nucleon potential.
In particular, we mention the nonrelativistic fourth-
order (two-meson-exchange) perturbation calculation
of Gartenhaus,® who used the Chew-Low® extended-
source (cut-off) p-wave model to develop a potential
which was successfully applied to the deuteron problem.
This potential does not seem to be reliable at inter-
nucleon distances of the order of half the pion Compton
wavelength since many-pion exchange, relativistic
effects, and heavy-meson exchange are predominant in
that region.’® Furthermore, it is also not unexpected
that the absence of nucleon recoil rules out the possi-
bility of a spin-orbit interaction.!! In spite of these
misgivings, it should be instructive, in a future paper,
to explore a dispersion-theory description of the inter-
action between two sources in the Chew-Low model.

In an earlier Lee-model work,”> we succeeded in
carrying out a dispersion analysis of the bound state
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2 DISPERSION METHODS AND THE TWO-NUCLEON:...

formed by the interaction between two V particles.
Even though this interaction entails the simultaneous
exchange of two mesons, a contraction scheme was
devised which used only the states found in the one-
meson sectors, ¥V and VN, as intermediate states. In
this way the more complicated two- and three-particle
states of the V9 sector were avoided. It is a result of the
selection rules in the Lee model that the possibility of
solution with dispersion theory is traced to the emer-
gence of a finite set of coupled integral equations. To
obtain a similar situation in charged scalar theory, we
choose a two-meson approximation leading to equations
which owe their solution to a factorization property of
the one-nucleon two-meson scattering matrix.2 The
scattering matrix in the V8 and 2V sectors of the Lee
model also has this property.}#-1%

In Sec. IT, we introduce an expression for the deuteron
vertex (n|f,|d), henceforth called T'. Because of the
symmetry in the theory I' is taken equal to (p| f.|d).
In these matrix elements, |p), |#), and |d) denote the
physical “proton,” ‘“neutron,” and ‘“‘deuteron’ states,
while f, and f, are the proton and neutron current
operators at zero time. We see at once, in the two-meson
approximation, that two pairs of matrix elements arise
for consideration. It turns out however, that there is
only one independent function in each pair. Since one
of these functions is contracted in two different ways,
we must solve three Omnés integral equations.

In Sec. ITI, we calculate the matrix elements contain-
ing the vacuum state at one end and two- or three-
particle states at the other in terms of the Omnés
functions appearing in the one- and two-meson solu-
tions. The first procedure in Sec. IV for evaluating the
matrix elements with the deuteron state at one end and
two- or three-particle states at the other is essentially
the same as before. The Omnés equation in this case
differs from the previous one only in the inhomogeneous
term. Another contraction scheme aimed at recovering
information on the binding energy lost in the first
approach is also explored. If all contributions in the
two-meson approximation are retained, then one faces
difficult mathematical complications which frustrate
further progress. To continue the calculation, we use the
most convenient integral equation for one of these
matrix elements while maintaining the earlier integral
equation for the other. On collecting results in Sec. V,
we see that T' cancels out of its original expression and
there remains an eigenvalue condition for the deter-
mination of the binding energy including two-meson
effects. We conclude with some general observations
about the static two-nucleon potential problem.
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II. DEUTERON VERTEX

In terms of conventional notation, such as that used
in Ref. 2, the current operators in the model are given by

d
)= ("22 +m)¢p<t> — —smp)
- é«w) = X@LaO+50),

d
f0)= <"Z +m)¢n ) = —smpn(t) —%m)
XE X@La O+60], ()

J (t)EX*I(LO)(—%f +w)ak(t)

d
_x~ <w><¢; +w)b,; )= =gt O ).

The operators ¥, (¥,") and ¥, (¥,!) are the renormalized
annihilation (creation) operators for the internal p and
n states of a static source. For convenience, both p and
n are assigned the energy m; Z is the source wave-
function renormalization constant, and éz is the mass
renormalization counter term. It is assumed that the
renormalized coupling constant g is not large enough to
form meson-nucleon bound states. The operators
ay, (ai') and by (b,") annihilate (create) positive and
negative mesons, respectively, of three-momentum %
and relativistic energy w= (k>+u?)'/2; u is the rest mass.
The quantity X (w) is an abbreviation for the ratio
f(w)/(2uw2)!?, where @ is the volume of quantization,
while f(w) is a real and positive-definite cutoff function
that vanishes in the high-energy limit. The equal-time
commutation relations are

WO W' OI=[ O ) 1=27,

Lar(®),an’ () ]=[0x (0,00 () ]=bks -
We see from Eq. (1) that the theory is invariant under
the simultaneous replacements p = » and =+ <= 7.

On applying the contraction technique to the =
particle in I', we obtain the integral form

(2)

0

r=i f O[5, 10O D, (3)

where 6(¢) is the usual step function. We insert inter-
mediate states |s) to get the representation

1‘=Zs O fals)sl fold)

1 1
><< ~+ - ) 4)
Es—m—ie Est+m—Eastie
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where € is a positive number to be treated as infinites-
imally small. The deuteron energy Eq will be written
as 2m-+wg, thus defining wq as the interaction energy.
Assume that wg is negative. In arriving at Eq. (4), we
have invoked the invariance mentioned above. Keeping
in mind that (0| f,|#) vanishes, we next express Eq. (4)
in continuous space as

00

1 1 1
I‘=—/ p(w)Kl(w)Dl(w)<~—|- - ><iw
1 00 00
= [ [ erpr oD

1
x(=—+

w12

>dw1dw2 . (5)

W12 wWq

where wis=wi~+ws and p(w)=*k?(w)/4mr. The functions
appearing in Eq. (5) are defined by

K1(0)=X"@)(0] ful pri), (6a)

K (w1,02) =X (@) XM (w2)(0| fu|naetme,™), (6b)
Di(w) =X (w){pmi"| f»]d), (7a)

D (w 1,0)2) =X (w 1)X#1 (wg) <n1rk1+7rk2_ l fp l d> . (7b)
Although the customary “out” designation will not
be displayed, all two- and three-particle states are taken
to be out states. It will be shown that K, and D, are
directly related to K1 and Dy, respectively, and that the
latter obey Omnés-type singular integral equations

having a common kernel. The origin of this kernel is
traced to a factorization property of the one-nucleon
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two-meson connected scattering matrix.2 The relation-
ship between D; and D, referred to here comes about
only by adopting the simplifications mentioned previ-
ously. Because the inhomogeneous terms in the D
equations contain a factor of T, it follows that the solu-
tions for Dy and D, also carry this factor. Thus T' must
eventually cancel out of Eq. (5) which then converts
into an eigenvalue condition for wgs. This procedure
differs from that adopted in the 2V problem, where the
elimination of two vertices from two simultaneous
algebraic relations yields the desired condition.

III. K FUNCTIONS

In this section we first obtain a coupled pair of
singular integral equations for the vertex functions K
and K,. These equations are then simplified by kernel
transformations of the type discussed in the Appendix
of Ref. 13 and then combined into showing that K is,
except for a constant, a product of K, an energy factor,
and Omnes functions characteristic of the one-nucleon
one-meson approximations. The problem of finding K
is solved after a brief summary of the diagonalization
of the connected two-meson scattering matrix.

Contraction of the meson in K yields

0

()= — é i f_ RIS OOIPEANC

where the first term on the right-hand side comes from
an equal-time commutator. We insert the appropriate
intermediate states and manipulate Eq. (8) into the
form

Kl(w)=—’Z‘+“

™

g 1 /w p(W)K ([T (") =M (o) Jdo’ + 1 fw fw p(w1)p(w2) P—(w1,w2) K2 (w1,02) dwidws

P W' —wtie wie—wt1e

1 ei+@) sing, (0)K 1 (o)de’
4 / . )
™ Jp

w' —wtie
where we have added and subtracted the last term on the right-hand side. The amplitudes M, (w) and M_(w)

describe the scattering of prt (and #7~) and pr— (and nzt), respectively, in the one-meson approximation.? These
amplitudes are expressed in terms of their corresponding real phase shifts 6. (w) by

p(@)M 1 (w) =€+ sindy (w) (10)

and satisfy the crossing relation M, (w) =M_(—w). The phase shifts can be chosen to vanish at the lower () and
upper (o) limits. Expressions are given in Ref. 2 for M (w) and their two-meson approximation analogs 7'y ().
Also found there are the associated production amplitudes P,. For future reference we note that

g A_(w)A(w2)
P_(wnw2) = —[T—(w012) =M (012) }————, (11)
w1 A+((J)12)
where the Omnes functions Ay (w) are defined by
o P do'dp(w)
Ay (w) =exp[— / —————jl . (12)
TJu o (0 —w—7e)

In the high-energy limit, AL (w) approach a constant.
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To secure the other equation interrelating K; and K,, we contract the positive meson in K. This leads to

K2(w1,w2)=‘"iX_l(w2)/ e~ 10 [ fn, 77 ()10 (1) Inmrrs)dt . (13)

Proceeding in the usual manner, we then find

1% p(@)0-" (ww)Ki(w)de 1 7% 7 p(@)p(@)R_* (w0 ,w)Ks(ww)dwde’
Kz(wl,w2)=£[{1(w2)+——/ pl)o K +*2/ / plwlp(w) ( K )

w+€0,—w12+”i€

w~w12+i€

1 % e 8- gind_(w)K2(w,we)dw
+ - / - . (14)
TJu w—wi;t1e
This equation incorporates the following definitions:
Q-*(wr,we) =X w) X (wo) [{pmr,~ | 1|0 17)+ g0 111, 5 (15)
R_*(w1,02,0) = X7 (1) X (@2) X (@g) [{nm g e, | 77 [0 7) — 81y, X (w3) M- (e23) ] (16)
In Ref. 2 it is proved that
g AL F (wo) A (w1 —we)
Q—F(wyws) = ———[T_(01) =M (w1)] ) @an
wi—wat1€ Ay (wr)
P_(w3,ws) A *(w1)A_ (w23 —w)
R_*(wl,wg,w;;)= g M : 2 ! . (18)

(wos—wi+1€) Ay (was)

In the next step we eliminate the last terms on the right-hand sides of Egs. (9) and (14) by the kernel transforma-
tions referred to above. This procedure immediately yields a new pair of equations which provide the relation

_* w1 * wo Kl w12
Ka(woso0) = gA_* (1) Ay (wa) K ( ). (19)
w1A+*(w12)

Using this result in the transformed version of Eq. (9), and introducing the function K (w) defined as the ratio of
Ki(w)Ar (o) to A *(w), we obtain

1 P p()T-(0)—M, (o) ]e 2+ K (0)do’ 1 % do’[T_(0")— M (0") ] (0")K (o")des’
K@=_5+“/p<m )=t ) @) L L) =M )Y @R
Z wJyu o' —w-tie T Jou (0" —w+ie)[Ay ()
where the integral I (w) is given by
2 ek p(w)p(w—w) | A_ ()AL (w—w’) | %dw’
I(w)=£/ p(@)p(w—w)|A (’2) +(w—0)] . 1)

It can be shown that Eq. (20) has the form of an Omnés equation. Similar demonstrations have been given
elsewhere.*15 In the present context the problem is that of solving the eigenvalue equation of the connected
S matrix S, in the pr~ channel. There exists of course a similar eigenvalue problem in the p=* channel. The result
is that the eigenvalues A of S, are determined by the equation

[T (o) =M ()] (w)
. +2je2is+(@) +2ip(w)T—(w)+1=0. (22)
(A @)F Jr (A, )P ”

Calling the two nontrivial solutions of this equation A;=¢€?*1 and Ao =¢%"2, and noting that their product A1\, equals
the determinant of S,, while also equaling the A-independent part of Eq. (22), we find with the use of Egs. (46)

and (48) in Ref. 2 that
T_(w T_*(w —1
detSc=)\1)\2=|:-Q —1:”: “ —1] . (23)
My (w) M *(w)

[T (&) =M () ) (w)

~

A2— 2)\[1 +ip(w)T—(w)+
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It is equally noteworthy that
)\1)\2e~2i6+__1

20
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[T () =M1 (w) ) ()

(24)
[A+ (w)]2

By virtue of the last result, we may now rewrite Eq. (20) in the standard form

1101 +02(e)—8+wN)] §in[; (o) 403 (w') — 8, (") K (@)oo’

¢ 1 /7
K@:—~+~/
Z wJa

The solution to this equation can be written down at
once in terms of the Omnés functions A, (w) and A(w),
where the latter is defined by

w [*dw'[0:(w")+02(0")]
A(w) =expl:— / :I . (20)

T o (0 —w—1€)

In view of the relation In\\s=2:(6:+6:), the deter-
minant of S, also equals A(w)/A*(w). This fact, and the
equality Ay (w)/A*(w)=exp[2id;(w)], are useful in
verifying the solution of Eq. (25), namely,

gA* ()AL (=)
K@=— 27)
© ZA*(w)A() (
Finally, it follows that
A*(w)
K= £5 (28)
Z A(»)
EA% (w12) A F (w1) Ay ™ (w2)
Ko(w1,w9) = — 29)
(o2 ZA(%)w1A1*(wi2) (

The pion-nucleon coupling constant g is defined by the
matrix elements

(nljlp)=—g, Ki(0)=—g.

With this normalization ZA() equals unity, as shown
by Eq. (28). To show the equality between (| j|p) and
K1(0) contract the 7 particle, make a two-meson ex-
pansion, and compare with Eq. (9).

Diagonalization of the one-nucleon two-meson con-
nected S matrix continues its vital role in the solution
of Omnés integral equations for D; and D, formulated
in accordance with the provisos indicated earlier.

(30)

IV. D FUNCTIONS

We now undertake an evaluation of the remaining
functions D, and D, by employing the simplest pro-
cedures enabling us to relate these functions as in the
previous case. In one development, we completely
neglect summations carrying intermediate states with
the quantum numbers of two nucleons and zero, one, or
more mesons. We see by another approach that it is
possible to avoid these states and presumably a more
accurate two-meson binding energy would result;

(25)

o' —w+ie

however, the ensuing coupled integral equations for D,
and D, are quite formidable from the standpoint of a
complete solution. To continue along the path of least
mathematical resistance, we omit certain terms from
the D; equation and return to the D, equation used
previously.

If we think of retaining the one-meson approximation
in the summations mentioned above, then it appears
that we have the additional problem of determining
vertex functions and scattering amplitudes involving
meson-deuteron scattering states. Actually, we have
already learned how to contract the bound state of two
static particles. For example, the 2V state |B), with
normalization constant Zg, can be contracted in terms
of the operator ¥p defined by yp=(Zz/V2) Wy
Analogously, the deuteron state |d) can be represented,
in the usual definition of an asymptotic state, by the
operator Ya=Z4 Y n, Where Zg is the corresponding
normalization constant. This prescription will be useful
in a discussion of meson-deuteron scattering to be
examined elsewhere.

In Ref. 12 we were able to secure the binding energy
of one two-nucleon bound state (2V) in terms of that
of another (VN). The latter is a one-meson problem and
is established independently of the former. This one-
meson approximation which is automatic in the Lee
model would require the existence of a dineutron or
diproton in charged scalar theory.

Assuming that we wish to treat D; and D, symmetri-
cally and excluding contraction of the deuteron itself,
we have then the option of contracting mesons or
nucleons. The latter approach is concerned with an
attempt to remain within one-nucleon channels,
whereas the former introduces states with the quantum
numbers of two nucleons. In the final part of this
section we combine D; and D, obtained from the
nucleon and meson contractions, respectively.

We proceed by contracting mesons in Dy and D,. Let
us first consider the former. We have

P Q0
DMF;—H/eWNW@ﬁMMWw(w

wg —0

The first term on the right-hand side of Eq. (31) comes
from the equal-time commutator

X ()(p|[bx,f1d)=—(8/Z)(p|¥n|d)=gT/Zwa. (32)
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Inserting a sum over a complete set of states in each The s states in the first summation on the right-hand
term of the commutator and performing the time side of Eq. (33) have the quantum numbers of an
integrations as before, we get n particle, while those in the second summation have
quantum numbers of two p particles. In confining
Fax |7t 1s)s] fold) ourselves to the first sum and then to the s states as
Diw)=—+2 —— before, we continue to operate within the framework of
Zaw s Hi—m—w—ie functions already introduced. Note that in doing this we
G| fols)s] it d) lose informaFigm carried by terms contz.li.ning the binding
—y e L (33) energy explicitly. Under these conditions, the above

s Ey—E,—w—ie expression for Dj(w) becomes

1 1 1 2 p()[T_*(w") — M * () D1 (0 )de’
Dl<w)=gp<2_+*>+ / p (@[ T-*(&) = M *(@) D1 (")

T W —w—1e

"
+ ! /m /wp(wl)P(wz)P_*(wl,wz)Dz(wl,wz)dw1d“’2 n 1 /w ¢+ @ sind, (o) D1 (w')des’
w u Ju B

- ) (34)
wig—w—1€ T w' —w—1ie
where, once again, we have added and subtracted a term.
Next, we contract the 7+ meson in Ds to obtain
D?(wlyw‘z):iX—l(m)/ el nms|[7(0),f»10(0) | d)dt. (3%)
By a familiar process, this equation expands into
(nmig | 71s)(s| fal @) (nmis| fo]5)(s] j] @)
Dafen,) =X (wg) T —— —— X o) T (36)
s FKi—m—wis—1e s Fg—E—wi—1e

The s states in the first and second summations on the right-hand side of Eq. (36) have the quantum numbers of
one 7 particle and two » particles, respectively. Repeating the procedure adopted above for Dy, we find

Dz(wl,w2)= - + + -

w12 [OF] ™

[Ty (ws)  gDi(we) 1 /wp(w)Q—(w,wz)Dl(w)dw_,_i /‘” /°°p(w)p(w’)R—(wz,w’,w)Dz(w,w’)dwdw'

W—wie—1€ wtw' —wis—1ie

1 e =@ sind_(w)D2(w,ws)dw
+- / . @)
™ Jp

w—w;—1e€
In arriving at the first term on the right-hand side of this equation we have used the two-meson approximation

amplitude T, instead of its one-meson counterpart M. Eliminating the third integrals in Egs. (34) and (37) by
means of kernel transformations, we again obtain a new pair of equations which lead to

I“I’(wm) D1(0)12)
Dy (w1,09) =A~(w1)A+(wz)|: £ } , (38)
w12 w1A+(‘*’12)
where ®(w) is given by
2 Ti(w
aw=5 - Y (39)

0 Ay(@A_(—w)

The function ® vanishes if 7', is replaced by M. Next, we obtain an Omngs equation for the function D(w)
defined by

D(w)=D1(w)/A+(). (40)
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From Egs. (11) and (24), the transformed version of Egs. (34) and (38), we have

g g 1 /:’J (w')ET—*(w’)—M+*(w’)]dw’]

D(w)=1"[deA+<w) + o +7—r

w0 (0 —w—ie)[A* ()

where

J(w)=—

™

The solution of Eq. (41) yields

1 e illr(eN 02000+ gin[ 6, (w’) + 02 (w’) — 84 (w’) ]D (w’)dw’
+_/ , . ) (41>
)y w' —w—1e
=t p(w)p(w—w’) | A_(o’ w—w’) | 2P (w—w’)dw’
g/‘ p(w)o( A )Ajr( )2 ( ) . @)
P T (@[T H () =M * (w’)]dw’:l
s (43)
o' (0 —w—1ie) A* ()AL *(w')

1
mw=M@{5+§+~/

while Ds(wi,ws) is specified by Eq. (38). We have now
completed a derivation which approximates the matrix
elements appearing in the deuteron vertex expansion,
Eq. (5), in terms of the functions arising in the one- and
two-meson solutions of the model with a single static
nucleon. Note that the D functions carry T' as an over-
all factor. This characteristic causes Eq. (5) to become
an eigenvalue condition for the binding energy.

To continue this discussion of the D functions, we
would like to consider briefly the situation brought
about by contracting nucleons in D; and D,. Specifi-
cally, we shall be content with examining here the con-
sequences of contracting the p particle in D;, since the
contraction of the # particle in D, leads to many more
complications. In this approach we circumvent inter-
mediate states with the quantum numbers of two
nucleons and zero, one, or more mesons. On the other
hand, the resulting coupled integral equations do not
suggest a method of solution consistent with the two-
meson approximation. For D; we get

e L IAL GRS

Wa

+X7(w) %‘, X (@) w| fol pre)Dr (o)

1 1
(o)
o' —w—1ie w'—wq

+X () :4: %: X (w1) X (wo){mi™ | fp| nmrtmes)

1 1
XD (wl,w2)< + ) .44

Wie—w—1€
To proceed further, we must enquire after the three
remaining matrix elements in Eq. (44). For the purpose
of completely disclosing the w dependence on the right-
hand side of this equation, it is appropriate to contract
the mesons on the left-hand side in each of these.

m

In the first place, we get
X w)(mi | fp|n)

00

=_§_4'mm[nj@y@WW-mw

2 —o0

Since the theory is invariant under the simultaneous
interchanges pe2n, je j', it follows by comparing
Eqgs. (45) and (8) that

XM w)me| foln)=Ki(—w). (46)

Next, we consider the matrix element in the first
summation on the right-hand side of Eq. (44). It is
found that

XN w)me | fol pmi)
=X ()T *)+2 O] fuls)(s| 5t [ pme)

1 1
><< - - — - ) . @n
Edw—w' —m+tie Es—m—ie

Notice that the summation in Eq. (47) vanishes when
the meson energies w and ’ are equal. That this is not
unexpected follows from a comparison between the two
forms of the scattering matrix element (pmry~ out
X | pwix~ in) obtained by contracting the in-meson and
the in-proton.

Lastly, we turn to the matrix element in the double
summation on the right-hand side of Eq. (44). In this
case we get

XN o) (™| fol nmitmis)
=05 X 1) X (w1) K1 (1) +X (1) X (w2) P_* (w1,02)
+22 0 fols)s| 4t nmptmi)

1
X( - ) . (48)
Estw—wp—m+tie Es—m—ie
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Note that both the first term and the summation on the
right-hand side of Eq. (48) give no contribution when
wy2 and w are equal. Again, this is predicted by the two
forms of (nwy,tmr,~ out|priTin) obtained by separately
contracting the particles on the right-hand side.

The dispersion relation resulting from the substitu-
tion of the above expressions into Eq. (44) will not be
displayed here in its entirety. It is a consequence of the
first term on the right-hand side of Eq. (48) that w
appears not only in simple denominator factors, and a
known function, but also at one point, as the second
variable in the other unknown function D,. Similarly,

Dl(Z) =
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in trying to write an integral equation for D, in one of
its variables, we find that that variable cannot be con-
fined only to denominator factors and known functions,
but is also present in D; and D, on the right-hand side
of the equation. It is not at all transparent that one can-
solve this complicated system of coupled equations. It
is convenient, although an obvious mutilation of matrix
elements, to use —g, X () T-*(v’), and X (w1)X (w2)
X P_*(wy,w2) in place of the left-hand sides of Eqs. (46),
(47), and (48), respectively. In that case we get the
interesting equation

4

2 w —3z

D, (wa) i g 1 /°°p(w'>[T;*<w'>~M+*<w'>jD1<w'>dw'

wie—32

Ty
n 1 /°° /°° p(w1)p (w2) P_* (w1,ws) Da(w1,02)dwidws + 1 /w e+ gind, (w’)D;(w’)dw’
) Ju u

, (49

7

™ w —3z

written in a form which stresses the analytic properties of D;. As we shall see, the solution of Eq. (49) provides a
condition for the determination of D;(wg). The definition of Dy(wg), which may be read from Eq. (49) evaluated
at z=wq, could also be used for this purpose but not as easily. A simple version of the steps taken here is given in
the Appendix, where we re-examine the equation characteristic of the V.V potential problem. The last integral in
Eq. (49) may be eliminated in the usual way. Maintaining the earlier transformed equation for D,, but now com-
bining it with the revised and transformed equation for Dj, we find that D, again has the form of Eq. (38). This
is expected since the two Dy’s differ only in their wq dependence. As before, D, satisfies an Omnés integral equation,

the solution of which is

20(0) 2

Dr(wa I T PJ()[THw)—Mi(o)]de'
D1(Z)=A(z)|: : )+5—+~/ @T* @) =M (@)] }

(50)
o (@ —2)[ A @) ’

The remaining unknown quantity is D1 (wa). It is obvious that Eq. (50) itself provides the means for securing this
quantity. Simply evaluate it at z=w,; and solve for D;(wq). We get

2T'A(wa)A () 1
Dl(wd)= [g

28(0)—Awa)lws =

Wd ™

Note that this result contains an over-all factor of I'.

In this section we have considered two possible
contraction schemes for the determination of the D
functions. One of these leads to an encounter with
intermediate states containing two nucleons and zero,
one, or more mesons. In neglecting these states we close
off some information on the binding energy. The other
approach circumvents these intermediate states by
remaining in channels containing one nucleon, but leads
to an intractable system of coupled integral equations.
It is not without interest to neglect certain two- and
three-particle contributions in one of these equations
and to solve it in conjunction with an earlier equation.
In this way we recover part of the information referred
to above.

V. FINAL RESULTS AND CONCLUDING REMARKS

For the purpose of illustration and for the sake of
completeness we proceed now to present eigenvalue

* J ([T * (") —M* (w’):ldw’:l
, W@ —e)[AF@) P J

(1)

conditions for the determination of the binding energy
wa. Because we are not concerned here with a detailed
examination of these conditions, and because of the
complexity of the functions, it will be convenient to
express the result in general form. This complexity
serves as a hint to the mathematical effort that would
be demanded by a realistic two-meson dispersion calcu-
lation of binding energy.
From Eqgs. (5), (28), (29), and (38) we find

0

Ir=— j /ﬂ p(w)A*(w)Dl(w)<o—1) + w_lw)dw

g [ A%w)
—2 [ ———JwDi(w)+TA ()] ()]
~/2u w l A+ (w> l 2 »

™
1 1
x(— + )dw. (52)
W w—wg
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In Eq. (52) we must insert either Eq. (43) or Eq. (50).
The cancellation of I' and thus the emergence of an
eigenvalue equation from Eq. (52) rests on the presence
of I' as an over-all factor in D;. In the case of Eq. (50)
we recall Eq. (51). Of course, we have not established
the existence of a two-nucleon bound state in the the-ry.
In order for this to be so, Eq. (52) must have at least
one appropriate root. From the beginning we have
assumed that |d) is one such state. Besides giving the
eigenvalue equation, dispersion-theory formalism can
also yield the detailed structure of the bound state. An
example of this is given in Ref. 12. Note that Eq. (52)
has been derived without appealing to the bare state
expansion of |d). This is also a convenient point at
which to note that one can go back and easily make the
appropriate simplifications leading to the one-meson
analog of Eq. (52).

In this paper, which is intended to be a sequel to
earlier ones,'?16 we have been interested in studying the
properties of composite particles in terms of matrix
elements which may be examined by the methods of
dispersion theory. We have restricted these considera-
tions to the realm of two static nucleons in interaction
with each other at zero range through the exchange of
relativistic scalar mesons. On the one hand, dispersion
calculations in the Lee model have led to eigenvalue
conditions due to the exchange of one meson in the VN
case, and to two mesons in the 2V case. Because of the
special nature of this model, it was possible in the latter
problem to avoid the complicated states of the V9
sector. If the contractions are such as to implicate these
states, then one faces technical problems akin to those
found in the present case when nucleons are contracted
in Dy and D,. On the other hand, one of the many
shortcomings of the Lee model is its lack of crossing
symmetry. In the present work we have turned to the
charged scalar theory in order to include this aspect in
our dispersion calculations of bound-state parameters.
In this connection, we have incorporated the two-meson
solution developed by Bronzan which has both two-
and three-particle unitarity and a crossing-symmetric
scattering amplitude.

A factorization property of the two-meson scattering
matrix enables us to write dispersion relations for
various matrix elements as Omnés equations with
different inhomogeneous terms. Thus, the vertex func-
tions K; and K, involving the vacuum state at one end
are obtained in the two-meson approximation, without
omitting any terms. The more complicated functions
D, and D, containing the bound state at one end are
first treated by dropping terms which implicate inter-
mediate states with two nucleons and one, two, or more
mesons. This treatment is somewhat unsatisfactory in
that the neglected terms possess further information on
the binding energy. In another approach we improve on
this situation by calculating a new D, but all contri-

16 .. M. Scarfone, Nucl. Phys. 39, 658 (1962).
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butions in the two-meson approximation are not taken
into account. It seems that the most satisfactory situ-
ation would be to include these terms and to calculate
D, in the same way. However, it is not evident that the
resulting integral equations for D; and D, are soluble,
and in fact one may be forced into compromises such as
that made in obtaining Eq. (49).

As mentioned before, we do not address our attention
to the roots of Eq. (52). Instead we have been interested
in pursuing various contraction possibilities presented
by the methods of dispersion theory for including
higher-order effects in a meson-theoretic description of
the interaction between two static nucleons within a
fairly tractable context. As far as we know, the present
work is the first instance of a two-meson dispersion
calculation of a composite particle in a theory with
crossing symmetry. We have looked for these possi-
bilities by following Blankenbecler and Cook, who
advocate the use of vertex functions as a means of
examining bound-state properties. Their program aims
at providing “a potential which is chosen to yield the
bound-state properties, not low-energy scattering
properties of field theory.” In another dispersion-
relation approach,’” an effort is made to calculate
nucleon-nucleon scattering directly in terms of one-
meson- and two-meson-exchange contributions. Take-
tani and his collaborators'® have proposed on the basis
of pion theory that the nucleon potential be divided
into three regions, namely, classical (x> 1.5), dynamical
(0.7<x<1.5), and phenomenological (x<0.7), where
x is the internucleon distance in units of the pion
Compton wavelength. In the dynamical region the
two-pion-exchange potential competes with and exceeds
the one-pion-exchange potential. The former depends
very much on recoil effects, the type of coupling (p wave
or other), the nucleon form factor, and the higher-
energy pion field cutoff procedure, not to mention
multiple-scattering effects and radiative corrections.
Therefore, it would be very presumptuous to assert that
our static-model considerations have prepared us for a
realistic dispersion calculation of two-meson effects in
the two-nucleon potential. Since we have been bound to
the two-meson solution of the charged scalar theory
developed by Bronzan, the limitations of his solution
and methods are also present in our work. As a result,
it appears doubtful that we could proceed in the same
way to include two-meson effects in the interaction
between two nucleons in static models such as sym-
metric scalar!® and neutral pseudoscalar’® theories.
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APPENDIX

Here we reexamine a vertex function treatment of the
bound state |B) formed by the interaction between a
V and N particle, both considered to be bosons situated
at the origin of coordinates. In Ref. 16 it is shown that
the vertex

I=(V|fv|B) (A1)

expands, on contracting the V particle, into the ex-
pression

1
P=Zk: —O0] fv N0 YN0 fn|B), (A2)

where the out-state | V) describes the scattering of a
6 particle by an N particle. The matrix element
X(w){0| fr|N6:) is the complex conjugate of the
Goldberger-Treiman® function K (w). Hence, we have

g
X=1(w){0] fy|NO) = — ————— A3
@Ol Vo)== — =, (A
where the integral function 8(w) is given by
g 7 p()de
po== o[ T
7 Ju o (0 —w—1ie)

p(w) and X (w) have the same meaning as in the text.
The other matrix element in Eq. (A2) is defined as

R(w) =X ()N 0| fx| B). (AS)

On contracting the N particle, one finds the Omnés
equation

, (A6)

’
u w'—3

1 /°° @) sind ()R (o) de

(1‘9’51\§. L. Goldberger and S. B. Trieman, Phys. Rev. 113, 1663
9.
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written in a form which stresses the analytic properties
of R. In this equation §(w) is the phase shift for N6
scattering, while R(wo) is given by

R(wo)=—+ - ; (AT)

wo ™

2¢T 2 /w %@ gind (w") R (w")dw’
M O),—wo

wp is the negative interaction energy between ¥ and V.
The quantity R(wo) is an unknown constant which can
be obtained in two different ways. One of these is simply
to evaluate the solution of Eq. (A6) at z=w, and solve
for R(wo). The other is to insert the solution of Eq. (A6)
into the right-hand side of Eq. (A7), which then reduces,
after integration, to an algebraic condition for R(w,).
Having found R(w,), we then put it back into the solu-
tion of Eq. (A6), thus determining R. These procedures
differ from that used in Ref. 16, where Eq. (A6) was
first reduced to the quantity gI'’/wo with I'” representing
the vertex (V| fv|B).
The solution of Eq. (A6) is

1 R(w()) gP
R(z)_1—ﬂ(z)[z 2 +?]'

In arriving at this result we have used the asymptotic
value 1—B()=Z, where Z is the V-particle wave-
function renormalization constant. Carrying out the
procedures described above, we find®

(A8)

(A9)

T 1
R@)=——]~ 1

1-—,3(w)l_ 2w 1 ~ﬁ(wo)]~Zwo] )

As expected, T" appears as an over-all factor in R(w) and
subsequently cancels out of Eq. (A2). The remaining
integration leads to the binding-energy condition

1—5(600) = "7\(600) ’ (AIO)
where \(wo) is defined by
2 d
Mo =~ / P (A11)
TWo Ju W—wWo

20 A related development of Eq. (A9) has been given by S. Sen,
University of Maryland Report No. Md DP-TR-70-058, 1969
(unpublished).



