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scattering amplitude itself. Here the mass degeneracy is
an acceptable solution, while not a satisfactory one.

In conclusion, we believe that this work gives a better
perspective to the results of Cronstrom and Xoga. 2

The intermediate-coupling models do not have analogs
of the second superconvergence conditions [Eqs. (26)].
The only solution for the mass matrix obtained from
these equations for the representations (V=O, 56) and
(V=2, 56) is the trivial one of mass degeneracy within
each of these multiplets. In the strong-coupling model, "
such a result would have implied the vanishing of the
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The dynamical group G& for relativistic quantum mechanics phenomenologically suggested by Aghassi,
Roman, and Santilli is derived from the analysis of symmetry properties of Lagrangians and corresponding
equations of motion for a free relativistic particle. All physical observables such as position, momentum,
angular momentum, and mass squared are represented by well-defined operators which close the algebra
of the dynamical group G5. The unitary irreducible representations of this group, which are possible states
of the physical system, are found. The particles accommodated in the single unitary irreducible representa-
tions have various spins starting from the lowest spin value and going up to infinity in integral steps. The
mass-squared operator P„PI" lies in the enveloping algebra of G&, and its eigenvalues are not necessarily
quantized and can have any positive or negative values. It is pointed out that this group has several failures
and thus it cannot be accepted as the reliable dynamical group for particles within relativistic quantum
mechanics.

I. INTRODUCTION

~ 'HE hypothesis that the dynamics of the quantal
interacting system can be completely described

by some dynamical group has been veri6ed for almost

all interesting quantum-mechanical problems. ' In the

approach using dynamical groups, instead of postulating
the Hamiltonian for the quantum-mechanical system
we postulate a dynamical group. Then the quantum-

mechanical wave functions are supposed to form the
basis for the unitary irreducible representation of the

group in question which is generated by the operators
of the physical observables. The same idea was con-

sequently used in strong-interaction physics with the

great hope of predicting hadron states with their

masses and mutual coupling constants. "This approach
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to particle physics became rather popular recently
because various bootstrap schemes4 and supercon-
vergence relations following from the proper Regge
behavior of the scattering amplitude are formulated in
the group-theoretical language. '

One essential shortcoming of the models mentioned
above is connected with the mass spectrum. The
relation for the mass spectrum is solvable only in
models which are not fully relativistic invariant, such
as those in strong coupling' and in bootstrap theory,
while in the models with relativistic invariance the
condition imposed on the hadron masses' can be
solved only if rough approximations are made.

Other attempts which were made to obtain the mass
spectrum in relativistic-invariant theories tried to
combine the Poincare group with some semisimple
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internal symmetry group in a nontrivial way. These
attempts were, of course, disappointing because
O'Raifeartaigh's theorem' prevents the emergence of a
discrete mass spectrum. The explanation for this
failure can be given by the Flato-Sternheimer theorem"
according to which any extension of the Poincare
groups by some semisimple Lie group is trivial in the
sense that the mass-squared operator I'„I'I" will always
be a Casimir operator of the extended algebra. This
simply implies that if we want to have the various
particles with different masses in the same unitary
irreducible representation of some dynamical group G,
then G must be the extension of the Poincare group by
some non-semisimple group in order to have a relativ-
istic invariant theory where the I'„I'I' operator will not
be the Casimir operator of the group G.

However, the most interesting approach to the mass
spectrum of particles is treated in theories with infinite
multiplets and infinite-component wave equations. In
those theories, P„Pt" is not a Casimir operator and
O'Raifeartaigh's theorem cannot be applied since the
dynamical group is confirmed to the rest frame only.
The results obtained in this approach are more than
encouraging. "

The first dynamical group for relativistic quantum
mechanics of elementary particles which is not restricted
to the rest frame only was recently suggested by
Aghassi, Roman, and Santilli. "These authors proposed
phenomenologically the so-called G5 group generated
by the set of operators which can be identified with the
physical observables in the framework of relativistic
quantum mechanics such as position, momentum,
angular momentum, and particle mass squared. A
similar group was also considered by Castell, "but not in
such an elegant form as in Ref. 12.

The group G5 is the nontrivial extension of' the
Poincare group by some non-semisimple group so that
O'Raifeartaigh's theorem is not applicable, and there-
fore it is possible to have particles with different
masses in single unitary irreducible representations.
Indeed the mass-squared operator I'„I'& lies in the
enveloping algebra of G5 and enables us to calculate the
mass spectrum of particles accommodated in the single
representation. To the best of our knowledge, the model
suggested by these authors" is the only one so far which
is not restricted to the rest frame and is fully relativistic
invariant with a clear physical interpretation of the
generators of the group in question.

The aim of this paper is to show that the aforemen-
tioned group G5 is a direct consequence of symmetry
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properties of the Lagrangian and corresponding equa-
tions of motion for a free relativistic particle provided
that a naive transition from classical to quantum
Inechanics is performed. Furthermore, we shall find
the unitary irreducible representations of this group
which are assumed to represent the physical states.
From the knowledge of the representations, we are able
to find the physical properties of the particles furnishing
the single unitary irreducible representations. To
conclude this section, it should be stressed that even
though the structure of this dynamical group is enor-
mously attractive, the results obtained in this model are
unphysical, indicating that this particular dynamical
group is not suitable for describing particles in relativ-
istic quantum mechanics.

D. KvmZMmICaL Xmo DYm, MICHEL
SYMMETRIES

We shall study first the free-particle states in classical
nonrelativistic mechanics from the group-theoretical
point of view. The Lagrangian for a free particle in
classical mechanics has the simple form

a=2( ), k=1, 2 3 (2.1)

and is clearly invariant under rotations and translations
in three-dimensional Euclidean space. Thus 'the sym-
metry group of this Lagrangian is the inhomogeneous
rotation group ISO(3), which is the semidirect product
of the rotation group SO(3) with the three-dimensional
Abelian group T3 .

ISO(3) =SO(3))&T3 . (2 2)

XI, ~ XI,+VI,t,
t -+ t+r,

(2.4a)

(24b)

where v~ and v are unrestricted parameters independent
of time t, in addition to the group transformations (2.2).
This implies immediately that the symmetry group of
the equations of motion (2.3) becomes larger than the
symmetry group of the corresponding Lagrangian
(2.1). By detailed analysis, " it can be shown that the
symmetry group of the equations of motion (2.3) is
G4, which has the following Lie group structure:

G4={&3 82'x'}X{T3"XSO(3)}. (2 5)

Here T3' denotes the three-dimensional Abelian group
generated by the generators QI, connected with the

Here SO(3) is generated by the three angular momen-
tum operators V~, and T3 contains three translation
operators I'&. However, the equations of motion

(2 3)

derived from the Lagrangian (2.1), are covariant also
with respect to the Galilei transformations
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velocity transformations (2.4a), while T~' is the
one-dimensional time translation group generated by
the operator H corresponding to the. transformations
(2.4b), and the symbols I3 and X stand for the direct
and semidirect products, respectively. The operator H
has important physical meaning because it plays the
role of the evolution operator with respect to the time I,.
We can see that the symmetry group ISO(3) of the

Lagrangian is only the subgroup of the symmetry
group G4 of the equations of motion which represent
the dynamics. Therefore, we shall refer to the symmetry
of the Lagrangian as a kinematical symmetry while

the symmetry of the equations of motion will be referred
to as a dynamical symmetry. From this point of view,

the group G4 plays the role of the dynamical group for
the free particle in nonrelativistic classical mechanics.
It is worthwhile to note that one of the Casimir

operators of G4 is the operator P'qPI„ the eigenvalue of
which represents (up to a multiplicative constant) the

energy of the particle, which can be used as the label
for the unitary irreducible representations of the group
in question. It can be easily verified that the physical
observables such as the position xI, and the momentum

pI, of our particle are the matrix elements of the

generators of G4, namely,

(2.6K)

aild
(2.6b)

where M is the mass of the particle under consideration.

Having identified the position Xl, and momentum P'I,

operators in the dynamical group G4, we can start to
study the transition from classical to quantum non-

relativistic mechanics on the basis of group theory. This
transition consists in requiring that the commutator
between the position XI, and momentum P'~ operators
be nonvanishing, namely, the relation

(2.7a)

which in terms of QA, operators can be rewritten in

the form
[Qg,I',]=ibg„M. (2.7b)

The last commutator implies that in quantum mechan-

ics we are not dealing any more with the dynamical

group G4 but with a larger group which we denote by
64. Its Lie group structure can be found easily by taking
into account relation (2.7b) along with the remaining

commutators defining the group G4. One finds that the
dynamical group characterizing the free particle in

nonrelativistic quantum mechanics has the following

Lie group structure:

G4 ——(Tg~cgI Tg'I3 Ta'}X jTs"XSU(2)}. (2.&)

Here the additional one-dimensional Abelian group
T~~ is responsible for the emergence of the constant M
in the commutator (2.7b). It is to be mentioned that
one of the Casimir operators of the group G4 has the

form
8=PI,Pg, —2jjf/IH, (2.9)

where II plays the role of the Hamiltonian, the eigen-
value of which is the energy of the quantum-mechanical
system. However, the last equation tells us that the
unitary irreducible representation of G4 labeled by 8
contains states with different energies, which was not
the case in the classical dynamical group G4. It should
also be mentioned that particles with different masses
M belong to different unitary irreducible representations
because the constant M commutes with everything and
can be used as the label for the representations.

All results presented so far were well known long ago
but we have presented them here to have a good analogy
for deriving the dynamical group for relativistic
quantum mechanics. Before we attack this problem,
we shall study the symmetry properties of the free
particle in classical relativistic mechanics. To begin
with, we write the Lagrangian for a free particle in
relativistic classical mechanics as

2 =g""U„U,=g""dx„/dr dx„/dr, (2.10)

where U„ is the four-velocity, 7. is the proper time, and
g&" is the metric tensor defined as

g"= —g'~ =1, g„„=0 for

and y, v=0, 1,2,3, 4=1,2,3.
The Lagrangian 2 in (2.10) is obviously invariant

under homogeneous Lorentz transformations,

x„~A„"x„(A„"A„l'=g„I'),

as well as under translations,

(2.11a)

(2.11b)

As is well known, the transformations (2.11) are
generated by the Poincare group P which is the semi-

direct product of the homogeneous Lorentz group
SO(3,1) with the four-dimensional Abelian group T4
and satisfies the following Lie algebra:

[&...&,.7= (g„&„.+g„.V'.,—g„,V'„,—g„,K„,), (2.12 )

(2.12b)

[I'„,I'„]=0. (2.12c)

d'x /dr'=0 (2.13)

and they possess a larger symmetry than the Lagrangian
from which they are derived. Clearly, Eq. (2.13) is

Here V'„and P„are the generators of SO(3,1) and T4',
respectively. From our point of view, the Poincare
group is considered as the kinematical symmetry
group of the system under considerations.

The equations of motion for a free particle in classical
relativistic mechanics take the following simple form:
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covariant under the following group of transformations:

X„—~ X„+fi„'T,

T~ T+0

(2.14a)

(2.14b)

where b„' and 0' are unrestricted parameters indepen-
dent of the proper time v. The form of the transforma-
tions (2.14) reminds us very strongly of the group of
Galilei transformations (2.4). For the sake of con-
venience, we shall use, instead of the proper time 7.,
the dimensionless parameter u defined as

u =T/lnSp, (2.15)

where mo is the mass of the particle under consideration,
and t is a constant having the dimension of (length)'.
It is clear that the equations of motion (2.13) are
invariant under the transformations

S~ ~ S~+fip44

44 ~ 44+a,

(2.16a)

(2.16b)

[Q.P.]=0, (2.17b)

O'.,Q.]=i(g"Q.-a-Q.), (2»c)

[Q„,S]=iP„. (2.17d)

It should be noted that the operator S plays the role
of the evolution operator with respect to the parameter
I. The Lie algebra defined by the commutators (2.12)
and (2.17) generates the Lie group G4 with the structure

Gp ——(&, 8T';}X(T4'XSO(3,1)}. (2.1g)

This group can be considered as the dynamical group
describing the motion of the free particle in classical
relativistic mechanics. It is possible to verify that the
mass-squared operator I'„I'& is the Casimir operator of
the group G5, which implies that particles with diferent
masses belong to different unitary irreducible rep-
resentations of form incoherent states.

Before proceeding further we investigate the I
development of the operator X„,defined as

(2.19)

from its initial value X(0) at u=0 to an arbitrary 44,

X„(N). The X„, however. , obeys the following trans-
formation properties:

X„-+e'"X„e '"*=X„(u)=—X„(0)+ulP„
=X„(0)+TP„/TI4p. (2.20)

Upon taking the expectation value of the last equation,

where b„and 0 are again some unrestricted parameters.
The transformations given by Kqs. (2.16) are generated
by two Abelian groups T4' and T&', the generators of
which we denote by Q„and S, respectively, and fulfil
the set of commutation relations

[Q. Q.]= [S,P.]=[S,&"]=0, (2 17a)

we see that this becomes the classical equation of
motion, where (P„/nsp) is the expectation value of the
four-velocity, and X„can be considered as the posi-
tion operator of the particle in classical relativistic
mechanics.

Now we are prepared to make the crucial step in our
discussion. This crucial step deals with the transition
from classical to relativistic quantum mechanics. As
was shown by Johnson in his detailed paper" and later
by Aghassi, Roman, and Santilli, " the operator X„
defined by Kq. (2.19) has all the necessary properties
to be the well-defined position operator in relativistic
quantum mechanics. Therefore, the transition from
classical to relativistic quantum mechanics consists in
requiring the commutator [P„,Q„] to be nom anishing;
namely, we postulate, in accordance with the previous
authors, "'4

[P„,Q„]=ig„„l ', (2.21)

where we have taken into account the relation between
the operators X„and Q„given by Eq. (2.19).The last
commutator is the simplest covariant generalization
of the nonrelativistic commutator (2.7a). Postulating
this commutator, we have obtained a new dynamical
group describing the free particle in relativistic quantum
mechanics which was first suggested by Castell" and
later by Aghassi, Roman, and Santilli. "Our algebra
differs from theirs only in irrelevant changes in notation
and physical interpretations. This dynamical group is
denoted by G5 and its Lie algebra is defined by the
relations (2.12), (2.17a), (2.17c), (2.17d), and by (2.21).
It is worthwhile to mention that the meaning of the
generators 9'„„ introduced in Eqs. (2.12) is to be
changed; they are to be considered as the operators of
the total (relativistic) angular momentum so that they
become the generators of the Sl (2,c) group. The Lie
group structure of G5 can be written as

Gp ——(Ti'8T4 8Ti'}X(T4'XSL(2,c)}, (2.22)

where T~~ represents the one-parametric Abelian group
which is connected with the emergence of the constant
/ in Eq. (2.21). The most interesting and important
feature of this dynamical group is the fact that the
mass-squared operator I'„I'I' is no longer the Casimir
operator of 64. This implies immediately that the
mass spectrum of the particles involved in relativistic
quantum mechanics can be quantized, and that, particles
with different masses belong to the same unitary
irreducible representation of the group G5.

It should be stressed that we know the physical
meaning of all operators forming the Lie algebra of
G5 except for the meaning of the constant /. Further we
can observe that the operator S, besides its role as the
evolution operator with respect to I, is connected with
the mass of particles accommodated in the single
unitary irreducible representations of G5. By direct

'4 J. E. Johnson, Phys. Rev. 181, 1755 (1969).
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computation one can verify that the operator D,
defined as

D =P„PI'+2l—'S (2.23)

S —+ S+-',Dl, (2.24)

and the last relation, combined with Kq. (2.23), tells

us that the representations corresponding to any D
are equivalent to the representation labeled by D=O."

We can conclude this section with the statement that
free-particle states in relativistic quantum mechanics
furnish the unitary irreducible representations of the
dynamical group G5. Therefore, the problem of char-
acterizing the physical states has been reduced to the
study of the unitary irreducible representations of the

group in question. These representations are given in

the next section.

III. UNITARY IRREDUCIBLE
REPRESENTATIONS OF G5

Let us assume from the beginning that there exist
representations of the Lie algebra of G5 defined by the
commutators (2.12), (2.17a), (2.17c), (2.17d), and
(2.21) as linear operators on some vector space. Since
successive operations upon a vector with a series of
operators are well defined, we can use these linear
operators to define the product of tmo or more of them.
All such products with their linear combinations define

the universal enveloping algebra of G5. We have
mentioned in Sec. II that the generators E„„[Eq.
(2.12)) in our dynamical group Gz play the role of the
total (relativistic) angular momenta. Therefore, these
operators can be split into two parts, namely, into the
external M„„and into the intrinsic T„„angular momenta
defined as

M„,= /(Q„P, —Q,I'„) (3 1)

Tp ~p ~p (3.2)

respectively.
Having defined M„„and T„„,we can easily verify the

is the Casimir operator of G5, the eigenvalue of which
can be used to label representations. From the last
equation, it is evident that S is the mass-squared
operator up to multiplicative and additive constants.
This implies that the mass-squared operator lies in the
algebra of this dynamical group and enables us to
determine the mass spectrum of particles belonging to
the single unitary irreducible representation of G5.

At the end of this section we would like to mention
that the unitary irreducible representations labeled

by the various D are equivalent because each two of
them are connected by a simple unitary transformation.
The reason for this is that the operator S occurs only
inside the commutators of the G5 algebra. This property
of the algebra allows us to redefine the operators S as
follows:

following set of commutation relations:

[ pv~ pe) =&(gvp pu+gps vp ggp&vo gvrTpp) q ( )

[T"Q.)=[T"».)=[T",S)=o, (3.4)

and
[&.,&.)= [e.,e.)=[I.,s)=o,
[I'.Q.)= is,.t-',
[Q.S)=~&,.

(3.5a)

(3.5b)

(3.5c)

G&
——SI (2,C)&II 8, (3.7)

and its unitary irreducible representations are obtained
by taking the direct product of the separate unitary
irreducible representations of SI.(2,C) and O', . The last
equation expresses the fact that the enveloping algebras
of these two groups are the same.

The unitary irreducible representations of SI.(2,C)
are, as is mell known, specified by two numbers jo and
y which are related mith the eigenvalues of tmo Casimir
operators C~ and C~, defined as

aIld
Ci=gT„„TI""~jp —$ —y

Cz= 4 e„„I~T~"TI' ~ 2joy.

(3.8a)

(3.8b)

Here j, can be any integer or half-integer number,
while i is any real number (the principal series) or
j0=0 and y is a purely imaginary number fulfilling the
restriction

~
v

~

(1 (the supplementary series).
The state within the unitary irreducible representa-

tion of SI-(2,C) is denoted by
~ j r; Oj, m), where j and

m denote the spin and its third component, respectively,
of the particle belonging to the representation character-
ized by jo and y. The spin j and its third component

» I. M. Gel'fand, R. A. Minlos, and Z. Ya. Shapiro, Representa-
tions of the Rotation and Lorents Groups and Their Applications
(MacMillan, New York, 1963).

This algebra is the direct consequence of the enveloping
algebra of G5 and both of them are completely equiva-
lent if the relations (3.1) and (3.2) are taken into
account. Since V„„ is uniquely related to T„„and to
%„„by

(3 6)

we may use the algebra (3.3)—(3.5) as the basis for the
algebra of G5. Thus we can find all representations for
the algebra of G5 by constructing the representations
for the algebra (3.3)—(3.5).

The commutators (3.3)—(3.5) tell us that we are
dealing with the direct product of two subalgebras. The
algebra (3.3), involving only the operators T„„,defines
the homogeneous Lorentz group SI (2,c)r, the rep-
resentations of which are completely known. " The
algebra (3.5) involving the operators I'„, Q„, and S and
the constant / is denoted by (R, the representations of
which we are going to find. In such a way the enveloping
algebra of the dynamical group G5 is decomposed in
the form
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take the following discrete values:

(3.9)

This simply implies that the particle states furnishing
the unitary irreducible representation of the dynamical
group G5 form an infinite tower of spin states starting
with the lowest spin value j=jo and going up in integral
steps to infinity.

Now we turn our attention to the construction of
unitary irreducible representations of the algebra 6,
defined by the commutators (3.5). These representa-
tions will be specified by two numbers l and D corre-
sponding to the constant l and to the eigenvalue of one
Casimir operator D defined by Eq. (2.23). The state
within the single unitary irreducible representation
labeled by a given l and D must be specified by five
numbers corresponding to the total number of mutually
commuting operators of the Cartan subalgebra of g. We
select these five numbers to be the eigenvalues of the
four-momentum p, , p, , p&, p, and mass squared m'= p„p&
so that a state is denoted as ~/, D; pi, p~, pi, p„m'). The
realization of the algebra 8 LKq. (3.5)j can be easily
constructed if we define the operators Q„and S as
follows:

Q„= i/ 'g„,a/ap. ,
—-

S= ', /P„P~+ ',D/. —--(3.10a)

(3.10b)

The last relations represent the unitary irreducible
representations of the algebra g, and these are the
solutions to the problem we wanted to solve. Further-
more, it is clear that for every unitary irreducible
representation the states ~/, D; pi, p2, p~, p„m') are ex-
pressed as square integrable functions@, n(p„p„ps, p„m')
of the four-momentum and mass squared m'=p„p&.
The inner product (4'iD,@in ) = 8ii 8Dn. is obtained by
an integration over the manifold p„p"=m' and by a
summation or integration over the variable m'.

The mass squared of the particles belonging to the
same unitary irreducible representation is not neces-
sarily quantized and can have any positive or negative
value. The reason for this is that the representation
functions 4'in(pi, p2, pz, po, m') can be any class of
square-integrable functions of p„and nP=p„p". The
possibility of having the positive and negative values for
the mass squared of particles in the same unitary
irreducible representation is a great drawback of this
dynamical group. This fact tells us that the generators
representing physical observables can transform phys-
ical states into unphysical ones. This failure of this
model is sufficiently strong to throw doubt on the
reliability of this dynamical group to describe prop-
erly the free particles in relativistic quantum mechanics.

An additional reason why this group is unacceptable
follows from the relation (3.7). This equation tells us
that either each mass state occurs infinitely many

times with spins j=jp jo+1, , ~& (the principal
series); or there are only spin-zero partiicles (the
supplementary series). This is because P„P"lies entirely
in the algebra 0', and there is no connection between
SL(2,C)r and 8.

The unphysical results we encountered here are due
to the postulate (2.21), which is a very naive covariant
generalization of the nonrelativistic quantum-mechan-
ical commutator. Therefore, this simple form of the
corresponding commutator cannot be accepted, since it
leads to the completely unphysical results ob tained.

IV. CONCLUSIONS

We have studied the symmetry properties of Lagran-
gians for free particles in nonrelativistic and relativistic
classical mechanics. The symmetry group which leaves
the aforementioned Lagrangians invariant under the
group transformations is referred to as the kinematical
group. Furthermore, we have extended our symmetry
investigation to the equations of motion which were
derived from previous Lagrangians. The symmetry
group of the equations of motion is always larger than
the kinematical group, and we refer to this group as the
dynamical group of the system. From this point of view,
the Poincark group is only the kinematical group while
its extension to the group G5 plays the role of the
dynamical group characterizing the motion of a free
particle in classical relativistic mechanics.

The transition from classical to relativistic quantum
mechanics was performed by requiring that the com-
mutator between the position and momentum operators
be nonvanishing. These operators were previously
defined in the classical dynamical group G5. In such a
way we have obtained from the classical dynamical
group G5 a new group G5 which is supposed to be the
dynamical group describing the elementary particles
in relativistic quantum mechanics. All particle observ-
ables such as position, momentum, angular momentum,
and mass are well-defined operators and form the closed
algebra for the dynamical group G5. Since observables
operate on the space of physical states, the physical
states must form a representation space of the dynam-
ical algebra of observables, namely, the algebra of C5.
From this, it follows that the unitary irreducible
representations of G5 are possible physical states of the
particles in relativistic quantum mechanics.

We have found the unitary irreducible repre. entations
of this dynamical group G5. Each of these. contains
infinitely many particle states with different masses.
The mass spectrum of the particles in the same represen-
tation is not necessarily quantized and the mass-
squared value can be positive or negative. These
properties of the group G5 are very disappointing and
tell us that generators representing physical observables
can transform physical states with positive mass-
squared into unphysical states having negative mass-
squg, rt:d. Therefore, this group cannot be accepted as
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the reliable dynamical group for particles in relativistic
quantum mechanics. A further unpleasant feature of
this model is concerned with the fact that to each mass
state we have infinitely many particles with different
spins varying from some lowest spin value jo and going

up to infinity or that there are only spin-zero particles
in the world.

All these unphysical features of the presented theory
have their origin in postulating the naive and simplest
covariant generalization of the commutator (2.21)
between position and momentum operators. To obtain
some reasonable physical results within the framework
of this kind of theory, we must give up the aforemen-

tioned commutator and replace it by some other
relativistically covariant form. "This replacement will

induce, however, a radical change in the structure of
the dynamical group here investigated.

To conclude this discussion, it should be stressed that
relativistic quantum mechanics using the naive com-
mutator (2.21) leads to completely unphysical results,
and thus the dynamical group Gt„which is mainly
based on this commutator, has no chance of giving any
reasonable physical predictions.
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The problem of making unstable elementary particles equivalent to resonances is investigated in a soluble
model. field theory. It is demonstrated that the irreducible part of the scattering amplitude develops a pair
of complex conjugate poles on the second sheet of the energy plane, one of them corresponding to an S-wave
resonance. The poles in the vertex and inverse propagator induced by these complex poles of the irreducible
part of the scattering amplitude are such that the so-called Jin-MacDowell cancellation holds good. ~e
show that under the conditions Z~=O and Z3 ——0, the S-wave resonance completely replaces the unstable
particle.

I. INTRODUCTION

' t'T has been demonstrated by several authors' that
~- the stable elementary particles become composite

under vanishing of the wave function and the vertex-

function renormalization constants. In the models

employed by these authors, the poles of the reducible

part of the scattering amplitude are made to cancel

each other, and the pole of the irreducible part which

corresponds to the dynamical state is made to move to
the elementary-particle pole position. In this paper, we

examine this type of compositeness mechanism for an

unstable elementary particle.
We define unstable particles according to the sugges-

tion by Peierls' that they correspond to the complex

~ P. E. Kaus and I'. Zachariasen, Phys. Rev. 138, 81304 {1965);
I. S. Gerstein and N. G. Deshpande, ibid. 140, 81643 {1965);
T. Saito, ibid. 152, 1339 {1966);T. Pradhan and J. ¹ Passi,
ibid. 160, 1336 (1967);J. M. Cornwall and D. J. Levy, ibid. 178,
2356 (1968).

2R. E. Peierls, in I'roceedings of the Glasgow Conference on

nuclear and 3feson I'hysics (Pergamon, New York, 1954), p. 296.

poles of the propagator analytically continued to
unphysical sheets. For our purpose, we consider a model
Beld theory which consists of V, S, and 8 particles,
where E and 8 are stable, but U is unstable. We show
that the irreducible part of the EO scattering amplitude
analytically continued onto the second sheet develops
a complex conjugate pair of poles corresponding to
resonance and antiresonance of E and 0. We demon-
strate that these poles of the irreducible part get
canceled by the corresponding induced poles in the
reducible part, i.e., the Jin-MacDoweli8 cancellation
holds good for resonant states also. Conditions are
found under which the pair of poles due to the unstable
U particle gets canceled with the induced poles of the
reducible part and the EH resonance pole replaces the
unstable U-particle pole.

See also M. Levy, Nuovo Cimento 13, 115 {1959);J. Gunson and
J. G. Taylor, Phys. Rev. 119, 1121 {1960).

~ Y. S. Jin and S. W. MacDowell, Phys. Rev. 137, 3688 (1965).


