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%'e investigate the c-number Schwinger term and a possible operator Schwinger term in fermion electro-
dynamics, to the lowest nontrivial orders in perturbation theory. The results of our direct method of calcu-
lation agree with results previously obtained from the Bjorken-Johnson-Low high-energy limit. In particular,
we 6nd no evidence for the existence of an operator Schwinger term. The structure of our results helps us
to understand the calculations by the split-point method of Schwinger, according to which there seems to
be an operator Schwinger term. In the examples considered, we discover an analogy between our direct
perturbation-theory calculations, which are performed in momentum space, and the split-point calculations,
which are performed in coordinate space. Interchanging the equal-time limit with the phase-space integra-
tion is analogous to interchanging the equal-time limit with the split-point limit. Pursuing the analogy,
we conclude that the split-point definition of the current probably is consistent with perturbation theory,
and that the apparent discrepancies are due to the improper interchange of the equal-time limit with the
split-point limit in previous calculations by the split-point method.

I. INTRODUCTION

'N the last five years, remarkable results have been
- - obtained in the study of the commutation relations
of hadronic charges. This approach allows us to under-
stand significant aspects of hadron dynamics, despite
our ignorance of the precise nature of hadron inter-
actions. The crucial conjecture, which Gell-Mann ab-
stracted from Lagrangian field theory, is that a large
class of interactions (e.g., velocity-independent inter-
actions) Inay break the syrrunetry but leave the equal-
time commutators of the charges unchanged. '

While charge commutators contain much dynamical
information, the commutators of the corresponding
local currents are certainly much richer in dynamical
content. However, unlike the charge conimutators, the
local current conimutators may depend heavily on the
detailed nature of hadron interactions. Thus, even if
quarks are the principal constituents of the currents,
we cannot expect the commutators of the free-quark
model to be even a rough facsimile of the true comrnu-
tators. Worse, there is no guarantee that equal-time
current commutators even exist in a useful and well-
defined sense. '

One approach to these difficulties is to return to the
original source of inspiration: Lagrangian field theory.
But it has been known for IS years that the canoni-
cal formalism of Lagrangian field theory is not equal
to the task of calculating current commutators. ' This
deficiency is most evident for theories, such as quantum
electrodynamics, in which the current is a product of
two fermion fields. Considering the extraordinary
success of quantum electrodynamics, the existence of
such, ' a fundamental difficulty may seem surprising.
Of course, the real lesson is a reminder that the success
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of electrodynamics is due to perturbation-theory calcu-
lations. Since there is no rigorous mathematical exposi-
tion of the quantum field theory of electromagnetism,
the connection between the canonical formalism and
the calculational rules of perturbation theory can only
be regarded as heuristic. Thus we cannot be unduly
surprised to discover shortcomings in the canonical
formalism.

Since for electrodynamics perturbation theory is a
well-defined and very successful set of rules for calcu-
lating physical quantities, we choose to investigate
the equal-time commutator of the electric current in
perturbation theory. In particular, we will examine the
Schwinger terms, which appear in the commutator of
the time component with the space component. We
calculate matrix elements of the Schwinger terms
directly: by inserting intermediate states, evaluating
the current matrix elements in perturbation theory,
and carrying out the spin sums and phase-space
integrals.

Previous investigations of fermion electrodynamics
leave us with a confusing picture of the nature of the
Schwinger terms. Contradictory results have been
obtained concerning the possible existence of an operator
Schwinger term bilinear in the photon field. The exist-
ence of this operator is indicated by perturbation-theory
calculations'4 which use the point-splitting technique
of Schwinger. ' On the other hand, perturbation-theory
calcula, tions using the BJL (Bjorken-Johnson-Low)'
high-energy theorem indicate that the operator does not
exist.4 '

The calculations which we present below contain
compelling evidence that previous point-splitting calcu-
lations are incorrect. In the examples considered, we
discover an intriguing analogy between our direct
perturbation-theory calculations, which are performed

4 D. G. Boulware and R. Jackiw, Phys. Rev. 186, 1442 (1969).' J. D. Bjorken, Phys. Rev. 148, 1467 (1966); K. Johnson and
F. E. Low, Progr. Theoret. Phys. (Kyoto) Suppl. 37-38, 74 (1966).' T. Nagylaki, Phys. Rev. 158, 1534 (1967); D. Boulware and
J. Herbert, Phys. Rev. D 2, 1055 (1970).
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in momentum space, and the split-point calculations,
which are performed in coordinate space. The sharing
of three-momentum between the electrons and positrons
in the intermediate states is found to be analogous to
the spatial separation of p and lt in Schwinger's defini-
tion of the current. Interchanging the equal-time limit
and the phase-space integration is analogous to inter-
changing the equal-time limit with the split-point limit.
Pursuing the analogy, we learn that the usual point-
splitting calculations evidently fail because of an
improper interchange of limits. In fact, because of this
improper interchange, some point-splitting calculations
(of higher-derivative Schwinger terms) are not even
invariant under spatial translation.

It should be understood that our results provide no
evidence against the appropriateness of defining the
current as the limit of the product of fermion fields at
separated spatial points. To the contrary, the results
strongly suggest that this de6nition is consistent with
perturbation theory. Rather, criticism is directed solely
at the unjustified interchange of the equal-time limit
and the split-point limit. In the examples considered
below, an analogous interchange in momentum space
accounts for the omission of finite and well-defined
contributions. The controversy concerning the possible
operator Schwinger term is explained by the fact that
the omitted contributions precisely cancel the contri-
butions which are correctly calculated.

Previous investigations of Schwinger terms in pertur-
bation theory' ' have made use of the 8JL high-energy
theorem. ' There has been much discussion recently of
"the failure of the BJL theorem in perturbation
theory, "meaning that equal-time comniutators calcu-
lated from the BJL theorem and perturbation theory
disagree with the equal-time corrimutators obtained
from the canonical formalism. 7-0f course, such disagree-
ments are not necessarily evidence against the validity
of the BJL method, since, as we have already remarked,
the canonical formabsm is notoriously unreliable for
calculating equal-time commutators. The discrepancies
might well be just another sign of the inadequacy of the
canonical formalism.

One motivation for the calculations presented here is
to see, in some rather delicate examples, to what
extent such discrepancies are a consequence of the 3JL
theorem or of perturbation theory. In other words,
we want to test the high-energy theorem purely within
the context of perturbation theory. A simple sufhcient
condition for the BJL theorem is uniform and absolute
convergence of the I,ow representation as qo

—&~. But
this condition is certainly not satisfied (even after
regularization) in the 6rst example considered below;
we have not examined it for the second example. An
additional complication in some applications of the
BJL theorem is the necessity to regularize the amplitude

~R. Jackiw and G. Preparata, Phys. Rev. Letters 22, 975
(1969); S. L. Adler and W. K. Tung, ibid 22, 9'tS (1969). .

by subtracting a possibly infinite polynomial in q.
(Regularization is necessary in the BJL calculation of
both exainples considered below. ) Formally, regulari-
zation should not effect the coefficient of qo ',. but,
especially when the discarded polynomial is infinite,
forrnal considerations are not totally reassuring. In the
study of Schwinger terms, if nowhere else, it is the better
part of valor to be suspicious of formal arguments.

We have checked the BJL theorem in two examples,

by calculating matrix elements of commutators directly
in perturbation theory, without resorting to any
regularization procedures. In both cases, the results are
consistent with the BJL theorem. The labor necessary
for the direct calculations heightens our appreciation
of the elegance of the BJL method. However, the
structure of the direct calculations is richer and more
instructive, providing the clue to an understanding of
the point-splitting calculations.

Two technical aspects of the direct perturbation-
theory calculations should be stressed. First, it is
essential to treat the equal-time commutator as the
limit of the unequal-time commutator. Eeee mhee the

totat result is Pnite, there may be individual singular
contributions present which must be carefully evaluated.

Simply calculating at equal times is analogous to the
fallacy of using the argument of Goto and Imamura'
when the spectral integral diverges. In the calculations
presented below, it would be equivalent to bringing a
limit inside a divergent integral. The result in the cases
below would be the omission of hnite, well-defined

contributions. These are also the contributions which
account for the discrepancy with the point-splitting
calculations.

The second technical remark is that we have avoided
calculations in which the matrix elements contain
closed loops. Thus the individual matrix elements are
finite and gauge-invariant, and we need not concern
ourselves with ambiguities which might arise from
renormalization or regularization. All singularities are a
consequence of the integration over the phase space of
the intermediate states. In this way we avoid some
difhculties encountered by Brandt and Kim, who

performed direct perturbative calculations of charge
corrimutators in a theory of quarks and scalar mesons. '

In Sec. II we consider the c-number Schwinger term
to lowest order in perturbation theory (i.e. , for a free-
fermion field theory). In Sec. III we consider the
possible operator Schwinger term. In Sec. IU we discuss
the relationship of our results to the point-splitting
calculations.

II. c-NUMBER SCHWINGER TERMS

In this section we evaluate the c-number Schwinger
term in fermion electrodynamics to the lowest order in

R. A. Brandt and Y. S. Kim, Phys. Rev. 161, 1473 (1967).
9 The scalar-meson theory has tadpoles, which do not appear

in electrodynamics because of I'urry's theorem.
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ertur a ion.b. t.
'

theory. But first we will derive a genera
f r the c-number Schwinger tenn, whrepresentation or e c-n

reduces to the spectral representation o o o
Imamura when the latter is valid.

'der C(q t) the three-dimensional Pourier trans-
f f th vacuum expectation va ue o
time commutator. Insert a complete set of intermrmediate
states and use rans ad t 1 tion invariance. The result is

C(q, t) =— d'x 0
—' *&[j"(x,t), j'(0)])0

In fermion electrodynamics, to the lowest order in
erturbation theory, the spectral integral diverges

so that (4) and (5) are not justified. In
this case, we must examine t e r p t wire resentation . wi
greater care, and we cannott interchange the limit an
the sum. The only possible intermediate state in
is an electron-positron pair,

lm(q)) = I' (p),'+(q —p)).

After substituting (6) into (3) and performing the sum
on spins, the result is11

=2 0 ""'&oli'l~(q)&&~(q) li" Io&

—".-~&ol~'I&(-q))&"(-q) lglo&, (I)
C(q, t) =-

(27r)'

I
7)

O' —P'&
d'P cosD(Po+Po)], + &I, (

Po Po

lete set of quantum numberswhere e represents a comp e e
which hasfor the total three-momentum, whic as

already been integrated to obtain &». „is
of the state ~egg~~, wi'th total three-momentum q.

The current is conserved, so

(p "—p ")&~li.l»=o (2)

S b 't t (2) into (I) and use either parity or time-u stiue
of 1 ' The resultreversa in1 invariance in the cross term o

r the c-numberis a simp e)1 general representation for
Schwinger terms

C(qo) =2v'»m~ -l«li'l~(q)&l .
COSE~t

q.~

If the spectral representation o. otf oto and Imamura
then it is easy to show that the

sum in (3) converges absolutely. In this case, t e imi
commutes with the sum and (3) becomes

1
c(q 0) =2q' 2 I (0 I q'I ri(q) & I

0.

Furthermore, under these yph otheses, the sum in (4)
is a oreL entz scalar. Choosing t e . f trest frame for t e

~ ~

ssion inintermeaiate s a esd' t t and rewriting the express
find the usual expression for theconfiguration space, we n

c-number Schwinger term:

&Li'( 0) i'(o)])o

i 2Q—
I &oli'I (o&) I' ~( ) ( &

Bxg

in ~~5~ is 'ust the spectralThe quantity in brackets in &,
'

j
integra wri1 'tten in an unfamiliar form.

e the cross term undergoes a crucial sign change,
p „op

der s ace or time inversion. on
t d f ca lli Thithe direct term ins ea o

l botthe o tto of ti esim le way to see what is specia a ou
component with a space component.

where 0 ——(mo+p')'", po' ——
I
m'+ (p —q)']"'.

The next step is to expand (7) in powers of q. We use
the trigonometricthe binomial expansion for po, e r'g

identity

C(q, /) =-
7i p

p' I p'
dP COS2Pot —i ——

Po 3 Po

'cq 2

2' p

P'm'
dP COS2Pot

Po

gq2 oo

t2

2' p

p' , I p'
dP COS2Pot 0P0

Po' 5 Po

'Lq 2

p

' p' ' p' 2 p'
dp sin2pot

+o(q') (8)

The third and fourth terms in (8) are finite and well
a t —+0 but we would have overlooked them

'f had improperly interchanged the limit and the
sum in (3)].

8 . The firstconsider the four terms in Eq. . ee now co
h ll-known quadratically divergent,

'
gsin le-

" In addition there is a less singular contributionterm. n a i
depen ing on ea' the mass which we will no
calculate.

"Equation (7) is most easily verified by first undoing the step

hll F A-./-. "d G--l'-d F:..-."M. J. Light i, oNrzer a
(Cambridge U. P., London, 1958).

Cost(po+po ) =COS2pot Cost(po po)
—Sin2pot Sint(po' —po),

andthe Taylor'sseriesforcost(po' —po) andsint p, —
The result, up to the third order in q, is (p=

I p I )
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c(q, t) =— (9)

or, symbolically in configuration space,

&Lj'(x,0),j'(0)]&s——ae 8'5(x)+(t/12'')O'Lg(x). (10)

As we have already remarked, (10) was first derived
by Brandt, ' and has also been obtained by Boulware
and Jackiw using the 8JL high-energy theorem. '

In deriving (9), we have defined the equal-time
commutator as the limit as t approaches zero of the
unequal-time commutator A (t)B(0)—8(0)A (t). Of
course, there are many possible ways of going to the
equal-time limit. One alternative limit procedure,

The next three terms contribute to the third-deriva-
tive Schwinger teiTii, which was first calculated by
Brandt. ' The second integral converges uniformly, so
we may take the limit inside the integral. The integral
is found to be 2/15, so that the second term con-
tributes —(1/15'')q'qs, plus terms which vanish as
t —&0.

In the third integral, we are only interested in the
leading divergence, which is proportional to 1/t .
Again we may ignore the electron mass. The resulting
Fourier transform is well defined in the sense of dis-
tribution theory, " and for the third term we find
(1/60m')q*q', plus terms proportional to t Simil. arly, for
the fourth term the result is —(1/30s')g'q'+O(t).
Terms of higher order in q all vanish as I,~ 0. Com-
bining these results, we find

quantity

Q(q, t) = d'x e 'i'*&0
I Lj'(x, t),j'(0)j I »&. (12)

Q(q, t) =Z e-""'«I j'I~(q)&&I(q) I j'I»&

For simplicity, we have chosen identical photons in
(12). To further simplify the calculation, we introduce
a small photon mass P, and we let the photons be at
rest, with zero angular momentum along the i axis.
We will calculate to zeroth order in the mass A..

Strictly speaking, we are using a theory with a
massive vector-meson "gluon. " However, Wilson has
found that the leading singularities of operator products
in perturbation theory do not depend on the masses, "
so that we may expect the same operator Schwinger
term for the gluon and the photon. Furthermore, the
point-splitting calculations are identical for photon
and gluon. In any case, the issue is not crucial, since we
are chieQy interested in studying an example, and we
are not terribly concerned with whether our results
apply only in the gluon model or also in electro-
dynamics. The choices we have made are necessary to
make the calculation feasible; in the most general
configuration, there would be 40 traces of eight terms
each to evaluate and combine.

Next, we insert a complete set of intermediate states
into the connnutator in (12). To the lowest nontrivial
order, there are only connected contributions from
electron-positron pairs and semiconnected contributions
from states of an electron-positron pair plus one or two
photons '4 Inse. rting these states into (12) and using
translation invariance, the result is

I A(0),B(0)]azL= lim LA(t)B(0) —B(0)A(—t)$, (11)

is shown by Johnson and Low' to correspond to the
equal-time commutator given by the BJL high-energy
theorem. We have repeated the calculation of the free-
fermion Schwinger term by the direct method illus-
trated in Kqs. (1)—(9), using definition (11) instead
of the unequal-time commutator. The result diRers
froin (9) by a term with support at equal tiines:
—(1/3s')q'6'(t). As t ~ 0, such a term has no well-
defined meaning. It might appear in the BJL high-
energy limit as a noncovariant seagull, proportional
to qoq'.

where

+ " "'""«l~'I (q)v&&~(q) I j'Iv&

+e '&+"+ski'&Ql jslri(q)»&&+(q) I j'IQ&

e'te" '—""(Ql j'lit( —q))&n( —q) I j'I»&
—2e" "-"'«Ij'I~(—

q)v&&N( —q) I j'Iv&

—e' "'&Ql j'l~( —q)»&&~( —q) I j'Io&, (13)

l~(q) &
= I'-(p), '+(q —p) &

and E„ is the energy of IN(q)&. Using time-reversal
invariance, the last three lines of (13) may be re-
written as

III. OPERATOR SCHWINGER TERM

In this section we will consider the possibility that
there is an operator Schwinger term bilinear in the
photon field. We will calculate to the lowest nontrivial
perturbative order in fermion electrodynamics. In
particular, we will consider the limit as t,~ 0 of the

e'"" '""&»Ij'I~(q))&~(q) I j'Io&
+2e'«=» 6 I jsl~(q)&&~(q)vl j'10&

+e* -'&Ql j'l~(q)&&~(q)»l j'lo&. (15)

"K.%ilson, Phys. Rev. 1'79, 1499 (1969).
'4For an introduction to the menagerie of disconnected con-

tributions, see Appendix C of Ref. 1, or see M. Chanowitz,
Phys. Letters 318, 374 (1970).
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Now define the quantities F,P.):
F 0)=2 &0li'l~(q))(~(q)li" Ivv),

8&8

8, 8

8&8

cosZ~'„t {Fi'+2e '~'Fo'+e "i&Fo')

—2z
d3

sinE t (F '+2e '"'F '+e ""&Fo') (18)
(2a)'

Th l lation of the F,(X) is straightforward.e cacua io
h ieldThere are ten sets of I'eynman diagrams, whic yie

ten traces of eight terms each. Since the diagrams
contain no loops, the traces are finite and each Ii; is
explicitly gauge invariant. The traces are further
simplified and combined by Inanipulations using charge
con~uga ion, imt' time reversal etc. The traces which recmain

after these simplifications are easily evaluated because
of the choices we made following Eq. (12), and with
the further stipulation that q be in the i direction, i.e. ,

IqI =q'. We omit the details and simply present the
results, to first order in q and up to zeroth order in P:

W 5p, '
pp

F i(l~) = —q'— — —2p„'+X —— +-
Po'X' 2 Pp 2

j 5 p, 2

+&' ———,(19a)
2 2 pp

p, o p�-

oF�o.

) =+q'—— —2p&'+l).
p '~'- po po'-

. W 9p,' po
Fo(l)) = —q'——2p,'+X—

pp9, ' 2 p1) 2

(19b)

I
Of course, F;P) is also a function of q and y, and we

have merely suppressed this dependence in our nota-
tion. ) Decompose F;(&).) into parts even and. odd in &),,

(17)

Applying crossing symmetry to the terms in (15) and
substituting (15)—(17) into (13), we find the compact
expression

W are not taking the trouble to investigate higher
orders in q, because dimensional considerations" indi-
cate that a higher-derivative operator Schwinger terni
is not possible to this order in perturbation theory.

Notice that the Ii; are individually infrared. divergent
as X —+ 0. We will see that the total expression for Q,
Eq. (18), is free of such divergences. But the infrared-
divergent terms in (19) are responsible for 6nite contri-
butions to (18), because in (18) they are multiplied by
the phase factors e '"' and e 2'~'. Consequently, the
presence of the infrared. divergences in (19) require that.
we take care in examining the equal-time limit. The
finite terms to which they give rise would be overlooked
if we had calculated directly at t =0 or, equivalently,
if we had cavalierly brought the limit t ~ 0 inside the
integral in (18).

Next we substitute (19) into (18) and perform the
indicated integrations. We denote by Q,"the contri-
bution to Q from F,' '. Then, for instance, for Qi' we
must evaluate

Qi'(q, t) =
—2g d'p 2m'+2p' —2p,'

(2~)' po'

1 5p
X —2p +l).' ——— — cos2pot. (20)

2 2 pp

After performing the angular integrations, we have

Q '(q t) =
X2X2

dp, cos2p, t

t'4 2 m' 2 m' 1 Vnz'

&15 15 pp' 5 pp' 2 po'

Q"(q t) =— 2 1 2m2

+ (inl t I+C')

The third and fourth terms in the parentheses are
finite as t ~ 0, and they are easily evaluated. The first
two terms give rise to quadratic and logarithmic
divergences as t —+0, and beneath these divergences
they also contain terms which are finite as t —+ 0. These
finite terms can be recovered by expanding IpI in
Powers of nz'/Ppo. This is not necessary, however,
because we will see that all these terms cancel exactly
in the final expression for Q. Consequently, it is suK-
cient for our purposes to record here only the leading
singularity of the first two terms along with the finite
contributions of the third and fourth terms. We have
then

p'
+1'(1—7 . (19c)

2
0

m2

+2—+1 +0(t), (22)
p

2

The quantity W in (19) is defined by

kV= 2m'+2p' —2pP.
where C' is an ambiguous constant which arises in the

(19') Fourier transform of p '."
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Evaluating Qp using the same methods, we find

Q (q, t) =0(t), (23)

Q e(q t) —4e—txt cos(2pst)F s'(X),
(2w)'

(24)

that is, that Qi' is well defined and vanishes as t —+ 0.
For Qs', we have

In recording the final expressions for the Q ', we have
bracketed with parentheses the finite terms which are
due to the product of the phase factors e '~' and
e 2'"' with the infrared-divergent terms in F2 and Ii3.
These are the finite contributions which would have
been omitted if we had been careless with the equal-time
limit.

Combining Eqs. (22), (23), and (26)—(29), we find"
that the sum is of order t, i.e.,

which, af ter integrating as in (20) through (22),
becomes

lim Q(q, t) =0. (30)

2 '
II

Qe(qt) e
15~2 A.2t2

—4—(lnI tI+C')
A,

2

m2 2—4—y4(inItI+C) ——.
A2 15

and obtain

Now we expand the phase factor

(25)

Thus we find no evidence for the existence of the
operator Schwinger term. This result has previously
been obtained from the BJL theorem. "We have also
obtained the same result using the definition of the
equal-time commutator given in Eq. (11).

Notice that if we had improperly interchanged the
equal-time limit and the integration in Eq. (18), we
would have obtained the result Q(q, 0) = —6q'/15m',
and we would have incorrectly concluded that there is
an operator Schwinger term.

Q '(q, t) =—2g 2 2i ss
+——4 —(ln I t

I +C')
15+2 A2t2 At

IV. CONCERNING METHOD OF
SPLIT POINTS

m2 2—4——4(lnI t I+c)+(1)——+0(t). (26)
A.

2 15

Similarly, for Qs' we obtain

4i q'
Q '(q, t) =-

15x2 At

2g 2z—+(2) +o(t).
15x2 At

(27)

For Qs' ' we have, in the same way,

Qs'(q t) =—2g 1

15~2
+2—(inl t I+c')

A,'t'

m2 32
+2—+4(in I

t I+c)+-
A2 15

2g 1 m2

+2—(»I t I+c')
15~2 A2t2

m2 32
y2—+ 4(ln I

tI+.c)—(2)+, —+0(t), (28)
15 j&(x) =lim j,&(x) =lim 1( (x+e)p"f(x),

e-+0 c~0
(31)

In this section we will show that the results previously
obtained in split-point calculations of the c-number and
operator Schwinger terms'4 correspond precisely to the
results we would have obtained in Secs. II and III if
we had improperly interchanged the equal-time limit
and the phase-space integrations. By "split-point
calculations, " we refer specifically to calculations in
which the currents are dined as the limit of a product
of two fermion fields at spatially separa, ted points, and
in which the spatial limit is performed in a three-
dirnensionally syrnrnetric way, so that, for instance,
llmg~s(e e~/e ) = sg t.

Let us first briefly review the method of split points.
The underlying observation is that the naive fermion
current lt (x)I'p(x), being the product of two unbounded

operators, is so singular an object that it is meaningless
without further definition, and that this is the reason for
the failure of the canonical formalism. Using the
definition j&(x) =11 (x)p+(x) and the canonical equal-
time anticornmutation relations of the fermion fields,
we easily obtain the result

I j'(x,0),j*'(0)j=0, which is
contradicted by the more fundamental considerations
of Sec. II. Schwinger suggested that the current might
meaningfully be delned as the limit

4i q'
Q o(q t) e

—2ixt

15~2

2g 2'6———(4) +0(t).
15+2 At

(29)

where e is a purely spatial vector. He showed in a free-

"We should point out that the expressions (nP/)P) {ln )t )+C')
in the Q arise from identical expressions in the F . Thus there
is no ambiguity about the cancellation of the constant C', since
even in the theory of distributions the integral of zero is zero.
The same remark applies to (ln [t[+C) which occurs in Q~' and Qa'.
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field theory that (31) implies that [j'(x,0),j'(0)$ is
nonvanishing and quadratically divergent, in quali-
tative agreement with the results of Sec. II.

We will tentatively accept. definition (31) and.
examine its consequences for the calculation of equal-
time current colnmutators. But first, more generally,
let us just suppose that there does exist some definition
of the current as an operator-valued function defined
at each space-time point x. Then the equal-time current
commutator is most naturally defined by

6nal result is

[jo(x,o), j*(0)g

= —lim j,'(0) [5(x—e) —5(x)J

=lim j,'(0)[(z V')5(x)+ —,'(e V')'5(x)+ . ].
a~0

(35)

To compute the c-number Schwinger term to lowest
order in perturbation theory, we evaluate (j,'(0))s to
lowest order. We find (j,'(0)) s=2i e'/s' e4, so that

[ '( 0) "(0)1= » [ "( , o), "(0)1 (32) (Lj"( 0) j'(0)J)

if the limit exists. [Equation (32) is written in a short-
hand form. The limit should be understood in the sense
of weak convergence. For a more careful mathematical
exposition of the content of this paragraph, the reader
is referred to Sec. 2 of the paper of Brandt. 'j If the
commutator at equal times is completely regular and
nonsingular, then the definition (32) is correct but
superAuous; if, on the other hand, there are possible
ambiguities due to singular contributions, then (32)
is the natural way to resolve the ambiguities, provided
of course the limit exists. If now we further use the
definition of the current given in (31), we find that
the equal-time corrimutator is de6ned by

[j&(x,O),j"(0)]= lim lim [j„&(x,x,),j,"(0)j,
60=g0=0 (33)

[jo(x,o),j'(0)g =»m [ii (x,O)&y(x, o),tf (,)~'1f (0)q (34)

and, after an elementary calculation using the
canonical equal-time anticommutation relations, the

where we further stipulate that the spatial limits be
taken in a three-dimensionally syrrm. etric manner, in
order to ensure the proper behavior of the colnmutator
under three-dimensional rotations.

We strongly suspect that definition (33) is con-
sistent with perturbation theory, and that the pre-
viously noted. discrepancies4 are due to the improper
interchange of the limits in (33). In practice, the liinits
are interchanged because it greatly facilitates the calcu-
lations, since one can then make use of the equal-time
anticommutation relations of the fermion fields. The
calculations at unequal times would be considerably
less simple.

In previous calculations of Schwinger terms by the
point-sphtting method, the limit x0~0 is taken
first, and in addition the spatial limit in the time
component of the current is presumed to be smooth.
One then has

2Z 6'62 1666 6
= —lim 8'5(x)+ ——

2 e-+0 64 6 64

X8'cl "8"5(x)+ . (36)

Equation (36) is just the result of Brandt's split-point
calculation, s corresponding to his Eq. (4.58). Tatung
the limit in a three-dimensionally syinmetric manner,
we find

([j'(x 0) j'(o)3) = cl'~(x)+(i/15 ') ~'~&(x), (3/)

which differs from our perturbation-theory result, Kq.
(10), by the coefFicient of the third-derivative term. "

But suppose in Sec. II that we had taken the equal-
time limit inside the integral of Eq. (7). Equation (7)
would then have implied

, /V' P' P''l-
c(q,o) = —-- a pl

— + —
I

(2~)s k p,' Pp)

and, instead of (8), we would have found.

(38)

P' 1 P')l
C(q,O) = — dp —1——

Ps 3 Pssi

P ~p——m4, (39)
2s p Ps

i.e., we would have overlooked the last two terms of
(8). From (39), we would have obtained precisely the
result of Eq. (37).

In their calculation of the c-number Schwinger term
by the point-splitting method, Boulware and Jackiw
do not obtain Eq. (37). Instead of the coefficient i/15s',
they find i/60s', smaller by a factor 4. The explanation
is that after the interchange of limits, (33) is not even

"The reader of Ref. 2 may be confused by the fact that in
Eq. (1.11) Brandt gives f/12& as the coeKcient of the third-
derivative c-number term and of the operator term. Brandt's
split-point calculations with three-dimensional averaging would
give f/15s' for both, but he has normalized the coefficient of f/12s'
in order to agree with his independent calculation of the third-
derivative term, which is carried out by careful examination of the
free-Geld spectral representation.
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C(q,0) =
(2~) '

P'
d p

Lm'+(-'q —p) '1"'
P'+sr'

t m'+(p+lq)'1'"
(40)

From Eq. (40), we wouM have obtained (i/60m') O'Ah(x),
in agreement with Boulware and Jackiw.

The ambiguity thus viewed from momentum space
is very familiar. To get from (38) to (40) we have
shifted the origin of integration, by letting p —+ p+sq.
But it is well known that such a shift is improper for a
divergent integral. The calculation in Sec. II does not
suffer from this disease, because C(q, t) is finite for t/0,
so that we may shift the origin as we please. Shifts of
the origin in (7) only distribute the coefFicient i/127rs of
(10) differently among the last three terms of (8). The
source of the ambiguity in (38)—(40) is precisely the
loss of the last two terms in (8).

Let us next consider the possible operator Schwinger
term, which would be bilinear in the photon field. To
investigate this term using Eq. (35), one must evaluate

(0~ j,'~ptas) to the lowest nontrivial order in pertur-
bation theory. Both Brandt and Boulware and Jackiw
6nd that there is an operator Schwinger term. They
obtain the same result, in this case, because first-
derivative Schwinger terms are not effected by the

translationally invariant. The source of the discrepancy
is that Brandt uses our definition (31), i.e. , j,&(x)
=P(@+e)y&P(g), while Boulware and Jackiw use

j,&(x) p=(x+ ', e-)yl'p(x —', e-) B. y repeating the deriva-
tion of (35), it is easy to see that this is the source of
the discrepancy. In Sec. II we would have had an
analogous ambiguity if we had incorrectly deduced
Eq. (38) from Eq. (7). The form of (38) is a conse-
quence of how the momenta are shared by the electron
and. the positron in Eq. (6). If, instead of Eq. (6), we had.
defined ~N(q))= ~e, (p+-,'q)e, +(-,'q —p)), then instead
of Eq. (38) we would have had

ambiguity which we have just discussed. Using a three-
dimensionally syi~rrietric limit'" as before, the operator
Schwinger term they report may be written in the form

(i/15'') (2A'A V+A AB*)5(x), (41)

where A is the photon field, and the operator products
are understood to be normal ordered. If we substitute
(41) into Eq. (12), we find that Q(q, 0) = —6q'/15m'.
As we remarked at the end of Sec. III, this is just the
result we would have obtained in our direct pertur-
bation-theory calculation if we had taken the limit
inside the integral in Eq. (18).

We have therefore seen in these two examples a
remarkable correspondence between the point-splitting
calculation and the direct perturbative calculations
which would have resulted if sufFicient care had not
been taken with the equal-time limit. It has previously
been conjectured that the point-splitting calculations
are one way to define equal-time commutators, and
that perturbation theory offers another, different way. 4

On the basis of the evidence presented here, which is
compelling though circumstantial, we would instead
conjecture that the split-point definition given in Kq.
(33) is consistent with perturbation theory (at least,
to the lowest nontrivial order), and the discrepancies—
such as the supposed operator Schwinger term —are a
consequence of improper interchange of the limits in

(33). This conjecture can best be tested by direct
calculations based on Eq. (33).'r
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~' We have just learned that for the c-number case such a direct
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