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The algebraic realizations of chiral symmetry obtained by Weinberg are investigated for the case of
SU(3) symmetry. When only p-wave interactions are taken into account, the algebraic realization of the
first superconvergence condition is given by the Lie algebra of the group SU(2) SU(6). The mass matrix
obtained from the second superconvergence relation corresponds to degenerate masses within each of the
multiplets (V=O, 56) and (V=2, 56). The consequences of particle classification under the group SU(2)
8SU(6) are enumerated.

PX.(X),Lm', X,(X)]]-S., (2)

In the above equations T are the generators of the
isospin group, m' is the diagonal mass operator, and
X (X) are the axial-vector coupling matrices.

The commutation relations

LTayTp] &&asvTV (3)

together with Eq. (1), define the Lie algebra of the
chiral symmetry group SU(2)SU(2). This implies
that the single-particle states that enter the tree graphs
giving the forward scattering amplitudes, for each
helicity, belong to unitary representations of the chiral
group. Equa, tion (1) then relates the coupling constants
for the particles with different isospin, but the same
helicity, that are assigned to the same representations of
the chiral group.

In order to determine the helicity dependence of the
operators X P.), which are related to the pion-transition
operators via the Goldberger-Treiman relation, further
assumptions have to be made. ' We could, for example,
limit our considerations to p-wave pion transitions.
This has led Cronstrom and Noga' to show that, for
p-wave pion transitions, the commutator of Eq. (1) gets
modified into the Lie algebra of the group SU(2) SSU(4).
They also show that the double commutator of Eq. (2)
is solvable for symmetric representations of SU(4) and
that the mass matrix obtained is

~'(I,J)=iiio'+cLJ(J+1)—T(T+1)]. (4)

The mass spectrum represented by Eq. (4) is un-

satisfactory because it corresponds to hadron masses

*Work supported by the U. S. Atomic Energy Commission,
Contract No. AT(11-1)-1428.' S. Weinberg, Phys. Rev. 1'7'?, 2604 (1969);Phys. Rev. Letters
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I. INTRODUCTION

Y demanding the correct high-energy behavior of
the forward scattering of massless pions, Weinberg'

has recently derived the following algebraic relations:

CX.P.),Xs(l~)]=ze.„T, (1)
and

either decreasing with increasing isospin (if c&0) or
decreasing with increasing spin (if c&0).

The purpose of this paper is to study what happens
when the symmetry is enlarged from SU(2) to SU(3),
and to extend the work of Cronstrom and Noga. The
chiral symmetry group is now SU(3)SU(3). We limit
ourselves to p-wave interactions in order to obtain the
helicity dependence of the operators X (X), a,nd we

show in Sec. II that the first superconvergence condition

now corresponds to the I.ie algebra of the group

SU(2)8SU(6) and compare the predictions of this

result with experiment. In Sec. III we discuss the second

superconvergence condition for p-wave interactions and

solve for the mass matrix for the representatIons of

SU(2) SSU(6) of low dimensionality. With the 56
representation of the SU(6) subgroup we do not have

the state-labeling problem; the physically available

quantum numbers are sufficient to distinguish between

various states within the multiplets. The mass spectrum
for the baryon representations (V=O, 56) and (V=2,
56) shows degeneracy within each of the multiplets. In
Sec. IV we compare the results of this model with the

strong-coupling model and the intermediate-coupling
models.

II. FIRST SUPERCONVERGENCE CONDITION

I.et us consider the forward scattering of a massless

octet of pseudoscalar mesons, the target being any
hadron state. We can express the scattering amplitude

in terms of a part which is symmetric under the inter-

change of the SU(3) indices of the mesons and a part
which is antisymmetric. We impose the condition that
these amplitudes, as evaluated from tree graphs, have

the high-energy behavior allowed by Regge theory.
Considerations similar to those in Ref. 1, for the odd

amplitude, lead to the commutator

[X.( ),X,P)]=if.„I'„
where Ii~ are now the generators of the unitary sym-

metry group SU(3), and X (X) are the meson coupling

matrices. The matrices X (X) are related to the. Feyn-
man amplitude for the process B(N; T,T„F;X) —&

299



300 L. R. RAM MOHAN

B(lp, t, t.,y; V)+F~ by the relation

M(B -+Bp+F~)=2F '(m '—mp')

X(~p, t, t.,y; V ~X„~~.; T,T„V;~).

It is now easy to show that

[BalDXb] = 1&abcDbc ~

[B„Bb] = ib, b,B„
(13a)

(13b)

In Eq. (6), meson coupling matrices are diagonal in
helicity, and F is the pion decay constant. The SU(3)
representations of 8, Bp are denoted by e, mp.

The second superconvergence condition, Eq. (2), was
obtained by Weinberg' by demanding that, for the
amplitudes which are even under the exchange of the
meson indices, no "exotic" mesons (with T=2) be ex-
changed in the t channel. In. the case of SU(3) sym-
metry, a direct generalization is possible, and we demand
that the t-channel amplitudes transforming under
SU(3) as the 2/, 10, or 10* representations be zero. We
then obtain

[F.,J.7=0.

We denote the meson operators by D, which
transforms as a octet under SU(3), and as a vector
under ordinary rotations. The components of D which
are diagonal in helicity are the operators X P().

The complete helicity dependence of D, will be given
by the commutator [D „Dpb]. This quantity is odd
under the interchange of the indices (n(b) and (pb) and
can be written

[D „Dpb]=if p A ((bb)+ib, b,B.(np). (9)

The right-hand side of Eq. (9) can be considered to
be the t-channel contribution from tree graphs. We
exclude the exchange of exotic mesons; this condition is
satisfied if

where
B (n&) =~-pbB +d-p.D.

[J,Bb] = is, bcB, and [F,B,]=0.

(10)

The numerical coefficient in front of B, in Eq. (10) is
introduced for later convenience.

The first superconvergence condition, Eq. (5), for

p waves is

[Dbb,D,b]=if', .F, .

Then Eqs. (11)and (8) completely determine the right-
hand side of Eq. (9) as having the form

[Dba,D~b]= gabfbacFc+ibabc(bt)baBc+db)ccDcc) (1 )

[X (X),[m', XpP )]7 t).p+d.p,m, ', (7)

where m~' is defined by Eq. (7) to transform as an octet.
The mass matrix m' commutes with F and with the
generators of the spin group SU(2)g.

Let us limit ourselves to p-wave interactions. The
invariance group is K=SU(3)@SU(2)z, defined by the
Lie algebra

[F-,Fp]=if.p.F.,

[Ja&Jb]=«abc Jc,

and that the vector operator V,=J —8, commutes
with F, Bq, and D), q. The operator U satisfies the
commutation relations of the group SU(2) and

[U„Ub]= ib, b, V, . (14)

Equations (8)—(14) show that F, B„and D, lead
to a closed algebra and are the generators of SU(6), and
Vb are the generators of SU(2). Thus the first supercon-
vergence condition leads to the Lie group of SU(2)
(3SU(6), and the hadron states belong to unitary
representations (reducible, or irreducible) of this group.

It should be noted that Eq. (10) is not the only
possible choice for the form of B,(nP) which leads to a
closed algebra. We could equally well have used

B,(nP) = $t).p ,'B.+rtd. -p,D„,
where ], )t = &1. However, only the choice )= it = 1
leads to a compact Lie algebra. We limit ourselves to the
compact algebraic realization of the superconvergence
conditions.

A. Particle Spectrum

The physical states have well-defined transformation
properties under the invariance group E=SU (3)
(g)SU(2)g. We can. expand these states in terms of the
representations of the group SU(2) vSU(6). The
coupling constants for p-wave pseudoscalar meson
transitions are all determined in this scheme because the
meson coupling matrices are just some of the generators
of the subgroup SU(6).

For the physical states we write

(B V
i ib; (T,T„V);J,J'.)= Q

p. , v. (8, V, J,
Xi@;~,(T,T., V);B,B.)J, V, V.), (15)

where X, e are the dimensionalities of the SU(6) and
SU(3) representations, and the B spin and V spin are
coupled to give the physical spin J, using Clebsch-
Gordan coefFicients.

The transformation properties of the meson-transition
operator under the invariance group SU(3)(g)SU(2)q
and the Wigner-Eckhart theorem allow us to write the
matrix elements of the operator D), in the form

(ib„,(T,T„Y);J,J,
~
Dy,

~
n p, (T', T'„Y');J',J',)

V, p 8 ib. (y)=P G(y; epJ'; n.J)
o,
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I'(B —& Bp+I'),) =

where SU(3) and SU(2) Clebsch-Gordan coefficients and we have''
have been used.

Ke also have
n.F.'(2J.+1)

&1V; n (T,T„Y);B,B„V,V,
I

&(Di, I 1Vp, np(T', T'„Y);B',B'.; V', V'.
&

n 8 np(y)
X g G(y;n. J;npJp) (20)

n

where k is the momentum of the emitted meson.

tnp 8 n. (~) B' 1 B~
I, (»)

EP X B', a B,&'

where the right-hand side of Eq. (17) has a SU(6)
reduced matrix element and SU(3) and SU(2) Clebsch-
Gordan coeKcients.

For the SU(6) representations of low dimensionality
it is easy to obtain these reduced matrix elements as
solutions to the nonlinear relations between them given
by the commutator relation of Eq. (12). This method
was first suggested by Lee.' For the representations 35,
56, and 7'0 these reduced matrix elements have been
tabulated by Cook and Murtaza and by Carter and
Coyne. '

The coupling constant can now be written in terms of
a (6-J) symbol and the reduced matrix element for the
group SU(6), and we have

G(y; npJ'; n.J)
iVp 35 X

IL(2B+1)(2J'+1)]"'
(npB') (8,3) (n ( Y)B)l

V J 8
)(( 1)i+i'+J+s' (18)

1 8'

B. APPlications

There is strong evidence that the baryons can be
classified under SU(3) into singlets, octets, and. decu-
plets and the mesons into singlets and octets. ' " These
SU(3) multiplets can be grouped into supermultiplets
belonging to representations of SU(2)i SU(6), and
the simplest possibilities are the ones that have been
considered earlier in connection with the quark model. '
The representations of physical interest are (V=:0, 35),
(V= 1, 35) for mesons and (V=O, 56), (V=2, 5~6), and
(V= 1, 70) for baryons. The (V= 0, 56) multiplet in-
cludes the usual nucleon octet (J~= in+), and the p-wave
decuplet resonances (J = an+). The (V=2, 56) multiplet
has octets with J~=(—', )+, (—',)+ and decuplets with
J~= (ni)+, (n)+, (Sn)+, and (27)+. The (V=1, 70) multi-
plet classifies all the known negative-parity baryons. '

Equations (18) and (20) now allow an evaluation of
all p-wave interaction coupling constants and decay
rates. The results for the (V=0, 56) representation are
well known. The D/F ratio for the axial-vector coupling
of the (—',)+ baryon. octet is predicted' to be —',. The
octet-octet, octet-decuplet, and the decuplet-decuplet
couplings are all determined in terms of one parameter
which is determined by comparison with the experi-
mentally determined gz/gi ratio for the nucleons. We
thus have"

Hermiticity of the generators leads to the following
relation between G and its complex conjugate 6:

=1.28
&pl 'lp&

(21)

G(y; npJ'; n.J) =G(y; n,J;npJ')

(n "'/2 J'+1 "'
XI —

I (—I)'-~g, (n.,8,np)
kn. k 2J+1

+)~(8,n, np)(3(8, np, n )fi(np, 8,n ), (19)

where the phase factors fi, $2, and $3 are defined by
deSwart. '

The decay rates for the processes B(n,J ) ~
B(np,Jp)+Pi(k) are evaluated using Eqs. (6) and (16),

'B. W. Lee, Phys. Rev. Letters 14, 676 (1965).
4 C. L. Cook and G. Murtaza, Nuovo Cimento 39, 532 (1965).' J. C. Carter and J. J. Coyne, J. Math. Phys. 10, 1204 (1969).' J. J. deSwart, Rev. Mod. Phys. 35, 916 (1963).

The decay widths for A(1236) ~ E7r, Z*(1385)~ Zn. ,
An. , and *(1530)~ n are predicted to be the &arne as
in SU(6) theory', viz. ,

I'(A) =76 MeV, I"(2*~Zn.)=3.3 MeV,
I'(Z* ~ An. )= 24.0 MeV,

7 Particle Data Group, Rev. Mod. Phys. 41, 109 (1969).
8 H. Harari, rapporteur talk, in Proceedings of the Polrteenth

International Conference on High Energy Physics, Vienna, ANstria,
1968 (CERN, Geneva, 1968), p. 195.

9 J. J. J. Kokkedee, The Quark Model (Benjamin, New York,
1969)."A. Pais, Phys. Rev. Letters 13, 175 (1964);I . Gursey, A. Pais,
and L. A. Radicati, ibid. 13, 299 (1964)."J.G. Kuriyan and E. C. G. Sudarshan, Phys. Letters 21, 106
(1966); Phys. Rev. 162, 1650 (1967).
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aIld

1'( *—& s.)=8.9 MeV.

o (ps-+) = o (eE+) =-', o (pK+) . (23a)

We can derive similar results for decuplet particles
with spin —', belonging to any SU(2)vSU(6) repre-
sentation. I.et us limit our considerations to the
0 (1930;J~=-,'+) isomultiplet belonging to the (V=2,
56) representation, or the A(1640, Jp =-', ) isomultiplet
belonging to the (V=1, 70) representation. We can
derive the following relations for the spin-nonAip
amplitudes:

',f(7r+6++) =f(7r+6+) = f(-7r+6') = —',—f(7r+6)-—
'f (K+2++) = 'f (K+-6+) =f(E+6'-) (23b)

f(K+6 )=0. —
(23c)

These relations can again be translated into relations
among the corresponding total cross sections using the

"K. Johnson and S. B. Treiman, Phys. Rev. Letters 14, 189
(1965).

Similar predictions can be made for the (V=2, 56)
multiplet for p-wave interactions. However, these reso-
nances are produced and are seen to decay mainly via
other partial waves and a comparison with experiment
cannot be made at the present time. One prediction of
interest is a common D/F ratio of 2 for axial-vector
coupling between baryons of the same spin belonging to
the representations (U, 56).

The superconvergence condition for odd amplitudes
LEq. (12)] leads to simple relations between scattering
amplitudes. "The matrix elements of the left-hand side
of Eq. (12) are the scattering amplitudes, and they are
given in terms of the spin-nonfhp (8,p term) a,nd the
spin-fhp (e,b, term) amplitudes by the right-hand side.
The spin-nonAip amplitudes alone survive in the for-
ward direction and this leads to predictions for relations
among total cross sections. Again, the results for the
(U= 0, 56) representation are well known. For the
nucleon octet the scattering amplitudes may be written
as

T(I' B,I' pBg) =f+e ng,

where the f amplitudes are the spin-nonflip amplitudes.
For the f amplitudes Kuriyan and Sudarshan" obtain.

f(p~+,p~+) =f(eK+,~K+) = ', f(pE+,pK+-)
= (1/v2) f (p~ ,n~') = f(-p~+,z+E+)

v2 f(p~ ,Z'K—') = (Q—',)f(p~ —
,AX')-. (22-)

These relations are valid for all angles. In the forward
direction only the f amplitudes survive, and the optical
theorem allows us to relate these to the total cross
section. The first three equalities are the well-known
Johnson- Treiman relations'2

optical theorem:

—,'o.(a-+6++) =o(a+6+) =o (7r+LP) =-,'o. (s.+2 —
)

', o (E-+6++) =-,'o (K+6+) =o (E+5') . (23d)

In this section we have derived the I-ie algebra of
SU(2)SU(6) as being the algebraic realization of
Weinberg's superconvergence condition for amplitudes
which are odd under the exchange of the meson indices,
and we have shown that the predictions are similar to
those made using noninvariance groups. "

III. MASS MATRIK

In the forward direction, for given helicity states, the
second superconvergence condition takes the form given
in Eq. ('7). Let us generalize this to all helicities by
considering p-wave interactions. We then have to
evaluate the double commutator

(24)

The Jacobi identity gives the relation

LD „L18',Dpg]] —LDpp, [tn',D,]]
=is,g,8 p[m', 8,]+is,s,d p~[m', D~,]. (25)

The commutator of Eq. (24) has the transformation
properties under the invariance group E=SU (3)
SU(2) J, given by the direct product (8,3) (8,3), be-
cause D, belongs to the (8,3) representation of this
group. It is assumed that the mass matrix is invariant
under the invariance group K. The Jacobi identity
LEq. (25)] ensures that the double commutator
)D,Lm', Dpb]] will not contain terms with the tensorial
characters (8„1),(8„5);(10,1), (10,5), (10",1), (10*,5),
and (2'7,3). The absence of exotic mesons is now ex-
pressed by demanding that the t-channel amplitudes
with the tensorial characters (2'7, l), (27,5), (10,3), and
(10~,3) be zero. We are then left with amplitudes having
transformation properties which can be associated with
the transformation properties of observable mesons. We
interpret the amplitudes as being the amplitudes given
by the t-channel exchange of these observable mesons.
We have the vector meson octet (8„3) associated with
the exchange of the p(765), a&(783), and E*(890); and
we have the tensor meson nonet (1638„5) to which
belong the A~(1310), E*(1420), and f'(1260) and the
f*(1515).We also have the axial-vector meson and the
scalar meson nonets associated with the t-channel
amplitudes with the tensorial characters (18„3) and
(lEB8„1), respectively. Not all the members of the
axial-vector nonet have been identi6ed experimentally. "
The mesons A q(1070), E*(1230),and D (1280) are well
established. Of the members of the scalar meson nonet,
less is known. The usual identification is to include the
5(960), E~(1100), a(750), and S*(1070) in the scalar
meson nonet.

We evaluate the double commutator of Eq. (24) by
putting in a complete set of intermediate states and
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X(e,)X„)m„yy')(J,(X'„)J.)
X[2m2(II„J,) m—'(I,J ) m—'(ns, Jp)]=0 (26a)

for
(26b)

n, =10 or 10*, with J,=1. (26c)

The conditions of Eq. (26) are expressed as difference
equations for m2(II, J), using the known crossing matrix
elements" for SU(3) and SU(2) and the definition of
the coupling constants G given by Eq. (16).By choosing
~m J ) and ~II&IJp) appropriately, itis straightforward to
show that the superconvergence conditions expressed by
Eq. (26) lead to

m2(8, —',) =m'(10, —,') (27)

for the members of the (V=O, 56) representation. This
is just the usual SU(6) result of mass degeneracy be-
tween the nucleon octet and the h(1236) decuplet.

For the (V=2, 56) representation, the mass matrix
conditions are obtained as follows. We first choose

I
I J & and

I IIIJp& «be
I
10, J+1& and

~
10, J—

1& This
limits the sum over J, in Eq. (26) to one term. The
superconvergence condition giving e f,

=27' and J f.
= 2 for

the above choice of the initial and Anal states leads to
the difference equation

5[2m'(8 J) m'(10—
& J+1)—eP(10& J—1)]

=8[2m2(10,J)—m2(M, J+1)—mm(1O, J—1)]. (»)
Next we apply the sam. e constraint for the initial

state ~8, J—1) and the final state
~
10, J+1)and obtain

the difference equation

5[2m'(8 J)—m'(8 J—1)—m2(10& J+1)]
= —2[2m'(10 J)—m'(8, J—1)—m2(10, J+1)]. (29)

The superconvergence condition x~=27, J~=0 leads
to the following constraint on the mass matrix for the
choice of ~10,J), and ~lo,J) as tlM initial and final
states:

Q (2J.+1) [m'(8,J,) —m'(10,J)]

V
+2[m'(1O, J.) —m'(1O, J)]

* '
=O. (30)

2

~ P. Carruthers, Introdlction to Unitary Symmetry I'Interscience,
Nevr York, 1966), Chap. 7, and rderences therein.

solve for the mass matrix from the conditions imposed
by the absence of exotic mesons, as discussed above.
These conditions may be expressed in a compact form
by using crossing matrices. "Let the initial and. Anal
states be denoted by ~nt&Jp) and ~n.J.&, respectively,
and the intermediate states by

~
II,J,). Then we have

G(y; IIJ;N,J,)G(y', nJ;N,J,)

Equations (28)—(30) lead to a degenerate mass spec
trum for the (V=2, 56) representation. This is just the
trivial solution for difference equations and will also be a
solution of any other difference equation obtained from
the other superconvergence conditions. We thus find
that in going to a larger invariance group [viz. , SU(3)
SU(2)], the absence of exotic meson exchanges in the
t channel constitute stronger constraints on the mass
matrix, and the superconvergence conditions yi.eld de-
generate mass spectra for the symmetric representations
of interest, and a mass spectrum corresponding to
Eq. (4) is not obtained.

We have not studied the (V=1, '70) representation
for the following reasons. As mentioned in Sec. III, these
negative-parity baryons decay strongly into the posi-
tive-parity baryons belonging to the (V=O, 56) repre-
sentation. The p-wave interaction of these negative-
parity baryons has not been studied experimentally, and
the coupling constants are not known. Secondly, the
reduction of the direct product 7035 contains two 7'0

representations, and this would introduce an unknown
parameter. Finally we would have the problem of
Illlxlllg: Tile I epresentatloll (V = 1 70) coIltallls two
octets with J=~3 and two octets with J=—', . The
assignment of the & and —', octets of baryons would in
general require two Inore parameters in the form of
mixing angles.

IV. DISCUSSION

We have shown that the superconvergence condition
on the odd amplitudes for p-wave interactions leads to
the Lie algebra of the group SU(2) SSU(6). Dynamical
groups with the same Lie algebra have been investigated
earlier by Mahantappa and Sudarshan' while seeking
an invariance group which would allow m E'Ã coupling in
the static limit. However, the interpretation of the
generators of the SU(6) subgroup is different. We relate
the p-wave pseudoscalar-meson decay amplitudes to the
generators D,. This possibility also has been investi-
gated earlier by Kuriyan and Sudarshan" by postulutI'Ilg
that the dynamical "noninvariance" group is the group
SU(6) in which the above interpretation of the gener-
ators D, is true, We have therefore shown that the
assumptions that are made in obtaining the Grst
superconvergence condition on the amplitudes derived
from tree graphs lead naturally to the intermediate-
coupling model of Kuriyan and Sudarshan, "The group
SU(2) SU(6) gives rise to a particle spectrum which
agrees with experiment.

The decay rates and the coupling constants for the
(V=O, 56) representation are the same as the ones
predicted by the usual SU(6) theory. We also predict
relations similar to the Johnson-Treiman relations for
the scattering of p-wave pseudoscalar mesons and
decuplet baryons with spin 2 and either parity.

'4K. T. Mahantappa and E. C. G. Sudarshan, Phys. Rey,
Letters N, 165 (1968).
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scattering amplitude itself. Here the mass degeneracy is
an acceptable solution, while not a satisfactory one.

In conclusion, we believe that this work gives a better
perspective to the results of Cronstrom and Xoga. 2

The intermediate-coupling models do not have analogs
of the second superconvergence conditions [Eqs. (26)].
The only solution for the mass matrix obtained from
these equations for the representations (V=O, 56) and
(V=2, 56) is the trivial one of mass degeneracy within
each of these multiplets. In the strong-coupling model, "
such a result would have implied the vanishing of the
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Critique of a Proposed Dynamical Group for Relativistic Quantum Mechanics*

M. NQGA

Department of Physics, Purdue University, Lafayette, Indiana, 47907
(Received 21 January 1970)

The dynamical group G& for relativistic quantum mechanics phenomenologically suggested by Aghassi,
Roman, and Santilli is derived from the analysis of symmetry properties of Lagrangians and corresponding
equations of motion for a free relativistic particle. All physical observables such as position, momentum,
angular momentum, and mass squared are represented by well-defined operators which close the algebra
of the dynamical group G5. The unitary irreducible representations of this group, which are possible states
of the physical system, are found. The particles accommodated in the single unitary irreducible representa-
tions have various spins starting from the lowest spin value and going up to infinity in integral steps. The
mass-squared operator P„PI" lies in the enveloping algebra of G&, and its eigenvalues are not necessarily
quantized and can have any positive or negative values. It is pointed out that this group has several failures
and thus it cannot be accepted as the reliable dynamical group for particles within relativistic quantum
mechanics.

I. INTRODUCTION

~ 'HE hypothesis that the dynamics of the quantal
interacting system can be completely described

by some dynamical group has been veri6ed for almost

all interesting quantum-mechanical problems. ' In the

approach using dynamical groups, instead of postulating
the Hamiltonian for the quantum-mechanical system
we postulate a dynamical group. Then the quantum-

mechanical wave functions are supposed to form the
basis for the unitary irreducible representation of the

group in question which is generated by the operators
of the physical observables. The same idea was con-

sequently used in strong-interaction physics with the

great hope of predicting hadron states with their

masses and mutual coupling constants. "This approach

* Supported in part by the U. S. Atomic Energy Commission.
%. Pauli, Z. Physik 36, 336 (1926); V. Fock, ibid. 98, 145

{1935);A. O. Barut, Phys. Rev. 135, B839 (1964);A. O. Barut and
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