
PH YSI CAL REVIEW D VOLUM E 2, NUM B ER 12 15 DECEMBER 1970
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Processes of the type proton+proton —+ pion+anything at high energy are discussed. The differential
cross section for such reactions is expressed in terms of a three-particle ~ three-particle amplitude. This
amplitude is then expanded into O(2, 1) representations. If the Pomeranchuk trajectory is the dominant
O(2, 1) singularity at high energy, the existence of pionization and limiting fragmentation is obtained.
Furthermore, the pionization products are essentially independent of the target and projectile, while the
fragments of the target are independent of the projectile. Modifications in the presence of strong Regge cuts
at 1=1 are discussed.

I. INTRODUCTION
' 'X this paper we consider processes of the type
~ ~ proton+ proton —+ pion+ anything; that is, pro-
cesses where two hadrons initiate a reaction in which
only the momentum of a definite final hadron is ob-
served. Such processes have the simplicity of depending
only on three variables, which can be taken to be the
invariant mass s of the two initial hadrons and the longi-
tudinal and transverse momenta ql, and qg of the final
observed hadron in the center-of-mass frame of the
initial hadron system. Before entering into a detailed
discussion of the results of this investigation, we give
a brief review of several ideas on single-particle spectra.

In particular, the hypothesis of limiting fragmenta-
tion of Benecke, Chou, Yang, and Yen' predicts that
the final pion distribution (for simplicity we shall
always take the final observed particle to be a pion,
although it should be emphasized that this is merely
a convenience and not a necessity) described by a&,do/dsq

approaches a constant as s increases when q, the momen-
tum of the pion, is held fixed in the laboratory frame of
either of the initial hadrons.

Feynman' has argued that ~sdo./dsq approaches a con-
stant for fixed qr/(s)'~2 and fixed qr and, furthermore,
that tesdo/dsq depends only on q» so long as qz/(s)'~2
is not too large. This agrees with Benecke et u/. in the
region of fragmentation and in addition predicts pioni-
zation products whose differential cross section has
a longitudinal momentum distribution proportional to
dqr/M2.

A model more explicit than those above is the multi-
peripheral model with Regge trajectory exchanges. The
properties of the single-particle spectra have been dis-
cussed for this model by Pinsky and Weisberger' and
by Silverman and Tan. 4 Their results agree with those of
Benecke et al. and Feynman where they overlap.

* Work performed under the auspices of U. S. Atomic Energy
Commission.

' J. Benecke, T. Y. Chou, C. N. Yang, and E. Yen, Phys. Rev.
188, 2159 (1969).

' R. P. Feynman, Phys. Rev. Letters 23, 1415 (1969). See also
a discussion of pionization by H. Cheng and T. T. Wu, skid. 23,
1311 (1969).

'%. I. Weisberger (private communication).
' D. Silverman and Chung-I Tan, Phys. Rev. (to be published).
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In this paper we hope to present a more general
analysis of inelastic reaction of the above type by means
of an 0(2,1) analysis of the three-particle —+ three-
particle process described by

3(p,q, pi) =(22r)2 d'2-.

X.-'"(p,p, (+) l j.(.)j.(o) l p,p, (+)). (1.1)

In (1.1), pi and p2 refer to the momenta of the two
initial hadrons (protons), while q is the momentum of
the final pion, q'= p2, and j (x) is the pion current. In
Sec. II it is shown that the invariant s&,da/dsq= (M2/s)
XA(P2, q, Pi) for large s, with M' the mass of the proton.

In Sec. III an 0(2,1) analysis of A is presented. This
method of analysis is inspired by the discussion of
Altarelli, Brandt, and Preparata' concerning massive
p-pair production in inelastic proton-proton collisions.
The analysis of Ref. 5 does not directly apply, however,
to the purely hadronic processes considered in this
paper. In Sec. IV A, a double 0(2,1) analysis of
A(p2, q, pi) gives &(p2 q pi) ~ (pi q)(p2'q)j3(pl'qp2'q/~)
as pi and p2 become large for fixed q in the center-of-
mass system when the Pomeranchuk trajectory is the
leading 0(2,1) trajectory. If Regge cuts at J=1 are
present, there will be an asymptotic term differing from
the one above by factors of ln(Pi q) and ln(P2 q). In
Sec. III 3, a single 0(2,1) analysis of A (ps, q,pi) is pre-
sented which yields A(ps, q,pi) ~ (pi p2)p(ps q, pi q/
pi. p2) in the limit of Pomeranchuk pole dominance
when q remains finite in the rest system of P2 while Pi
becomes large. Again cuts will give logarithmic factors.

In Sec. IU the physical consequences of the previous
formalism are described. In Sec. IU A it is shown that
the double 0(2,1) analysis of the preceding section gives
a pionization amplitude do/d'q= f(qr)/cvs for large
energy when the Pomeranchuk trajectory is the domi-
nant 0(2,1) trajectory. This is the distribution predicted
by Feynman. Furthermore, the criterion for the above
formula to be valid is that both Pi q and P2 q be large.
If the Pomeranchuk trajectory factorizes, then pioniza-

~ G. Altarelli, R. A. Brandt, and G. Preparata (unpublished);
Giuliano Preparata (private communication).
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tion products are independent of the initial hadrons
except for a normalization constant which can be de-
termined from elastic scattering data. Modifications in
the presence of Regge cuts at J= 1 are discussed.

In Sec. IV 8 it is argued that the single 0(2,1) analysis
of Sec. III along with Pomeranchuk trajectory domi-
nance predicts limiting fragmentation of the target and
projectile and also the independence of the fragments
of the target on the projectile except for a, known nor-
malization constant. Regge cuts could violate limiting
fragmentation logarithmically and would destroy the
factorization property.

In Sec. IV C the average multiplicity 8 (s) for pions
is derived. In the limit of Pomeranchuk tra, jectory
dominance, a logarithmically increasing multiplicity is
found and the coefficient of lns can be determined from.
the analysis of Sec. IV A. If Regge cuts are present, this
logarithmically increasing multiplicity could be de-

stroyed and the determination of the coe%cient of lns
from pionization products would certainly not be pos-
sible at machine energies.

In Sec. V arguments are presented connecting the
0(2,1) singularities of Sec. III with the usual Regge
singularities in two-body reactions.

II. KINEMATICS

Consider the process shown in Fig. 1, pi+p~~ q

+anything. We shall take the particles having momenta

Pi and P2 to be protons and the particle with momentum

q to be a pion. In what follows it will become clear that
neither the spin nor internal quantum numbers of the
particles labeled by p2, pi, and q put any restriction on
the formalism developed below. Call do/d'q=q 'rPo/.
dQdq the differential cross section for producing a pion
of momentum q with anything else, including possibly
more pions, also being produced. In the center-of-mass
system of the two protons in the initial state, '

p, = 2',/(2~)' for fermions. It follows easily from (2.1)
that both A(P~, q, P1) and id, da/daq are invariants which
can depend only on the three invaris, nts p2 q, pi q, and
p2 ' pl.

Using translation invariance and completness, one
can rewrite (2.1) as

do- (2~) 'M'

d'q 4pE„cu,

x~ "'(p-ip (+) I j-(~)j-(o) I pip~(+))

=(m /2PE„~, )A(p„q,p,). (2.2)

The P in (2.2) refers to an average over the spins of the
protons.

A. Double O(2, 1) Expansion

Since A is an invariant function of P2. q, Pi q, and
p2 pi, we may choose any coordinate system which is
convenient. To begin, let us choose a system where

q= p(1,0,0,0) = (q, ,q„q„,q,),
Pi=&(cosht i, sinhf 1 cosy, sinhl 1 sing, 0), (3.1)

p2 ——cV(cosh'~, —sinhf2, 0, 0).

III. O(211) EXPANSION OF A(p21q, pi)

It will prove convenient to expand A(p2, q,pi) into
0(2,1) harmonics in order to connect properties of pion
production such as pionization, limiting fragmentation,
and average multiplicity with Regge-type singularities
familiar from two-body reactions. Although the kine-
matic configuration in (2.2) has su%cient symmetry to
render an 0(3,1) expansion natural, we shall, neverthe-
less, work only with the smaller 0(2,1) group for the
sake of simplicity.

do (2~) 'cV' n d'k,—ZII —,

'
(2-)

d'q 4PE„u), '=i (2m) 'p,

n

x&(p,+p, q pu;) I(p,p,—(+)—I j.(0) I (—))I'
j=l

The three invariants become

si= Pi q= Mp coshl 1,

s2= P2 q=Mp cosh/a,

s —p2 ' pi ——cV'(cosh' i cosh', +sinhf i sinhl, cosy)

(3.2)

= (M'/4PE„1d, )A(p, ,q,p,),
with

Pi.= ((P'+~')'0, 0 p),
p „=((p'+~)', 0, 0, —p), A (l 2, q, f 1) =p

—I /2+ioo —I /2+ioo

(2 1) so that A can be considered a.s a function of the inde-
pendent variables f~, y, and pi Now expa. nd A in 0(2,1)
harmonics according tov

where j (0) is a pion current, j (x) = (U —p')P (x), and
where q„q&=—p2 is the phvsical mass of the pion. The
summation over n is assumed to include an average over
the initial protons' spins and a sum over all final spins.
Our normalization of states is as in Ref. 6 so that

' S. Ga,siorowicz, A'teqneetary Particte Physics (Wiley, New York,
1966),

1/2 —ioo 1/2—ioo

XA s2sldo s2(f~)e&~gd Al(f ) (3 3)

For simplicity we neglect the discrete series and as-
sume that terms in S"

& and f2 which decrease less rapidly
than (cosh' 1) '" and (cosh)2) '" are handled explcitly.

' 5f.. Toiler, Nuovo Cimento 37, 631 (1965).
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The inversion of (3.3) is

—coterie. 2 cote. (Aq —m)(2A2+1)(2&1+1)
ALAI

32~

anything

drp d cosht 2 d coshggdom, (f2)
FIG. 1. Diagram for the process

PI+ pq -~ q+anything.

if the leading singularities are poles. If cuts in A» and A.2

are present, (3.5) will have additional logarithmic terms
in cosh' q and cosh' 2. We shall not write these logarith-
mic terms explicitly, but neither shall we assume that
they are not present. The question of cuts versus poles
will be discussed more fully somewhat later.

The coordinate system described by (3.1) is not a very
transparent one in terms of physical quantities. In
particular, the meaning of p is not immediately clear.
In order to relate y to a more natural experimental
variable, let us consider the center-of-mass system of

pg and py 111 which

p~=((p'+~')"' 0 0 p)—
p, =((p+~) i,o,o,p),
q= (q.,q, q3),

(3.6)

where q is a two-component vector. In terms of these
variables the invariants s2, s», and s become

X~ *--'d o"(fi)&(f 2, q, f i) (3 4)

When l ~ g'2) becomes large, the behavior of (3.3) is
governed by the leading singularities in A. & (A2). When
both i ~ and f'2 become large, the asymptotic behavior in

t q and f 2 is governed by the leading singularities nq and
o.2 in A» and A2. Keeping only the leading singularities,
(3.3) becomes

the center-of-mass system. This relation remains valid
so long as s, s», and s2 are large.

B. Single O(2, 1) Expansion

If either fq or f~ is not large, then (3.5) should not be
a good approximation to (3.3). In fact, if only iq O2)
becomes large there is no advantage to expanding in
A2 (Aq). For later discussions it is convenient to choose
a new coordinate system in which

pg ——M(1,0,0,0),
q= p(cosh(, —sinh$ cosP, sinh$ sing, 0),

p~ =M'(cosh', sinhq, 0, 0),
with the corresponding relations for the invariants

$2= cVp cosh(,
s= 312 cosh', (3.10)

s~=Mp(cosh) coshg+sinhf sinhg cosP) .

Now cosh(= cosh&2, as is clear from a comparison of the
two expressions for s~ in (3.2) and (3.10). Also, when
cosh' ~ becomes large, coshrl becomes large so long as s2

remains 6nite.
Thus, the natural expansion for large s» and finite s2

$2 p2 q p(qo+ q3) 1

sy pi q p(qo q3) ~

(3.7)
ls

~( 2, q, f r) =~(PA, n)

in the limit that s, s», and s2 are large. Thus

sgsg ——p'(qo' —q3') = -',s(q'+ p') .

But, from (3.2),

sysg=3f p cosh| y coshl 2

—»/2 —ioo

dA a„'(~,P)d;( ), (3.11)

~(k 4', n) — (cosh') P(4' 5),

which for large cosh' becomes equal to

s= M' cosh''i cosh' .(1+cos p). where o. is the leading singularity in A of 3 and where

or large s» and s2. Comparing the two above expressions we have assumed that the leading singularity is a simple
pole. Again, ln cosh' terms will be discussed later.ol $»$2, one 0

1+cosy =-2p'/(p'+q'). (3.8) IV. PHYSICAL CONSEQUENCES

Equation (3.8) shows that the cosp dependence in (3.3) In this section an analysis of do/d'q is given in terms
and (3.5) is equivalent to the q dependence which is of the Regge singularities which occur in two-body in-
the transverse momentum dependence of the pion in teractions. At this point we do not provide an argument
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that the A2, Ar singularities of A~A'A' in (3.3) and the
singularities of A in (3.11) are at the same positions
as 0(2,1) singularities in two-body reactions. We shall,
however, assume that such is the case and postpone
arguments directed at this result until Sec. V.

A. Pionization

Pionization products are those pions which maintain
a finite momentum in the center-of-mass system of the
initial protons as the energy of the protons becomes very
large. For such particles, the analysis performed in Sec.
III A is relevant since both s~ and s2, and hence both
coshl1 and cosht ~, become la,rge. Thus,

~(f2, v, f 1) ~ (cosh' 2) "(cosh' 1)"P(v ) (3.5)

as s —+~ for fixed q in the center-of-mass system. For
the moment take only the contribution of the Pomeran-
chuk pole to (3.5). Then

form of 2 (t ~, p, t 1) will not be so simple as in. (3.5). With
cuts one must allow terms such as (cosh' 1)(cosh|'2)
X [ln cosht 1]'&[in cosh/2)" in the asymptotic expansion
of A. Kith such terms as these, a limiting distribution
would not occur if cr+c2) 0 and the limiting distribu-
tion would be approached only logarithmically if cr+c&
&0 for all terms involving logarithms. The factorization
of the pionization products as given in (4.3) would be
violated if cr+c2&0 and would be approached logarith-
mically if cr+c2(0 for all logarithmic factors. Also, the
observed pion can now depend on q3, the logitudinal
component of q in the center-of-mass system, in a
logarithmic way, although at sufficiently large values of
s the q3 dependence goes away. That is, terms like
»p(qo —q3) ~lnp for lnp»ln(qo —q,). At machine en-
ergies where logarithmic eRects may not be detectable
in production processes, such as the ones considered
here, the only real distinction between Pomeranchuk
pole dominance and cut eRects is probably the factoriza-
tion property (4.3).

which can be written as

S P(q) S

f(a')
M' 1+cosy M'

(4.1)

Equation (4.1) shows that the pionization products
approach a limiting distribution' since

~f~(q) f(q.')

() g M~

(4 2)

for large s, as can be seen by a comparison of (2.1) and
(4.1). Furthermore, for this limiting distribution
co,do./d'q is independent of the longitudinal momentum
qs of the pion. Also, in this case of Pomeranchuk pole
dominance the pionization products will obey a fac-
torization property similar to that in elastic scattering.
This factoriza, tion property can be written

d&AB/d q PAAPPBBP

d&cD/d 'q PccpPDDp
(4.3)

where dcAB/d'q is the differential cross section for
&+8~ vr(q)+anything and similarly for da.cD/d'q.
pAAP is the coupling of the A particle to the Pomeran-
chuk trajectory at zero momentum transfer, the same
coupling which occurs in forward elastic scattering and
total cross-section formulas, and similarly for pBBP,
pccp and pDDP. The transverse momentum distribution
f(g') in (4.2) does not seem to be determined in any
way from the assumption of Pomeranchuk pole domi-
nance. Indeed, f(q') appea, rs to be a very model-
dependent function.

If one gives up the assumption of Pomeranchuk pole
dominance and allows cuts in the h.~ and A2 planes with
branch points a,t A.~= j., A2 ——I, then the asymptotic

~(P,q, P ) (1/~')sV(a, q ) (4 4)

do ~ v(a q~)
d cj

(4 5)

Equation (4.5) indicates that the hypothesis of limiting
fragmentation' is correct when the Pomeranchuk tra-
jectory is the dominant singularity in (3.10). Further,
there is again a factorization property which says that

rI&Bc/" q PBpp
1

clo'Dc/d q PDPP

where dcBc/d'q is the cross section for 8+C-+7r(q)
+anything when m. (q) is a fragment of the particle C,
and similarly for doDc/d'q. PBpp and PDpp ale as in
(4.3). Equation (4.6) implies that the limiting distribu-
tion for a fragment of the target is independent of the
projectile at high energy, except for a constant factor.
which can be determined from the coupling of the pro-
jectile to the Pomeranchuk trajectory at zero momen-
tum transfer.

In case the Pomeranchuk trajectory does not domi-
nate cuts at A.= 1, one would expect limiting fragmenta-
tion to be approached or even violated logarithrnically.

B. Limiting Fragmentation

Suppose now that s2 remains finite as s becomes large.
Then the single O(2, 1) expansion in Sec. III 8 is ap-
propriate. In the coordinate frame defined by (3.9), the
pion is seen to be a fragment of the target particle.
Thus, when s~ remains finite as s~~, we are in the
region where the asymptotic properties of the fragments
of the particle labeled by p2 can be investigated.

Assuming that only the Pomeranchuk pole dominates
as cosh' —+~ in (3.11), one obtains
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Further, cuts would violate the factorization property
(4.6).

C. Multiplicities

The average multiplicity n (s) of pions is given. by

should all become the same at large s. If the Pomeran-
chuk pole dominates, the coefficient of the lns term
should be the same for x+, x, and x . But, even if the
Pomeranchuk pole does not dominate, the multiplicities
should become the san1e because of I=O exchange
dominance.

'/I'/I~ S
o.(s)

($0
d q (P»q~pi) ~

d II

(4 7) V. CONNECTION WITH SINGULARITIES
IN TWO-BODY REACTIONS

where o (s) is the total spin-averaged proton-proton cross
section at a given s and where the integral in (4.7)
extends over the allowed phase space. In our notation
n (s) means the average multiplicity for the specific
pion (pr+, pr, or pr') to which d /od'q refers. To get the
average multiplicity for all kinds of pions produced in
p-p collisions, we have to add n +(s)+n -(s)+n 0(s).

If one has no information about the transverse mo-
mentum distributions f(q') in (4.2) and the tip depen-
dence of y(q, qp) in (4.5), it is dificult to estimate the
multiplicity of pions. However, if the q dependence of
f(g') and y(q, qp) decreases faster than (q') ', then the
leading behavior of n (s) can be calculated when the
Pomeranchuk. pole is the leading singularity. In this
case, (4.7) can be written as

In this section we attempt to relate the singularity
structure in /4 and A.i of the A ~'~' appearing in (3.3)
and the singularities in A of the A appearing in (3.11)
to the complex angular momentum singularities which
occur in two-body reactions. First, we shall argue that
singularities which appear in two-body processes will
also appear in A~ '~& and A~ I then it will be claimed
that these are the only singularities present. For the
discussion in this section only scalar particles are
considered.

Suppose now that we are given a forward-scattering
off-shell two-body amplitude

f(p»k') = —~ d'*o"*(Pp
I 2'(i(*)i(0)) I P )

o(s)n (s) = d'q
(pP+p )/2aM Me/2 dq +

—
(q q )

)/23/ /)E/p (q, +qp—+// )

and its absorptive part

d'qf(q')
dg3

(qp+ q 2+~2) i/2

&(p k k') = d'~o'"'(P li(*)i(0) I p ) (5 1)

We can write

~/2 —(um+g2) /2 (dq "/rlq ) A(p, q,p ) = d'k d'k F(p k,k ')B(k,q, k )
I

6 '+p')!& ~+))/ /& (0 +qp +p )

Equation (4.8) is derived in the Appendix. The first
term in (4.8) is an integration over the fragments of the
particle labeled by p& and the integration is done in the
system where pp ——3E(1,0,0,0).The third term is a similar
expression for the fragments of pi with the integration
being done in the system where pi ——M(1,0,0,0). The
second term in (4.8) is an integration over pionization
products including some very fast pions qp of order pp,
which, indeed, one may not wish to call pionization. One
easily obtains

XF(pi'kl)kl )+A(p»q)pi) ~ (5.2)

The integral in (5.2) includes only the region kP=k, p'
—k,~' —k;2'&0. YVe include other regions of integration
in A. What we shall attempt to argue is that the A ~'~'

de6ned by (3.4) picks up the A singularities in F.To see
this write

F(p k,k)=p dAD. ,„(p,k)F;(IkI,k.), (5.3)

d'q f(q'),n. (s) ' " o.(s)

with the logaritl1111ic telB'1 coI11111gfron1 the secolld tel'111

on the right-hand side of (4.8). It should be emphasized,
however, that whether one wishes to associate this
logarithmic increase with fast pionization products or
fast fragments of the target and projectile is completely
a matter of taste.

Another result follows rather trivially from what we
have said. That is, the multiplicity of ~+, 7r, and m

where the Dp, ,p~ are 0(2,1) representation functions in
(4.9) a mixed basis whose explicit properties will not be

needed for this discussion. Substituting (5.3) into (5.2),
one obtains

A,„,'"'o. Q d'k, d'k. D„„p,p"(kp)J3(kp, q,ki)D„p, p"(ki)
p&p&

XF,p"(I &p l,k»)F-» " '(I Ipil, kip)+&-'"' (5 4)

Now F, appears explicitly in (5.4) and the singularities
in A. (A.i) of F»~' (F „~' ') will appear in A ~'~' unless
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d l' t cancellation in the integra appearing
~~5 4~&. XVe can find no reason for such a cance a iln y ~ g ~ e

fr" ~alsoto occur an so assumd ssume that singularities in A o
r umentappear in A ~2~1. A completely analogous argumen

shows that the singularities of F,~ also appear in
Now suppose t ath A ~2~' has a particular singularity

~ ~ ~

Th A ~ will also have this singu-in A~ at a value a. en
larity at A=o, since

begin with (4.7), which for large $ becomes

do
0'($)FE~($) = if qGqg (pe)q, pi)

dA g Ait &g~myd A(t )

Now if A ' has a singularity in A at n,

A ($ ip,rl): (cosh') "p(p $) (5.5)

+ d'q dqa (A1)
d g

written in the center-of-mass system,

p2= (p+M'/2p, 0, 0, —p),
pi ——(p+M'/2p, 0, 0, p),

from q . . Il(3.11).In the limit g ~~ in (5.5) $2 remains finite

I see (3.9)). Suppose for the moment tha, t qo

the di6erence between

d'~~ "'(pip~(+) li(x)i(0) I pip2(+)) (56

fixed number not necessari y small. Inand where e is a e
— and sidel te the first term on the nght-hanorder to evaua e e r

te s stem wheref (A1) we transform to the coordinate sys em0 )we
2= (M,0,0,0). If q„' labels the components o q

'
ts of in this

system, then

and the imaginary part of
2+M2) i/ 2

li2+(q3'+q'+ p')"'—

d'~ ~-""(pip~(—) I T(j(~)i(0)) I pip2(+))

would be the semidisconnected parts of theof the three-body
small s2 there should be nounitarity relation. ' For sma s2 e

delicate balance between the comp yletel connecte an
the semidisconnected parts of the

' '
yunitarit relation or

cosh . Thus, if (5.6) has a (cosh') behavior, so
t l connected part'll (5.7). However, if the completely

(5.5) has a (cosh') behavior for qo) 0,0 it will also have
avior for o&0. Thus the singularities in the

those of (5.7) and hence the same as in two- o y
reactions.
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APPENDIX

t in E . (4.8), and in particular to obtain the
limits on the integrals appearing in tha eq

ndsho6 D. l. Olive, and J. C. Polking-
'd U P Cambridhorne, The Analytic S-2lfatrix (CambrI g

England, 1966).

A&M p p'+q'
qs'= —+-

2p M 2Iq I

(A2)

ative. Using (A2) and the fact

hand side of (A1) becomes

p2+~2) ( g&M ~~i

i~'+q'ii2ia —wiz (q +qa +g )

or

(p2+M2) 1/2 p
q3' =q3

—(il'+q3'+ p') '"—

qaM y'+q' p

2p 2q3 M

(A3)

U iA3) and (4.5), one immediatelyfor positive q3. Using an
~ fn h' d t rm on the right-hand si e oderives that t e t ir erm

~

f(A1) is equal to t e ir eh th d term on the right-hand side o
(4.8).

1 t the first term on the right-hand side
of 4.8 b useof (4.5). The secondtermof (A1) become

s to theevaluate the third term of (A1), one transforms to t e
= iM 0 0 0). Now calling q„' the com-

ponents of q in this system, one obtains


