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H =Ho+ V(x)At(x)A(x)d'x. (50)

Realistic interactions are much more complicated tri-

Ke have been treating in this paper field-theoretical
models of the bilinear type:

linear, quadrilinear, or higher couplings. We see no
reasons why the phenomenon of indefinite metric and
associated eigenstates can not occur if the realistic
coupling is su%.ciently strong. For the same reasons as
one might have overlooked this possibility in the bi-
linear case, one could be actually ignoring it in the
realistic case.
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It is suggested that the generators of a spectrum-generating algebra are all constants of the motion, some
of them having an explicit time dependence. Also suggested is a specific form of the Hamiltonian action
on the spectrum-generating algebra for systems with a finite number of degrees of freedom. Well-known
examples of spectrum-generating algebras are shown to fit into this framework. The stability of the sug-
gested structure against small perturbation is discussed, The question of the generalization of the suggested
structure to systems with an infinite number of degrees of freedom is briefly commented upon.

I. INTRODUCTION

EVERAI years ago the concept of a spectrum-

generating algebra (SGA) was introduced' as a

means of algebraic description of physical systems. This
was motivated by the observation that in certain prob-
lems' series of energy eigenstates with different energies

form a, basis for a single unitary irreducible representa-

tion of a I ie algebra. Thus in a mathematical sense the

SGA can be thought of as a generalization of the sym-

metry algebra (SA). While the SA is represented

irreducibly on states which are energy degenerate, a,

SGA may have as a basis for a single unitary irreducible

representation all the energy eigenstates of a system. In
fact the SGA was required to have as a subalgebra the

SA of the problem.
Of these two algebras the symmetry algebra has an

intuitively clear physical definition. Its generators are

Hermitian operators which do not have an explicit time

dependence and satisfy the following conditions.

*on leave from the Department of Physics and Astronomy,
Tel-Aviv University, Tel-Aviv, Israel.

' Y. Dothan, M. Gell-Mann, and Y. Ne'eman, Phys. Rev,
Letters 1V, 145 (1965);Y. Dothan and Y. Ne'eman, in Proceedings

of the Second Tojical Conference on Resonant Particles, edited by
S. A. Munir (Ohio U. P. , Athens, Ohio, 1965), p. 17. The same

concept is also known as a noninvariance group or a dynamical

group. See, e.g. , N. Mukunda, L. O'Raifeartaigh, and E. C. G.
Sudarshan, Phys. Rev. Letters 15, 1041 (1965); A. 0. Sarut and

A. Bohm, Phys. Rev. 139, 81107 (1965).
' It is interesting that in most of the classical analogs of these

problems the motion is completely degenerate in the classical
sense. Namely, the motion is simply periodic instead of being

multiply periodic. See, e.g. , H. Goldstein, Classical Mechanics

(Addison Wesley, New York, 1959),p. 297.

(a) They commute with the Hamiltonian of the
problem. Since they do not have an explicit time
dependence they are constants of the motion.

(b) They form a Lie algebra under commutation.
Namely, the commutator of two generators is a linear
combination of the generators of the algebra with
coefficients which are numbers.

(c) The symmetry algebra is maximal in the sense
tha, t for any energy eigenvalue the space of all degener-
ate states is irreducible under the algebra. This means
that we do not allow "accidental" degeneracies. (Since
we discuss the symmetry algebra and not the symmetry
group, we have to exclude from the discussion degen-
eracies explainable only by discrete symmetries. How-
ever, it is easy to generalize the conditions to symmetry
groups instead of symmetry algebras)

(d) The symmetry algebra is minimal in the sense
that it does not have a proper subalgebra with the same
proper ties.

On the other hand, the definition of the SGA is more
mathematical. One searches for a I ie algebra of Her-
mitian generators which has the symmetry algebra as a
subalgebra such that all the energy eigenfunctions of the
physical problem which satisfy the same boundary
conditions form a basis for a single unitary irreducible
representation of the algebra. This may be considered a
generalization of conditions (b) and (c) above. Condi-
tion (d) has an obvious generalization, but condition (a)
is not generalized. Stated differently, one poses a prob-
lem of embedding all the spaces of states which are
irreducible under the symmetry algebra in a space
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then G(p, q; t)P(q; t) is also a solution of the same
equation if G satisfies the condition

—[H,G) =0. (2)

In the above, q stands for the set of configuration-space
coordinates and p for the set of their canonically con-

3ugate rnomenta.
Condition (2) is, of course, a qua, ntum transcription

of the classical equation

BG
+[H,G)pn0, , ,

Bt
(3a)

where P.B. indicates Poisson brackets, or

=0. (3b)

In other words, G is again a constant of the motion,
but it is now allowed to have an explicit time depen-
dence. It is easy to see that if G is a Hermitian operator
satisfying condition (2) and if 1t (q; 1) is a normalized
solution of Eq. (1), then e' ~tP is also a normalized
solution of Eq. (1) for an arbitrary real a which is
independent of p, q, and 1. Thus the generator G can be
exponentiated to form a one-parameter group of trans-
formations that take the set of normalized wave packet
solutions of Eq. (1) into itself.

Lipkin noted that if G satisfies Eq. (2) and has a
nontrivial time dependence, namely, r)G/r)f/0, then

' Y. Ne'eman, Quanta and Fields I, 55 (1970).
4 I am indebted to R. Hermann for repeatedly calling this point

to my attention.
5I. A. Malkin and V. I. Man'ko, Zh. Eksperim. i Teor. Fiz.

Pis'ma v Redaktsiyu 2, 250 (1965) (JETP Letters 2', 146 (1965)].
H. J. Lipkin, in Symmetry Pr&zciples at High Energy, Fifth

Coral Gages Confererlce, edited by A. Perlmutter et al. (Benjamin,
Neer York, 1968), p. 266; H. J. Lipkin, in Nuclear Physics, edited
by C. DeWitt and V. Gillet (Gordon and Breach, New York,
1969), p. 644.

which is irreducible under a larger Lie algebra, namely,
the SGA. This embedding should be such that when the
representation of the SGA is considered as a representa-
tion of its symmetry subalgebra, it gives back only the
embedded spaces with the correct multiplicities. Stated
this way, it is not clear that a finite-dimensional SGA
exists at all. More intriguing is the physical meaning of
its generators, both in quantum mechanics' and in
classical mechanics. '

The nature of the SGA may be abstracted as a gener-
alization of some remarks made by Malkin and Man'ko'"

and by Lipkin. ' Malkin and Man'ko remarked that if

P(q; &) is any solution of the time-dependent Schrodinger
equation

GP is a linear combination of eigenstates of H with
different energies, and thereby G generates the spectrum
of H. Lipkin shows explicitly how this happens in the
case that G is linear in the time, namely, a boost.

In this paper we propose to adopt Eq. (2) or its
classical analog Eq. (3) as a generalization of condition
(a) when defining the properties of the generators of a
SGA. Our generators are, therefore, always constants of
the motion.

It is obvious that in order to generate a spectrum we
need operators that do not commute with H. On the
other hand, the totality of all operators that do not
commute with H seems to be too rich a set and with no
obvious algebraic properties. Restricting ourselves to
the subset of operators which fu1611 Eq. (2) will give us
some control over the operators under consideration.

For systems with a finite number of degrees of
freedom the states are labeled by a finite number of
quantum numbers. Therefore, a finite-dimensional SGA
should characterize a system completely. ' As we shall
see, this demand of a finite-dimensional SGA, together
with Eq. (2), completely determines the type of explicit
time dependence that the generators may have (at least
in the classical case).

In Sec. II we propose a simple definition of a SGA and
the Hamiltonian action on its generators. In Sec. III
we analyze some mathematical properties of the pro-
posed structure. We also show that the Hamiltonian
action defined in Sec. II is too restrictive. In Sec. IV we
propose a generalization of the Hamiltonian action.
These three sections contain most of the new ideas and
results of this paper. In Sec. V we discuss some well-
known examples of SGA from our point of view. In
Sec. VI we discuss some general problems connected
with our suggested structure. The most important of
these problems is the question of the stability of the
structure against small perturbation. We also comment
briefly on generalizing our scheme to systems with an
infinite number of degrees of freedom.

II. FINITE-DIMENSIONAL SGA

Let us consider the set S of all Hermitian generators
G,(p, q; t) which fulfill Eq. (2),

S= G. : i—G.—[H,G,)=0
Bt

[or their classical analogs that fulfill Eq. (3)). In virtue
of the Jacobi identity the set S has a, convenient alge-
braic property, namely, the commutator of two mem-
bers of the set calculated at equal t is again a member of
the set. (In classical mechanics this is known as Poisson's
theorem. s) In other words, 5 is a Lie algebra.

R. Hermann, Lee Groups for Physscssis (Benjamin, New York,
1966), p. 98.

8 L. D. Landau and K. M. Lipshitz, Mechanics (Addison Wesley,
Reading, Mass. , 1960), p. 137.
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Since we shall treat only closed systems described in
an inertial reference frame, the Hamiltonians of these
systems do not depend explicitly on time and so
BH/Bt=O. Therefore, by taking a partial time deriva-
tive of Eq. (2), we see that together with any G the
set S also contains BG,/Bt.

The set S possesses as a subset the set D of all
Hermitian operators I.b(P, q) which fulfill both Eq. (2)
and &Lb/Bt= 0 T—he.y are time-independent constants of
the motion,

D= Lb' —I.b=O, [H,Lb) =0
Bt

Again the set D itself is closed under commutation and
so forms a Lie subalgebra of the Lie algebra S. The Lie
algebra D is, of course, an infinite-dimensional Lie
algebra. We expect conditions (c) and (d) of the Intro-
duction to be sufhcient to ensure the existence of a finite
subalgebra D»;„which is the symmetry algebra of the
problem. The reason for this expectation is once again
that for a system with a finite number of degrees of
freedom the states are uniquely specified by a, finite
number of quantum numbers. This is true in particular
for the energy-degenerate states, and so a finite-dimen-
sional symmetry algebra can supply the necessary
quantum numbers to distinguish energy-degenera, te
states.

It may be worthwhile to remark that a similar situa-
tion occurs in classical mechanics. The set D of all
"reasonable" (separating') real functions Lb(p, q) which

fulfill
8—I.,=O, &H, Lb&P.ii. ——0
Bt

forms an infinite-dimensional I.ie algebra. However, it
is possible" to choose a, finite-dimensional Lie sub-

algebra D»;„such that all the generators of D are
functions of the generators of D»;„.

Let us note here that the choice of D»;„ is not neces-

sarily unique. For instance, in the case of a single free
particle we can choose either the algebra generated by

{p,J), namely, E(3) composed of p, the linear mo-

mentum, and J, the angular momentum, or we may
choose the algebi a {(1/2

~ p ~ )(JXp —p XJ),J},namely,

SL(2,C).
From a matheniatical point of view, the difference

between these two algebras is that the first is not semi-

simple while the second is. This raises the question
whether a demand of semisimplicity makes the choice of

D»; unique in the degenerate cases in which it is not. In
this connection it is appropriate to mention that Simoni,
Za, ccaria, and Vitale" have shown in the classical case

A. Wintner, The Analytical Foztszdations of Celestial 3/Iechanzcs
(Princeton U. P., Princeton, N. J., 1947), p. 36.

' I am indebted to R. Hermann for an explanation of this point.
» A. Simoni, I'. Zaccaria, and B. Vitale, Nuovo Cimento 51A

448 (&967).

that if the symmetry algebra is semisimple, then all its
Casimir operators are functionally dependent. There-
for, if we consider Hamiltonians that are functions of the
Casimir operators of symmetry algebra, then for a
semisimple symmetry algebra such a Hamiltonian will
depend functionally on a single function of the gener-
ators. This is reminiscent of the case of a multiply
periodic motion degenerating completely to a, simply
periodic motion. The Hamiltonian then is a, function of
a, single integral linea, r combination of action variables. '

%e shall refer to a situation where there is only one
functionally independent Casimir operator of the sym-
metry algebra as the completely symmetric situation.

Another remark of a mathematical nature may be in
order here. Ke know of no reason why the symmetry
algebra, should in general be compact. Nevertheless,
from experience, we expect to find that discrete (bound)
states have a, finite degeneracy, and therefore a compact
symmetry algebra will do for their description.

Let us turn our attention now back to the algebra S.
In principle it is simple to get an idea about its structure
a,s follows. Consider the (formal) expressions

Bpp/cM & Bqp/hatt . (10)

As we mentioned, they are again members of S and
therefore functionally dependent on pbqo, but in general
are not linearly dependent on poqo. Therefore, if we want
to construct a, Lie algebra, expressions (10) will in
general yield a number of additional generators. Having
chosen a linearly independent set of additional gener-
ators, we now try to close our set of generators under

p
—giHipg iHt—
—giH tqg

—iII t

The set of operators {po,qb} satisfies Eq; (2) and for a
system with f degrees of freedom they constitute a

complete set of 2f operators so tha, t every member of 5
is a function F(p„q,).

Again we want to construct a finite-dimensional Lie
algebra out, of the infinite-dimensional Lie algebra of 5.
This seems at first sight to have already been accom-
plished since {po,q&) fulfill the Heisenberg commutation
rela, tions, namely,

Lpo' qo ]= —&~' .

Hut this algebraic structure is useless since it does not
contain any dynamical information beyond the number
of degrees of freedom of our system. Stated differently,
all systems with the same number of degrees of freedom
and with widely different dynamics fulfill the same
commuta, tion rules and would, therefore, have led to
the same algebraic structure. To bring in some informa-
tion about the dynamics, let us construct all the
expressions

(1/i)EH, poh, (1/~)E»q. 3. (~)

These will again be Hermitian operators and by Eq.
(2) they will be equal to
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conimutation. This mill, in general, make it necessary
to add even more generators to our set. In this way by
calculating successively higher time derivatives and
commutators, we will in the general case generate an
infinite-dimensional Lie algebra. This brings us ba,ck to
where we started from.

To get out of this impasse, we may get a hint from
the relation between D and D~;„. The two sets have in
common the property that a commutator of two
elements in the set is again in the set. But in Df,„ this
is realized in a finite linear fashion.

We now want to construct a subset of S called S~;
which will share the following two properties with
S. (1) A commutator of two elements in the set is again
in the set. (2) The time derivative of a,n element in the
set is again in the set. But in SI;„this is to be realized in
a finite linear fashion. The set Sf;„will then give rise to
a finite-dimensional SGA.

Consider then a finite set of Hermitian operators
G, (p, q; t) having the following properties:

i G, [H,G—~] =0-,
Bt

LG, (p, q; t),G, (p, q; t)j=ic,,"Gk(p, q; t), (12)

G, (p, q; t) =—(u, kGk(p, q; t) .
Bt

(13)

"G. Racah, Group Theory and Spectroscopy, lectures delivered
at the Institute for Advanced Study, Princeton, p. 13, 1951
(unpublished).

Fquation (12) specifies a finite-dimensional SGA. The
structure constants c;,~ are real numbers. One of the

spaces on which the SGA (12) is represented irreducibly
will serve as a space of states of our system. Since we

did not demand that Eqs. (12) define a semisimple Lie
algebra, we distinguish upper and lower indices" of

cz~' and or)'

The indicated dependence of the G; on the canonical
variables p, q actually stands for their dependence on

any set of dynamical variable which are not necessarily
canonica, l. Thus we allow the G; to involve Pa,uli

ma, trices, Dirac matrices, etc.
Equation (13) contains the dynamical information

about our system. The real quantities or, ~ are time
independent. For the moment we assume that they
commute with all the generators of the SGA. Thus they
may be functions of the masses. and coupling constants
of the problem or involve degrees of freedom that
commute with all the generators of the SGA.

From Eq. (12) it follows that we can choose the G, to
be dimensionless quantities and then the or, " have the
dimensions of (time) ' or frequency. We shall refer to
the matrix or with elements or,.~ as the frequency matrix.
Using Eq. (11), we can rewrite Eq. (13) in the form

We see that the Hamiltonian maps, by commutation,
the algebra into itself. "Since the dynamics is specified
by the u, ~, we suspect that we may have different
dynamical systems which have the same set of Kqs.
(12) but different sets of Eqs. (14). We analyze this
question in the next section. Here instead we emphasize
the different content of Eqs. (12) and (14).

Equations (12), by specifying a Lie algebra, specify
in effect the set of all irreducible representations of this
Lie algebra. . Equations (14), on the other hand, contain
information about the action of the Hamiltonian on the
representation spaces.

This leads us to the following program for a phenome-
nological analysis of a given spectrum. By looking at the
states in the spectrum, their quantum numbers, and
their multiplicities, we try to guess a spectrum-generat-
ing algebra to generate the given spectrum. Having
done so, we have a set of structure constants c;;k that
fulfill the Jacobi identity so that Eqs. (12) indeed
define a Lie algebra. Ke now ask what are all possible
Hamiltonian actions on the algebra according to Eq.
(14) and which of these reproduces the observed spac-
ings in the given energy spectrum best. This will then
specify the or, ~.

Similarly Eqs. (12) and (13) are mutually compatible if
the following Bargmann-type'4 identity is satisfied:

c, ,k~„m+c„,m~ k+c.„m~,k O (16)

Two consequences of Eqs. (15) and (16) immediately
follow.

(1) If two frequency matrices co', k and cu",k fulfill
Eq. (16), then so does

~,k —~~~~k+ ~~I~k,
where o,

' and n" are time independent, real, and com-
mute with all the t";. Therefore if the given SGA has n

"Equations of the form of Eq. (14) are well known in other
branches of physics. See, e.g. , A. M. Lane, Nuclear Theory
(Benjamin, New York, 1964), p. 94. I am indebted to T. A. Griffy
for an interesting discussion of this remark.

"V. Bargmann, Ann. Math. 59, 1 (1954), Eq. {4.26).

III. PROPERTIES OF SGA AND
HAMILTONIAN MAPPING

We now address ourselves to the question raised in
the last section, namely, given a spectrum-generating
algebra what are all possible modes of Hamiltonian
a,ction according to Eqs. (14). In more technical terms,
suppose we are given the set of c;,~ and we ask what are
all possible sets of or, k.

To investigate this point, we ask about the compati-
bility of the various Eqs. (12) and (13). From the
general theory of Lie algebras, we know that Eqs. (12)
are mutually compatible and define a Lie algebra if the
c,,' fulfill the Jacobi identity:
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gil= Cij Clk (20)

is nonsingular and can be used to raise and lower
indices '2 Using Eqs. (15) and (16), it follows tha, t for a.

semisimple SGA,
(21)km= —~mk ~

Also, Eq. (16) can be rewritten a.s follows:

Cij &km~Cjm ki+Cmi &kj (22)

From Eq. (21) we would conclude that the dimension of
the linear space of possible frequency matrices cvk is
less than or equal to —',n(n —1) for a semisimple SGA.
But Eq. (22) is identical with Eq. (4.26) of Bargrnann's

paper" if we identify our ~i with his Pi, . Therefore
his Eq. (7.5) holds, namely, the only possible &u&„, are
the ones given by our Eq. (18):

&km=0'- Cktm (23)

In other words, if the SGA is semisimple, the only
possible Hamiltonians in our present framework a,re
linear Hamiltonians.

This result by itself shows that our present framework
is too restrictive. To see this, we recall that the bound
states of the hydrogen atom are described with a SGA
which is' SO(4, 1) or' "50(4,2). Both of these algebras

"For a detailed list of references covering both possibilities see
G. Gyorgyi, Nuovo Cimento 53A, 717 (1968).

generators, the possible frequency matrices form a real
vector space of dimension smaller than or equal to n'.

(2) The following expression satisfies the Bargmann
identity (16):

(18)

where o.' are again time-independent, real, and commute
with all the G;. Ke shall refer to a, Hamiltonian to which
a frequency matrix of the type (18) corresponds as a
linear Hamiltonia, n since in such a ca,se II may be
represented by

H = —o'Gi+ C,

where C commutes with all the 6,. Thus the uk

corresponding to a linear Hamiltonian form a, real
vector space of dimension smaller than or equal to n.

The generators of our SGA that commute with the
Hamiltonian form a I-ie suba, lgebra. %e shall refer to
it as the augmented symmetry algebra, and demand
that it contains the symmetry algebra defined in the
Introduction.

By definition, a linear Hamiltonian is a linear Casimir
opera, tor of the augmented symmetry algebra. Bu.t a
linear Casimir operator is possible only for an algebra
which is not semisimple. AVe therefore conclude that a
linear Hamiltonian possesses a, nonsemisimple aug-
mented symmetry algebra.

I.et us now restrict ourselves to the case where the
given set of c,," defines by Eq. (12) a, semisimple Lie
algebra. In this case the Killing-Cartan metric

a,re semisimple, but the problem does not correspond to
a, linear Hamiltonian.

To understand the physical implications of a semi-
simple SGA in the present framework, we now show
that it gives rise to an energy spectrum of a set of
harmonic oscillators. "

To see this consider the following two ngn ma, trices:
The Killing-Cartan matrix g, Eq. (20), with elements

g;~ and the frequency matrix co with elements ~k . The
matrix g is real symmetric and nonsingular; the matrix
co is real antisymmetric. V~e now follow the standard
procedure of decoupling a, set of coupled ha, rmonic
oscillators. Ke first transform the Killing-Cartan
matrix g, Eq. (26), by a, complex congruence transfor-
mation T to the unit ma, trix

TpT~ =- I. (24)

[H,Gi'] = Qg.,„G„', (26)

where the operators (Gi, '} are the transforms of the
operators (Gi} by the complex regular matrix T. The
matrix 0 is the transform of the matrix ice. All the
indices are now lower indices since the right-hand side
of Eq. (24) is the unit matrix. The operators G&' are not
necessarily Hermitian, but the matrix 0 is a Hermitian
matrix which we can now diagonalize by a similarity
transforma, tion leading to

[H,Ai]=- pp, Ai, (27)

where there is no summation on k. The vk are the eigen-
values of the Hermitian matrix 0 and are all real. If the
operator A I, sa.tisfies Eq. (27), the Hermiticity of H and
reality of vk lead to a similar equation for 3k~,

[H,A i"]= —vgA i". (28)

Consider erst the operators Ak for which vk=-0. AVe

form the Hermitian combinations

A i,+A i~ , (1/i) (A ), A.)ii. — (29)

Some of these combinations may vanish. The non-
vanishing combina, tions all commute with the Hamil-
tonian and thus generate the augmented symmetry
algebra.

Now consider the operators Ak for which &k&0.
Taking now matrix elements of Eq. (27) between
eigensta, tes of II with energies L'~ and E2, we get

(Li—Fp)(1~Ak~2)= i i, (1~A„~2). (30)

Therefore, Ai, can connect the states
~
1) and ~2) only if

(31)

Since vi is independent of the states ~1) and ~2), we see
that the operators Ak and Ak act on the states as

Equation (14), which for a semisimple SGA may be

[H,Gk]=icug G (25)

is transformed by T to
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creation and annihilation operators of a harmonic
oscillator and the spectrum obeys the characteristic
equal-spacing rule.

The reader may notice that in the decoupling pro-
cedure the matrix g played the role of a kinetic-energy
matrix while the matrix ice played the role of a potential-
energy matrix. " We may say in this sense that the
matrix g carries information of a kinematical nature
while the matrix ice carries information of a dynamical
nature.

In view of the result we have just proven, we are
forced to relax our constraint on our Eqs. (13) or (14)
since once again our present framework is at odds with
the description of the bound states of hydrogen by
means of 50(4,1) or SO(4, 2). Both are semisimple, but
the spectrum does not show equal spacing of the levels.

Actually the crucial point in our proof is Eq. (26).
Therefore any Hamiltonian action on a SGA which can
be brought to the form (26) with Qi, a Hermitian
matrix whose elements commute with all the generators
of the SGA gives rise to a spectrum of a, set of harmonic
oscillators. "

IV. TIME DEPENDENCE OF GENERATORS AND
HAMILTONIAN ACTION

Before enlarging our framework, let us still consider
Eq. (14) or its equivalent, Eq. (13), in more detail.
Equation (13) is a set of first-order linear differential
equations with constant coefficients which determines
the explicit time dependence of the 6,. Indeed the
solution of this set has the form'~

G'(P V t) =(e"')"G (P,q; t=o) (32)

The exponential of the matrix cvf can be written as

8 rIt;

e(ot Q evet(Q tt—1Z„t) (33)

Here Z«are matrices which are polynomials in the
matrix co. The vI, are the different eigenvalues of the
matrix cu, and rI, are their multiplicities in the minimal

polynomial of the matrix m.

An alternative way of writing Eqs. (32) which does
not make an explicit reference to the initial va, lues is

as follows:

Here the vA, are again eigenvalues of the matrix ar, but
they are now not necessarily distinct. The vectors VI,

whose t'th component is (vk, );, are generalized eigen-

vectors of the matrix co and form a basis in which cv has
the Jordan normal form. The numbers nt, are the dimen-

' H. Goldstein, Ref. 2, p. 326.
"See, e.g. , F. R. Gantmacher, Apptecoteols of the Theory of

Matrices (Interscience, New York, 1959), p. 137.

l+m n, fr,

G'(P, l; t) = 2 e"" 2 Ci, -(P,Y) (~~,-)' (34)-
k=1 a=i (rte —~) !

sionalities of the blocks in the Jordan normal form and
Sg ''' —Stt

From Eqs. (33) or (34) it follows that the explicit
time dependence of the generators is rather limited,
namely, a polynomial in f times an exponential function
in f. In particular, for a semisimple SGA we have a
purely exponential time dependence. We shall refer to
a constant of the motion with an explicit time depen-
dence of a polynomial in t multiplied by an exponential
function of t as having the standard time dependence.
This class of functions has two obvious properties. (1)
They have no singularity in the finite part of the com-
plex t plane. They are thus a subclass of the class of
entire functions. (2) The t derivative of a function in
the class is again in the class. Since we want to enlarge
our framework we could have tried to generate more
general types of explicit time dependence. However, we
shall follow a different line of reasoning.

To get a hint how we may relax our scheme, we recall
that in classical systems for which the motion is multiply
periodic, the frequencies are given by'8

(35)

where JI, are the action variables and the Hamiltonian
is given as a function of these action variables. We recall
that the action variables are single-valued real functions
of P, q which have no explicit time dependence. They
have vanishing Poisson brackets between themselves
and with the Hamiltonian. Therefore, the frequencies
v being functions of the J s have va, nishing Poisson
brackets with the Hamiltonian and do not have an
explicit dependence on time. They also have vanishing
Poisson brackets with all the JI,'s. In the present
formulation the role of the JI, is played by the set of
Casimir operators of the augmented symmetry algebra,
supplemented by genera, tors of the augmented sym-
metry algebra itself, making up a complete set of
commuting operators.

Motivated by this remark, we now allow the cv,' to be
Hermitian functions of the generators LI, that commute
with the Hamiltonian, restricting them by the demand
that they commute with all the L&. Thus the co are now
time-independent functions of the masses and coupling
constants of the problem, the Casimir operators of the
algebra generated by the L& and the degrees of freedom
that commute with all the G;. Since the co,' are still not
allowed to have an explicit time dependence, the solu-
tion to Eq. (13) as an equation between classical
quantities is still Eq. (33). Indeed, as we shall see
explicitly in the next section, the classical description
of the Kepler problem fits into the present framework.

On the other hand, as equations between operators
Eqs. (13) are not necessarily valid since if the G; is
Hermitian so is BG;/ctt but &o (1.&)G, is not necessarily

' H. Goldstein, Ref. 2, p. 292.



Hermitian. Ke now replace the right-hand side of Eqs.
(13) by its sxnnmetrized form although we do not have
any compelling argument in favor of this ansatz.

%e now write the set of genera, tors of the SGA as P= p, K= nzq —p]. (40)

generators of space translations P and velocity trans-
formations K. In terms of the Cartesian canonical
momenta and coordinates, they are given as follows:

(G,}=(L,;E}, i'=1, . . . , n,
j= 1, , p; n= p+1, . . . , n.

(36) We see that in terms of the operators p& and qs they
ale just

Since the (L;} form a subalgebra, we now have the
following detailed form of Eqs. (12) and (14):

[L,,L,]=ic,,tL„, i, j, k= 1, . . . , P (37a)

[L;,K ]=ic; 'Lq+ic, PKp,

i, k=1, . . . , p; a, p= p+1, . . . , n (37b)

[K,Kp]=ic p'Lg+ic p&Kv,

k= 1, . . . , p; n, P, y= p+1, . . . , n (37c)

[II,L,]=0, (38a,)

V. EXAMPLES

In this section we discuss a few examples in order to
illustrate explicitly the points made in the preceding
general discussion.

A. Free Syinless Particle

Here the Galilei group serves as the spectrum-
generating algebra. ' ' To see this, consider first the

' For a construction of the representations of the Galilei groUp,
see Jean-Mare T.evy-I, ehIond, J. Math. Phys. 4, 776 (1963).

[H,K ]=i' '(L~)L&

+i t
2f(a P(I.;)K-p+ Epcs„P(L,)}, (38b)

L .~(L,),L,]=0, [ . (PL;),L,]=0. (38c)

Calculating the commutator of II with Eqs. (37), we

get compatibility conditions on the co. Unfortunately
these compatibility conditions are not very transparent,
and we have been unable to draw conclusions on
their basis.

Equations (38b) allow us now to derive a, result
a,nalogous to Eq. (30). To this end we choose a repre-
sentation in which the Hamiltonian and all the Casimir
operators of the augmented symmetry algebra are
simultaneously diagonal. The basis states of this repre-
sentation are then eigenstates of all the or ~ and co I'.

Also the operators I.I, have matrix elements only be-
tween energy-degenerate states. Therefore, taking
matrix elements of Eqs. (38b) between states

~
1) and

j 2) with energies Et and E~ which are different, we get

(&t—a)

&HAIK-I2)

= 2i[~-p(1)+~.p(2)](1IKp I» (39)

Therefore, the generator E may connect the states
~
1)

and (2) only when Et—Es is a nonzero eigenvalue of
the matrix ~~if'& P(1)+a&„P(2)] Thus, i.f we know the
a& &, we can calculate the energy spacings. In a phenome-
nological analysis we have to find the u & from the
knowledge of the energy spacings.

P=po, K= mqo, (41)

[J;,J;]=ie;,gJp, [J,,P,]=is,,7,Pk,

[J;,K;]=ie,;gK'g. (44.)

The operators P, J, K, and the identity now close on an
algebra. This algebra is the SGA. The Hamiltonian IX
maps this algebra into itself by commutation,

[H,P,]=0, [H,J„]== 0, [H,K,]= i P;. (45)—
(We may of course consider H as a generator of the
SGA.) In particular, the generators (P,J} form the
symmetry subalgebra. The Casimir operators of this SA
are not functionally independent since for a, single
spinless particle J P=0.

It is interesting to note that the dilatation opera, tor
defined as

D= (1/2m)(P K+K P) =-', (p q+q p) —(p'/m)t (46)

is a constant of the motion with an explicit time depen-
dence. It is instructive to rewrite D in the following
more suggestive form:

D= ', (p q+q p) —2FI-), (47)

where we have substituted for the free single-particle
Hamiltonian

H = p'/2m, . (48)

The dilatation operator D has the following commuta-
tion relations with the generators of the SGA:

[D,P,]=iP;, [D,J,]=0) [D&K,]= iK, , (49)—
and the commutator of D and JI is given by

[H,D]= i (P'/m) I—(So)

Since P'/m cornnnites with all the generators of the

and have essentially the canonical commutation
relations

[P,,P,]=0, [K,,K,]=0, [P;,K,]= imb—,,I, (42)

where I is the identity operator.
These operators already have the standard explicit

time dependence. However, since f appears in K linearly,
the operator KgP is independent of t and will furnish
additional generators for the symmetry algebra. These
are, up to a, factor m, the generators of rotations J,
where

J=-q&&p.

They have the following commutators among them-
selves and with the operators P and K:
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symmetry algebra it can be thought of as cvDI in the
sense of Eq. (38b). Therefore, we could consider as
SGA the algebra generated by P, J, K, D, and the
identity operator. The Hamiltonian does map this
algebra into itself by commutation.

P=p cosplt+mlpq sincvt,

K= mq cosa&t —(P/lp) sinlpt.
(51)

They satisfy Eq. (2) and are normalized in such a way
that when the frequency ~ goes to zero at Rnite t they
go over to the operators I and K of the former problem.
Again we have

P=po, K= mqo, (52)

and the commutation relations

[P' Pj]=0~ [K)K~]=0 [P 'K]= imB„I, —(53)

and again the operators P a,nd K have the standa, rd
time behavior. We can now use the fact that cos'co/

+sin'let=1 to ehminate t from the following second-
order polynomials in I and K:

K&&P, P;P,+pj'IC, IC, . (54)

These are, up to factors of m and 2', the generators of
rotation J and the quadropole generators Q;, ,

J=q&&p) (-5)
Q;, = (1/2mpl) (p;p,+m'lp'q~qj),

with the following commutators among them:

[J;J,] , ie;=kJk,,
[Jiiygjk] = Z(eij lglk+ eiklgj l) y

[Qij&Qkl] = &i (&ikej lm+ &ilejkm+&jkeilm+ &j leikm) Jm.

(56)

These are commutation relations of U(3). The algebra
of SU(3) is generated by the three components of J and
the traceless part of the tensor Q. The trace of the
tensor Q is just the Harniltonian divided by lp. We,
therefore, have here an example of the linear case. The
operators J, Q;, , [1/(mlp)"']P (cp/m)"'K and the
identity are now dimensionless operators closing on an
algebra since

B. Three-Dimensional Isotropic Harmonic Oscillator

It is customary to regard SU(3,1) as the SGA of this
problem. '0 We prefer to consider a contracted version of
SU(3,1) as the SGA. Consider the operators

These equations together with Eq. (37) are the com-
mutation relations of a contracted version of SU(3,1)
and exhibit explicitly the SGA. The Hamiltonian maps
this algebra into itself as follows:

[II,J,]=0,
[II,Q j]=o,

[II,(1/mlp) 't PP;]= ipp[(pl/m) tisK,],
[II,(a&/m) "'K;]= —i&p[(1/mlp) ' "P,],

(58)

exhibiting explicitly the augmented symmetry algebra
U(3) generated by J, and Q;;. Again the Casimir
operators of this U(3) algebra are functionally depen-
dent since Q,,J;=0, and-'' IIP= 4&P'(Cs+3), where Cp is
the second-order Casimir operator of SU(3).

To have a noncontracted version of SU(3, 1), one has
to change the commutators in Eq. (53). This can be
fairly easily accomplished in a classical treatment by
multiplying I'; and E, by functions of the Hamiltonian.
The functions thus calculated contain one free param-
eter" which allows one to make the SGA either a com-
pact SU(4) or a noncompact SU(3,1). It is not clear
what one gains this way from our present point of view.

li (k,x)=B lt coskx+k iksinkx,

fl (k,x) = —B lt sinkx+k y coskx,
(59)

where the constant four-vector k„ is a possible four-
momentum of a single-meson state

k2=m~.

We have thus exhibited 2~ conserved vectors. We
dehne their charges by

A (k) = [Bpitl cos(kpt kx)—

C. Free Spinless Field

We did not deal with Geld theories at all but we
mention this example because of the formal similarity
with the former two examples. We shall use this example
later when we make some speculations on systems with
an infinite number of degrees of freedom.

We are looking for conserved currents v which
depend on space-time both explicitly and implicitly
through the fj.eld operators and their partial derivatives.
For the massive spinless field lt(x), the following are
examples of such currents:

+ k,y sin(k, t —k.x)]d~x,

(61)
(57) IT(k) = [ Bpit sin(k—pt —k x)

+kpqb cos(kpt kx)—]d'x.

L. I. Schiff, Qgantum Mechanics, 3rd ed, (McGraw Hill, New
vora', 1968), p. 241.

"N. Mukunda, I'. O'Raifeartaigh, and E. (;. (». SUdarshan,
Phys. Rev. T.etter~s 15, 1041 (1965).

[J,, (1/mip)'"P ]=ie;,k(1/mip)'i'Pk

[J',(~/m) 'isK ]= i....-(~/m) '&PK, ,

[Q;;,(1/mlp) 'i'Pl. ,]
= i ', {(id/m) "'K;B,k+-(lp/m) "'K;B;k), .

[g;;,(ep/m) 'i'Kk]
= —i-', ((1/mlp) "'P;Bjk+ (1/mcp) "'P.B k)

'"T&. C. Hwa and J. Nuyts, Phys. Iiev. 145, 1188 (1966).
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They fulfill the following commutation relations:

LA (k),A (k') g =0, LB(k),B(k')7 =0,
LA (k),B(k')$= —iko& "(k—k') (2pr) '. (62)

order to exhibit the algebraic structure without getting
into the questions connected with noncommutativity
of p's and q's.

Define then

The four-momentum operator I' maps this infinite
Heisenberg algebra into itself:

t P.,A(k)g= ik.B(k), LP B(k)]= —ik.A (k) . (63)

Our discussion up to this point is completely equivalent
to the standard introduction of creation and annihila-
tion operators.

For the massless spinless field, the same expressions
(59) with k'=0 give conserved currents but there are
other conserved currents that are peculiar to this
case. They are

c.( )x=- r}.rtp, d.(k,x) = k rtp r} rtpk —x, (64)

D. Hydrogen Atom

We write the Hamiltonian of the system as follows:

where now k is an arbitrary four-vector. We do not go
beyond this formal analogy but one shouM bear in
mind that in a theory with an infinite number of degrees
of freedom there may exist conserved four-vectors whose
charges diverge (do not annihilate the vacuum).

2Hg
U4= —y q siny —sV 1 — — cosy,

se

1
U=y q cosy —— X'(y q) sing +pe sinp-,

nzse'

2Hq
V, = —p q coss +sp(l+ sissp,

se

1
V= —p q sing+ —lV(y q) cosio +qV—sinrp.

mze'

In these expressions,

m(ze')' "'
Pl

—2H

and the function y is given by

—-2e- ~ --SH —
~

pq ——
m(se') ' m(ze') '

(68)

(69)

(70)

(65)H = p'/2m ze'/q—
The reader will recognize the coefficient of the ] in y as
the classical frequency. ' A slightly different form for y
is the following:

(for hydrogen itself, a=1). We confine our detailed
discussion to the bound states but similar considerations
are applicable to the scattering states. The structure of
the symmetry algebra was pointed out explicitly by
rock" and Bargmann, " but it is implicit in Pauli's
work. " The symmetry algebra is SU(2) SU(2),
generated by the angular momentum vector

—1/2

(p q —2Ht)
m(ze') '

J=-qXy

and the Pauli-I. enz vector (properly normalized)

1
A= — ——,'(JXp —pX J)+mac'- . (67)

(—2mH)"' q
3f4; ——3;,
AVC i&

=
g 6ij kJk q

M5 ——U,
M6. ——V„,

Bacry" calculated the classical explicit form of the
generators that enlarge the symmetry algebra to an
SO(4, 1) SGA. His expressions contain an arbitrary
function 0(H), and a constant related to the normaliza-
tion of the generators so that they yield the semisimple
algebra of SO(4,1). In our approach, 8(H) is a definite
function, namely, t —SH'/m(se')'j"'t. On the other
hand, we actually construct the algebra of SO(4, 2). We
comment later on the difference between these two
algebras. In the following, we write classical expressions
for the generators and calculate Poisson brackets in

(72)

m(ae')' "'
—2H

Ke then have

The expression p q —2Ht resembles Eq. (47), but in the

(66) present problem it is not conserved and also fulfills only
the last two Eqs. (49). The U a.nd V (rr=1, . . . , 4)
all fulfill Eq. (2). To write down the Poisson brackets
between them, which define the SGA, let us define

2' V. Pock, Z. Physik 98, 145 (1935).
'4 V. Bargrnann, Z. Physik 99, 576 (1936).
2~ W. Pauli, Z. Physik 36, 336 (1926).
PP H. Sacry Nuovo Cimento 41As 222 (1966}.

L~ABstiICD jP.B. (gBC~AD gCD~AC

+gAD7ilac gAc~aD), (73—)

"H. Goldstein, Ref. 2, p. 304.



FINITE —D I MENS IONAI SPECTRUM —GENERATING ALGE B RAS 2953

where g g~ is diagonal with diagonal elements
(1, 1, 1, 1, —1, —1). The way the Hamiltonian maps
this algebra into itself is as follows:

[H,M p]pr3, ——0, n, P=1, . . . , 4

[H ilf 56jp.13.

8II8 —I /2

[H, U.jp, =
,
——— V. ,

365(ze') '

P,Q3 —I/2

[H, V.jp, r3
=

err(se') '

In this example the augmented symmetry algebra is
SO(4)80(2) and the cv are functions of the Casimir
operators of SO(4). To explain what happens if we
construct SO(4, 1) as a SGA, we note that

—2H —'/'
V = — — M pUp

m(ee')'

The V are mapped into themselves as follows:

4II'2

[H, U„]pr3 ——
, .M pUp,

8S SC

but now the or p do not have vanishing Poisson brackets
with all the iV~g.

(d') A spectrum-generating algebra is minimal in the
sense that it does not have a proper subalgebra with the
same properties.

Having given a definition to a SGA, we want to
introduce some notion of stability of the structure
against small perturbations. This is a necessity because
one uses approximate Hamiltonians to describe physical
systems. I.et us suppose then that we have a Hamil-
tonian HP) dependent on a parameter X such that, for
small enough X,

(77)HP) =Hp+XHr.

I et us suppose that for X= 0 we have our algebraic
structure

[G,,G,j= ic„,'G5,

[H6,G,]= i-', (G5cd, "+(o, 'G5),

(78a)

(78b)

and that for P«0 we also have an algebraic structure

[F;(x),F,(x)j=ic,,'F5/, ), (79a)

[H(X),F,(X))= 6-,'(F, (X)~,"(X)+~,"(X)F,(X)), (79b)

where the operators F;(X) may depend on X and their
number may be different from the number of the G;.
The notion of stability we want to introduce is that in
some sense as X tends to zero Eqs. (79) reduce to Eqs.
(78). Let us first discuss the relations between Eqs.
(79a) and (78a). Letting X tend to zero in (79a), we get
a contracted version of the SGA (79a), which we write

VI. DISCUSSION
[F;,F;j= ic;,"F5. (80)

Summing up what we said up to this point, we have
the following algebraic structure defining a SGA.

(a') The generators of a SGA are Hermitian operators
which are all constants of the motion. Some of them
may have an explicit time dependence.

(b') They form a Lie algebra under commutation
with structure constants that are numbers.

The Hamiltonian maps this algebra into its gener-
alized enveloping algebra by commutation such that
(1) the subalgebra of operators that commute with the
Hamiltonian contains the symmetry algebra (we re-
ferred to it as the augmented symmetry algebra) and

(2) the image of the operators that do not commute
with the Hamiltonian is a linear combination of the
generators of the algebra with coeKcients that commute
with all the generators of the augmented symmetry
algebra.

(c') Given a set of eigenstates of the Hamiltonian, a
spectrum-generating algebra is maximal relative to this
set in the sense that the linear space generated by these
states is irreducible under the action of the algebra. (In
order not to consider artihcial situations which are
correct mathematically but are nevertheless uninterest-
ing from a physical point of view, the given set of energy
states should in some sense form a band. )

We then demand that the SGA (78a) is a subalgebra of

(80). Therefore, by appropriate choice of basis we may
identify the G; with a subset of the E;.We also demand
that as X tends to zero Eqs. (79b) are such that they
map this subalgebra of the F; into itself. Therefore,
some of the ~,"P.) should tend to the appropriate rd,

"
as X tends to zero.

Ke may encounter a situation where the following
two conditions are fulfilled.

(1) The number of G5's is equal to the number of

F5P }'s so that Eqs. (80} and (78a) are identical.

(2) The matrix elements of the F,(P ) in the representa-
tion relevant for the set of Eqs. (79) get contracted to
the matrix elements of the GI, in the representation
relevant for the set of Eqs. (78) as X tends to zero.

In such a case we shall say that the perturbation
Hamiltonian Hl is preserving the Hilbert space of the
Hamiltonian Ho.

If, in addition, the Lie algebras defined by Eqs. (78a)
and (79a) are identical, we shall say tha, t the perturba-
tion Hamiltonian is structure preserving. The usual as-

sumptions one makes about the electromagnetic and
weak interactions amount to the assumption that they
are structure preserving, at least as far as the symmetry
algebra of SU(3) is concerned.
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(81)

which may depend explicitly on the space-time point x.
Ke then form the space integra, ls

~1 ) ~ ~ ~
& &n to .., ... ,.„d'x.

Actually our last remark is quite an extrapolation
outside of the realm of systems with a 6nite number of
degrees of freedom with which we dealt up to now. We
therefore make now some elementary remarks about
generalizing our scheme to systems with an infinite
number of degrees of freedom.

For sp stems with a 6nite number of degrees of
freedom our scheme involved two elements: the intro-
duction of constants of the motion which have an
explicit time dependence and the action of the Hamil-
tonian on these constants of the motion.

The generalization of the first element to systems
with an infinite number of degrees of freedom was
already mentioned in discussing the free spinless fieM.
Ke consider conserved tensors 3

Hamiltonian on this algebra. One possibility is to con-
sider the action of the momentum four-vector, namely,
to demand that

(83)

is linear in the T's with some condition on the coeffi-
cients of the linear combinations.

Alternatively, one may argue that the interesting
object is the mass spectrum and not the energy spec-
trum and, therefore, one should consider

(84)

Since we lack a solvable nontrivial relativistic in-
variant 6eld theory, it is hard to put forwa, rd even
heuristic arguments at this point.

Let us close with a general remark concerning particle
physics. Our last remarks would tend to suggest a,

somewhat conservative if not reactionary point of view.
According to this point of view, the spectrum of masses,
spins, and internal quantum numbers would result from
consideration of integrated quantities like T 1 aTld

not of local current components.

If these space int;egrals do not vanish identically, they
form constants of the motion which may depend ex-
plicitly on time. QVe do not consider in this elementary
discussion symmetries of the Nambu-Goldstone type. )

As is well known, the generators of the Poincare
algebra can be built in this way out of the conserved
sy mmetric energy-momentum tensor. The following
interesting problem arises here: Can one build con-
served tensors out of the components of the energy-
momentum tensor, the components of conserved
SU(3)CSSU(3) currents, and the space-time point x
other than the SU(3) tsSU(3) charges and the Poincare

generators)
For a system with an infinite number of degrees of

freedom, we expect an infinite-dimensional SGA. The
question now is what is the analog of the action of the
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