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We discuss the necessary modifications of the state space for quantum fields interacting with strong
stationary external fields. In addition to the introduction of an indefinite metric, we discuss the possibility
of having a positive-definite metric without a vacuum state.

I. INTRODUCTION

'X the preceding paper' we discussed the formal and
~ ~ physical aspects of time-dependent external inter-
actions of quantized fields. Whereas in the time-depen-
dent case (i.e., the interaction is "switched on and off"),
the underlying Hilbert space is the free-particle rock
space of the particles before (or after) the interaction
and hence, the metric is positive definite, this ceases to
be the case for time-independent (i.e. , stationary) ex-
ternal interactions. Such interactions either require the
introduction of an indefinite metric or (with a positive-
definite metric) lead to a breakdown of the vacuum
postulate and a breakdown at a complete particle inter-
pretation. This happens if the interaction becomes su%-
ciently strong. The mathematical aspect of this peculiar
phenomenon is completely consistent, and physically
there is no catastrophic instability' and therefore no
a priori reason to reject such a possibility. The problem
of whether realistic quantum field theories can lead to
such solutions is not discussed here, and we will only
make some speculative remarks. We want to emphasize,
however, that the external interaction of a spin-~ par-
ticle is an exception; here the conventional picture of
positive-definite-metric bound states remains correct.
independent of the size of the interaction, a fact already
pointed out by SchifI', Snyder, and Weinberg. '

II. SIMPLE EXAMPLE FOR s=o WITH
INDEFINITE METRIC

Consider a charged Klein-(~ordon Cield with an ex-
ternal scalar interaction V(x):

82
=- —V +m(m —V) A(x) =0.

The corresponding stationary classical equation

4,4;d3x = 1. for bound. -state

wave functions,

4 &(x)4» (x)d'x = 5(k —k') for scattering state

has (for a, suitable class of potentials, for example,
Kato4 potentials) a complete set of discrete and con-
tinuous eigenstates where the latter correspond to
scattering states. Since the energy enters the equation
quadratically, we get for each energy also the negative
energy. The energy becomes pure imaginary if the po-
tential is sufficiently attractive. We normalize the wave
functions according to (E'=k'+m')

wave functions. (3)* Supported in part by the U, S. Atomic Energy Commission
under Contract No. At-30-1-3829.

'B. Schroer, R. Seiler, and A. J. Swieca, preceding paper,
Phys. Rev. D 2, 2927 (1970).

The word instability is used in a generic sense to denote var-
ious types of physical and mathematical pathologies and in-
consistencies. These may already occur on the c-number (or
algebraic) level, like the inconsistencies of Pauli-Fierz equations
with particular external interactions (Ref. 1), or the coupling of
unphysical solutions to the physical ones, as in the case of Joos-
Weinberg equations with interactions (Ref. 1).On the other hand,
instabilities may show up on the level of quantization as exempli-
fied by the "old" Dirac theory (without the reinterpretation) of
quantized positive- and negative-energy electrons in interaction
with photons. The instability relevant for this paper is the one
discussed by Schi8, Snyder, and Weinberg (Ref. 5) of a Klein-
Gordon particle in a smooth external potential if one quantizes
the Klein-Gordon Geld in a positive-definite Fock space. As pointed
out by these authors, a potential suKciently large numerically, but
otherwise well behaved, leads to a mathematical inconsistency for
such a quantization.' I.. I. Schiff, H. Snyder, and J. Weinberg, Phys. Rev, 57',
(1940).

The completeness of these wave functions is conven-
iently expressed as

g 4;(x)4,(y)+ d'k 4»(x)4»(y) =6(x—y).

We write the field operator at t=0 as

A (x) =Qq, C;(x)+ d'k q(k) 4 k(x),

A" (x)=w(x) =g p,C,(x)+ d'k p(k) 4 &(x) .

315 4 For example, T. Kato, Perturbation Theory for I&near Oper-
ators (Springer-Verlag, New York, 1968).
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The canonical commutation relations,

[A (x),2-(y)] =28(x—y) = —[A+(x)p+(y)],
[A (x),A (y)] =0= [7r (x),2.(y)]=etc. ,

together with the completeness relation (4), lead to

Lq', P 5=2,
[q(lt),p (lr')] ='b(lr —lt')

[q;,q;]=0=etc.

(6)

q(k) = —[b"(lt)+a(k)],
(2~ ) i/2

P (lt) = —2(2~2) "'[b(lt) —at(lr)],

q, == (b:"+a—)
(2~.) i/2

P;= -z(-'2(o )"'(b -a")

For all continuous states' and bound states whose en-
ergy is real, we introduce the "mode" operators

These follow from the definition (9) and the commuta-
tion relation (7). The only consistent way for construct-
ing a Fock space is to use an indefinite metric:

alo) =bio) =0,
a&lo&= la&, b lO&= lb)

(a I a) =(bib& =0,
(12)

The Hamiltonia, n which does the t.ime translation (10)
is then

possibilities of "quantization, " i.e., construction of a
Hilbert space with the operators a, b acting in it as an
irreducible set of operators which are consistent with
the given Hamiltonian. The first quantization consists
in viewing the imaginary-energy operators in the same
way as the .creation and annihilation operators of the
real energy modes. However, the commutation relations
for the imaginary-energy modes are

[a,a]=[a',a]= [bt,b] = [b,b]=0,
[a,b'] =2.

whereas for the imaginary-energy bound-state wave &=&P &isa /Yb )+ Q '+i(i~ ai+''i b )'
functions we introduce the transformation (X2= —E2)

q
= — (a+b)

(2X,) /2

q:"= —— (a'+b ')
(2X;) i/2

+ &u(k) [/V, (itr)+.Yi,(k)]d'k, (13)

where the /V(k) and /V; for the positive-energy modes

(9) are the usual number operators, and for the imaginary-
energy modes

The charge operator Q which has the infinitesimal com-
The operator at, an arbitrary time can then be written as,riutation relation [Q,A (x)]= —A (x) is given by

a;
A(x, ])=Q — C;(x)e ""+—4,(x)e""

' (2Z)'/' (2X;)"'
C;(x)

(a e~ r"i t+ b ie~e;t). '.
Ll;y 0 (2g.) i/2

a(k) bt(k)
+ —c/, (x)e '""'+ —c/, (x)e'"2' ld'k.

(2(e2)"' (2(o2)"'
(10)

One might think that the quantization will lead to
instabilities owing to the presence of the exponential
increasing time factor. This is, however, not the case.
It will be demonstrated that there are precisely two

"' The continuous spectrum is completely contained in E'&eP.
For our special model (2), this follows immediately from the
location of the continuous spectrum of the Schrodinger equation.
For the general case, it is a special result of the statement that
the part of the resolvent {41)outside the continuum E'&m' is a
compact operator, a fact which is demonstrated in a similar man-
ner as in the Schrodinger theory (Ref. 4).

Q=g( N„+/, ;)+ Q—(——-Y~;+iY/;)

[—X.(A)+ X2(k)]d'k. (15)

11= ~t(x)~(x)+vAt(x) vA(x)

+2/2(2/2 —V)At(x)A (x)d'x, (16a)

Q = i 2r(x)A(x) vrt(x)At(—x)d—2x (16b)

The case of bound states with zero energy in our model
requires a special treatment. In this case, the contribu-
tions of these modes to the Hamiltonian (16a) and to

alp to (infinite) e numbers, these operators are the same
as their well-known expression in terms of canonical
variables:
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La,at)=0=' ' Lbt ah= 1

II=6 8)

(18a)

(18b)

the charge operator (16b) are

H=p'p, (17a)

Q= i(p—q p'—q') (»b)
These operators still commute as they should: $H, Q] =0.
Introducing as our creation and annihilation variables

at=Pi, br=iq,
we obtain

can be written as

p+p $2q+q i
L (po))2 $2 (q(li)2]

+kL(p"')' —I '(q"')'I (22)

These operators clearly have a representation in a posi-
tive-definite Hilbert space; the Hamiltonian (22) de-
scribes "repulsive oscillators. "

It is convenient for our discussion to introduce a func-
tion space L'(x,y) and to write our operators as

Q = i (bta —atb) +c-number, (18c)
with

Q I
a) = —

I
a& (c-number omitted),

Qlb&= —
Ib&

(19a)

(19b)

III. SAME INTERACTION IN THE
"NO-VACUUM REPRESENTATION"

As far as the treatment of the positive-energy oper-
ators is concerned, the Fock representation is the only
possibility. The contribution from the imaginary-energy
states can, however, also be represented differently
from the (necessarily indefinite) Fock representation of
Sec. II. In order to see this, let us introduce instead of
a, , b, the canonical variables (we omit for convenience
the index i)

p= (p"'+ip"')l~~, q= (q"' iq"'Vv ( )—
In terms of these Hermitian quantities, the contribution
of the imaginary-energy operators to the Hamiltonian

'This is discussed in most of the standard text books on
quantum field theory, for example, in J. D. Bjorken and S. D.
Drell, Relativistic Quantlw Fields (Mc Graw-Hill, New York,
I'1968).

Hla)=0, (20a)

(20b)

i.e., Ia) is an eigenstate of H with eigenvalue zero,
whereas Ib& is an associated eigenvector to the same
eigenvalue. In terms of physicists' language about the
indefinite metric in quantum theory, this is the so-called
dipole-ghost situation.

It should be emphasized that the conservation of
energy and charge prevents any catastrophic pair crea-
tion of imaginary-energy particles. This would not be
the case if we were to view our stationary problem as
an adiabatic limit of time-dependent problems. In this
case, we would always stay in a positive-definite metric
space, and we would run into the "Klein paradox. '"
The vacuum of our genuinely stationary problem is
infinitely different (for example, in particle number)
from the "adiabatic" vacuum. The expectation values
of the current density and the energy density vanish in
the imaginary-energy sta, tes Ia) and Ib), respectively.

1
q&" = — —x+i—

(2X) ')' Bx

B

) '"=sl)"'(y —i—
(23)

1 B

q
(2) y+i

(2X) ')' By

Then the contribution to the Hamiltonian and the
charge operator, (16a) and (16b), can be written

0=-', k )x—+-', ) +-', X )y—+-', )),
BS By

B B
Q= ~: x——y-

By Bx

(24a)

(24b)

Equation (24a) is proportional to the infinitesimal gen-
erator of the dilatation operator:

U(a))p(x, y) =e—Q(e—"x,e—y),
U(a) =exp(i'/X),

whereas Q is the infinitesimal generator of rotations in
the xy plane. The simultaneous eigenfunctions are

(r) is—i emmy

(r, if)) = - —,e = real, m = integer (26)
(2ir) "' (2ir) "'

e =eigenvalue of dilatation generator,

m = eigenvalue of Q.

Then eigenfunctions are orthonormal,

rdrdg = b(e —e') 8 (27a.)

and form a complete set:

b(ri —r,)
de )P, „(xi)P, „(x.) = 5(yi y.)—-—

=b'(xi —x2) . (27b)
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Thus, we have constructed a field A(x) fulfilling Eq.
(1) and operators H, Q acting in the Hilbert space:

The corresponding c-number equation in the two-com-

ponent formalism reads

(28)

where BC'„~ is the Fock space generated by the positive-
energy creation and annihilation operators. Clearly, H
and Q have the correct commutation relations with
A (x), and hence

ia,p= (110+&~)P, ~=( i.

(30)

A (x t) =e'~'A (x)e '~'

The field A (x) is a causal solution of the external field
equation, but in K there is no vacuum state. The part
due to the harmonic-repulsive-oscillator treatment is
essentially a "no particle"-like solution. We will not
discuss the conceptual difFiculties with an asymptotic-
particle interpretation which occur in such a case.

The fact that the two types of quantization we dis-
covered are the only possible ones for the Hamiltonian
problem at hand follows from the well-known fact that
the representation of the continuous part of the Hamil-
tonian which has the form

(o(k) LiV.(k)+.Vp(A, )]d'k

~

~

V 0
Hg ——

A'+~i Br,A'} V)

If we were able to find a complete set of eigenstates

(31)

we would write the field as

pA(x) =2 4,(»)c;4.t(x)

fir, a(x)C(k) d'k, (32)

uniquely selects one representation, namely, the Fock
representation of the a(k) and b(k) if the Hamiltonian
is to make sense as a self-adjoint operator in the repre-
sentation space. ~ The remaining dynamical variables
related to the bound-state (real or complex) energy
c-number wave functions contribute a finite sum of
"inverted" oscillators (19) to the Hamiltonian. For the
usual quantum-mechanical state space, this leads to the
no-vacuum quantization. The other (indefinite) quan-
tization can only be obtained by abandoning the usual
structure of quantum theory in favor of an indefinite
metric. The states of this indefinite-metric quantization
can be formally obtained by analytically continuing the
ordinary oscillator eigenfunctions in the spring constant
to imaginary values. The uniqueness of the representa-
tion of the dynamical problem in the positive-definite-
metric case is an illustration of a conjecture by Araki'
that for dynamical problems not involving zero mass,
the algebraic form of the Hamiltonian determines
uniquely an irreducible representation of the canonical
commutative relations.

IV. REMARKS CONCERNING GENERAL CASE

The discussion can be generalized to other interac-
tions and also to higher-spin equations. Consider, for
example, an s=0 particle interacting with an external
electromagnetic field:

(D„D&+m')A (x) =0, D„=B„iA„. (29)—

' S. Doplicher Commun. Math. Phys. 3, 228 (1966).
s H. Araki) J. Math. Phys. 1, 492 {1960).

where we have used C as a generic notation for
"annihilation" ("creation") operators for particles
(antiparticles) .

The canonical structure of the held is now expressed as

L+"(»),+"(y) j= — ~(»—y) . (33)

The physical norm (from conserved current) of the
two-component wave function is the time-independent
but indehnite expression

Q,P) = — P"(x)r2$(x) d'x. (34)

where Pe is an ordinary eigenstate of H. Note that the

The commutation relation of the operators C follow

from the normalization properties of the energy eigen-
functions Pa in the physical metric (34), together with
the canonical structure (33). Before we work out those,
let us make some salient remarks about completeness
of eigenstate (31). The c-number Hamiltonian H is
formally self-adjoint with respect to the indefinite
metric (34); this is nothing but the conservation law of
the c-number "charge. "But this "pseudo"- self-adjoint-
ness does not lead to the completeness of eigenstates.
In fact, from the analogy with general matrices and
Hilbert-Schmidt kernels, one might hope that the eigen-

states, together with the associated eigenstates, form
a, complete set. A state Ps' is called an associated eigen-
vector of II if

(35)
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and can be made arbitrarily small for Ims su%ciently
large. Because of this the resolvent

)C3 0(
I'IG. 1. Singularities of the resoh"ent in the complex energy

plane, and the contour of integration for the proof of com-
pleteness.

(39)

exists for sufficiently la,rge Ims and is analytic. The
completeness is shown by writing a contour integra, l

a,round an analytic point

eigenvalues of pseudo-self-adjoint problems like (31) do
not have to be real. However, the pseudo-adjointness
with respect to the nondegenerate metric (34) brings
a,bout the following properties:

(1) The eigenstates belonging& to an eigenva, lue L'i are
orthogonal Lin the sense of the inner product. (34)] to
eigenstates belonging to E2 if E~4By.

(2) For each complex eigenvalue L~' there exists the
complex conjugate value E. The eigenstate belonging
to a complex eigenvalue necessarily has vanishing physi-
cal norm, and the inner product between Pz and PE can
be chosen a,s

(40)

One then deforms the contour in the way indicated in
Fig. 1.In order to make such a shift of contour possible,
we must write the resolvent in terms of a H.S. opera, tor
which retains the H.S. property on the boundary:

1
1—Hi——

II—s Hp —z Hp —™

+0 AB =———.
) 8&)

Ho —s &o—s
(Pg,fz) =i (36)

(3) If an associated eigenvector fz' exists, then the
norm of the eigenvector must vanish. Changing the
associa, ted eigenvector by adding a multiple of the
eigenvector, one can always obtain (for the changed
associated vector)

with

1 C(z) 1
- 1—Hi— - +A — — -A=

E sP z —1+C(E) P——2)

C(z) =8 -B. —-

Hp

(Pe,PE') =0, (Pe,P&) =1.

The three statements are demonstrated in a, straight-
forwa, rd way by using the pseudo-self-a, djointness of H
with respect to the nondegenerate metric (31).

The proof of the completeness of eigenstates (includ-
ing associated eigenstates) is considerably more in-
volved. Here the indefinite metric is of no use and one
has to employ the positive-definite energy metric:

A=8= (42)

Here we imagine the interaction being written as

Hg=A B=BA,
where A and 8 are ma, trices whose matrix elements con-
tain the square root of the local interaction. In the spe-
cial case of an electric potential, A and 8 a,re just the
ordinary square roots

)lp~(
'= (zc,xc)+(c,j), (38)

where

(x,x)=
)
x)'d'x.

In this metric Hp is a self-adjoint operator, and H~ is
bounded' (but not self-adjoint). The resolvent 1/(Ho —s)
exists for all s away from the cuts (—~, —rn), (rn, +~),
and the kernel G, (x—x') representing x space is a func-
tion which falls off for large distances. For interactions
which are bounded decrea, sing functions in x spa, ce, the
operator L1/(Ho —z)]Hi is Hilbert-Schmidt (H.S.) in
the energy norm. Its H.S. norm is the "energy" trace of

1
IIg~- -- -- — —- - -Hg

Ho-s Ho-s

The two 8's provide enough convergence so that C(s)
will sta, y H.S. even on the cut. ' The only difference
from the self-adjoint case lies in the fact that C(z) is a
non self adj oint H.S. o-pera-tor. The eigenstates and asso-
ciated eigenstates of C(s) with the eigenvalue —1 give a
singularity of L1+C(z)$ '. We now can shift the con-
tour (37) to the cuts. The pole contribution will be
exactly the sum over the eigenspaces (including the
associated vectors). The contribution from infinity cor-
responds to the 8 function in the completeness rela, tion,
whereas the cut is just the contribution from the (scat-
tering) continuum. Note that the number of associated

9 See, for example, W. Hunziker, in Lectures irl, Theoretica&
Physics, edited by W. E. Brittin, 3. W. Downs, and J. Downs
(Wiley-lnterscience, New York, 1967), Vol. IX.



l NDEI I N I TE ME "I RIC AND STATIONARY EXTERNAI. ~ ~ 2943

and ordinary eigenvectors (the so-called algebraic mul-
tiplicity) belonging to the eigenvalue 1 is finite. We will
be satis6ed here with this brief sketch and give a more
explicit proof elsewhere. Using the completeness, we
may write the quantum Geld as follows:

+'&=+'fa,PE, (X)e. ' "+bPg,e* . "]
+2"L;O.' "'+-b'(~" '"+O..)]+~:-.".

(43)

Here P .„„,i'& is the contribution coming from the con-
tinuum and the real-energy bound states without asso-
ciated eigenvectors and the primes on the summation
symbols indicate summing over eigenstates and asso-
ciated eigenstates, respectively. For the "normal" con-
tribution, the orthogonality proportion in the physical
metric, together with the canonical commutation rela-
tions, leads to the ordinary (positive-definite metric)
commutation relations for the creation and annihilation
operators of the particles and antiparticles. In the case
of complex eigenvalues, we obtain fusing (33)]

I
L

'
~

u t t

I I
r r r

FIG. 2. Bound states as a function of the potential strength
in the SchifI'-Snyder-Weinberg model.

the "negative oscillator" quantization in a positive-
de6nite Hilbert space without a vacuum. Taking these
features into account, there are no inconsistencies or
instabilities. The described situation will even remain
stable if we add to the stationary interaction a, time-
dependent interaction with a hnite extent in time:

H =H p+ Vp+ V (x,t) .

In this case the Yang-FeMman equation can be taken as

[a,at] =0 = [b,b"]=
[a,bt] =i,

whereas for the associated situation,

(44)

A (x) =A;„(x)+ Gii(x,x', t t') V(x')d—'x', (47)

t a,bt] =1. (45)

The quantization is the same as explained in Secs. II
and III. The Hamiltonian and the charge operator of
the canonical theory,

H'~ = e'»(x)H(x) e'~(x)d'x,

Q = — +'&"(x)T,+'P(x)d'x,

ha, s (up to c-numbers) the form (13) or (15), where in-
stead of (5) we now ha, ve the complex energies E; or E,,
respectively.

A special case of such a problem has been discussed by
Schiff, Snyder, and steinberg. ' For a Klein-Gordon par-
ticle in a square-well electric potential, the solution of
the c-number problem leads to the following spectrum
(Fig. 2). At a value V;„of the potential depth (with
axed range), a particle bound state develops. At a larger
depth V', an antiparticle bound state appears. Then
two bound states coalesce at a, value V", where one en-
counters an associated eigenvector (dipole-ghost situa-
tion). After this value, one has a pair of complex eigen-
values with E and E. Every bound state develops out
of the continuum and runs through the dipole situation
before it becomes complex. YVe differ essentially from
the aforementioned authors' in the use of associated
eigenvectors for reasons of completeness, and in the
quantiza, tion using an indefinite-metric Fock space, or

where Gg is the retarded Green's function of the sta-
tionary problem. If the time-dependent potential is
extended in time to 3=& ~, the Yang-Feldman equa-
tion would, however, lead to troubles, in view of the
fact that G~ has a contribution which exponentially
increases in time (coming from the classical complex-
energy solution). In the Lee-Wick theory'o of complex
ghosts, one would modify the integration contour in
the complex plane, which in our language would corre-
spond to projecting out the complex energies:

Gii ~ GR =GR Q P.(x)P.(x')e—'
a( —'i (45)

Tmgs+0

It is evident that this substitution leads to a violation
of causality, i.e., the fields A'(x) fulfilling the Yang-
Feldman equation with the new Green's function do
not commute, i.e.,

LA'(x), A'(y)]NO for (x—y)'(0. (49)

'o T. D. Lee and G. C. Wick, Nucl. Phys. BQ, 209 (1969).Here
a prescription is given in terms of the Dyson formula, yielding a
unitary 5 matrix in a positive-de6nite subspace. In the language
of the Yang-Feldman equation and for the special case of external-
field models, this is identical with our prescription."G. Vein an&1 D. 7wanziger, Phys. Rev. 186, 1337 (1969); 188,
22)8 I')W)9).

One can carry this treatment to the case of higher
spin, but one should be aware of the aspects of non-
causality and their physical implications. "The possi-
bility of negative-oscillator quantization does not exist
in the case of half-integer spin.
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H =Ho+ V(x)At(x)A(x)d'x. (50)

Realistic interactions are much more complicated tri-

Ke have been treating in this paper field-theoretical
models of the bilinear type:

linear, quadrilinear, or higher couplings. We see no
reasons why the phenomenon of indefinite metric and
associated eigenstates can not occur if the realistic
coupling is su%.ciently strong. For the same reasons as
one might have overlooked this possibility in the bi-
linear case, one could be actually ignoring it in the
realistic case.
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Finite-Dimensional Spectrum-Generating Algebras
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It is suggested that the generators of a spectrum-generating algebra are all constants of the motion, some
of them having an explicit time dependence. Also suggested is a specific form of the Hamiltonian action
on the spectrum-generating algebra for systems with a finite number of degrees of freedom. Well-known
examples of spectrum-generating algebras are shown to fit into this framework. The stability of the sug-
gested structure against small perturbation is discussed, The question of the generalization of the suggested
structure to systems with an infinite number of degrees of freedom is briefly commented upon.

I. INTRODUCTION

EVERAI years ago the concept of a spectrum-

generating algebra (SGA) was introduced' as a

means of algebraic description of physical systems. This
was motivated by the observation that in certain prob-
lems' series of energy eigenstates with different energies

form a, basis for a single unitary irreducible representa-

tion of a I ie algebra. Thus in a mathematical sense the

SGA can be thought of as a generalization of the sym-

metry algebra (SA). While the SA is represented

irreducibly on states which are energy degenerate, a,

SGA may have as a basis for a single unitary irreducible

representation all the energy eigenstates of a system. In
fact the SGA was required to have as a subalgebra the

SA of the problem.
Of these two algebras the symmetry algebra has an

intuitively clear physical definition. Its generators are

Hermitian operators which do not have an explicit time

dependence and satisfy the following conditions.

*on leave from the Department of Physics and Astronomy,
Tel-Aviv University, Tel-Aviv, Israel.

' Y. Dothan, M. Gell-Mann, and Y. Ne'eman, Phys. Rev,
Letters 1V, 145 (1965);Y. Dothan and Y. Ne'eman, in Proceedings

of the Second Tojical Conference on Resonant Particles, edited by
S. A. Munir (Ohio U. P. , Athens, Ohio, 1965), p. 17. The same

concept is also known as a noninvariance group or a dynamical

group. See, e.g. , N. Mukunda, L. O'Raifeartaigh, and E. C. G.
Sudarshan, Phys. Rev. Letters 15, 1041 (1965); A. 0. Sarut and

A. Bohm, Phys. Rev. 139, 81107 (1965).
' It is interesting that in most of the classical analogs of these

problems the motion is completely degenerate in the classical
sense. Namely, the motion is simply periodic instead of being

multiply periodic. See, e.g. , H. Goldstein, Classical Mechanics

(Addison Wesley, New York, 1959),p. 297.

(a) They commute with the Hamiltonian of the
problem. Since they do not have an explicit time
dependence they are constants of the motion.

(b) They form a Lie algebra under commutation.
Namely, the commutator of two generators is a linear
combination of the generators of the algebra with
coefficients which are numbers.

(c) The symmetry algebra is maximal in the sense
tha, t for any energy eigenvalue the space of all degener-
ate states is irreducible under the algebra. This means
that we do not allow "accidental" degeneracies. (Since
we discuss the symmetry algebra and not the symmetry
group, we have to exclude from the discussion degen-
eracies explainable only by discrete symmetries. How-
ever, it is easy to generalize the conditions to symmetry
groups instead of symmetry algebras)

(d) The symmetry algebra is minimal in the sense
that it does not have a proper subalgebra with the same
proper ties.

On the other hand, the definition of the SGA is more
mathematical. One searches for a I ie algebra of Her-
mitian generators which has the symmetry algebra as a
subalgebra such that all the energy eigenfunctions of the
physical problem which satisfy the same boundary
conditions form a basis for a single unitary irreducible
representation of the algebra. This may be considered a
generalization of conditions (b) and (c) above. Condi-
tion (d) has an obvious generalization, but condition (a)
is not generalized. Stated differently, one poses a prob-
lem of embedding all the spaces of states which are
irreducible under the symmetry algebra in a space


