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Deep-Inelastic Electroproduction and Conformal Symmetry*
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Motivated by the observed scale invariance of high-energy inelastic electron-proton scattering, we study
the constraints on a Compton amplitude that follow if it is invariant under the full group of conformal co-
ordinate transformations. Although the conformal group contains operations that interchange spacelike
and timelike coordinate intervals, a large class of manifestly causal amplitudes can be constructed, We find
that the strict application of conformal symmetry reduces the number of independent covariants from four
to two in the case of a spin-zero target. The two covariants of the conformal Compton amplitude remain
independent when it is restricted to forward scattering. Hence, invariance under the full conformal group
yields no constraints on the structure functions of inelastic electron scattering other than that already pro-
vided by simple dilation invariance.

HE manner in which deep-inelastic electron-proton
scattering probes the constitution of a nucleon is

very different from that of an ordinary scattering
experiment. The form factors of an isolated resonant
state fall rapidly at large momentum transfer, ' and the
deep-inelastic region is probably characterized by the
production of final hadronic states in the continuum
where there is no single state to set a mass scale. Indeed,
Bjorken has proposed, ' and experiment has conhrmed, '
that the inelastic structure functions become scale
invariant at high energy (v/M„) and large momentum
transfer (k'); they become functions ot the single
dimensionless parameter v/O'. If the structure functions
are expressed in terms of a Jost-Lehmann representa-
tion, which embodies the constraints imposed by
casuality, then one 6nds4 that the scaling limit is
directly related to a Fourier transform on the surface of
the light cone of the space-time separation of two
current operators. This suggests that the conformal
group could have some role to play here, for it is that
subgroup of general coordinate transformations which
leaves the Minkowski metric invariant save for an
over-all coordinate-dependent scale factor, and, in
particular, it also leaves the light cone invariant. This
group contains, in addition to the Poincare group and
an over-all dilation of space-time associated with scale
invariance, a four-parameter set of "special" conformal
transf ormations.

*Research supported in part by the U. S. Atomic Energy
Commission under Contract No. AT(45-1)-1388.

'Above threshold, the differential cross sections for several
resonance production processes not only fall rapidly with in-
creasing momentum transfer, but are remarkably close to the
elastic differential cross sections. This is exhibited in Figs. 16-18
of W. K. H. Panofsky's review in Proceedings of the Fourteenth
Internatzonal Conference on High-Energy Physics, Vienna, 196'',
edited by J. Prentki and J. Steinberger (CERN, Geneva, 1968),
p. 35.
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It is clear that strict conformal symmetry does not
apply to ordinary high-energy scattering processes.
These processes appear to be well described by dimen-
sional quantities such as diffraction-peak widths, cutoffs
in transverse momenta, and constant total cross sec-
tions; none of these features is consistent with scale
invariance. ' In the inelastic electron-proton process,
on the other hand, the cross section involves a sum over
all accessible hadronic final states; no quantIties which
exhibit an intrinsic length need appear, and conformal
symmetry could apply at high energy.

With these considerations in mind, we examine here
the constraints imposed by conformal symmetry on the
Compton amplitude for a virtual photon scattering on a
spin-zero target. We shall require strict conformal
symmetry; that is, we shall require invariance with a
nondegenerate vacuum. The absorptive part of this
Compton amplitude for forward scattering gives the
scalar-target analog of the electroproduction structure
functions. Although this strict application of conformal
invariance requires that the target particle be massless,
such a conformal model of the Compton amplitude
could still describe the high-energy behavior of the
scattering of virtual photons on a massive target.

Dilation invariance alone requires that the Compton
amplitude be scale invariant. The additional symmetry
under special conformal transformations provides a
further restriction on the tensor covariant decomposi-
tion of the amplitude: It reduces the number of inde-

'It is also clear from purely theoretical considerations that
one cannot have a complete, conformally invariant theory, for
strict conformal symmetry demands that the two-point function
be that of a massless, free field. If the two-point function is free,
all the Green's functions are those of a free 6eld t P. G. Federbush
and K. A. Johnson, Phys. Rev. 120, 1926 (1960); R. Jost in
Lectures on Field Theory and the Many-Body Problem, edited by
E. Caianiello (Academic, New York, 1961); R. F. Streater and
A. S. Wightman, PCT, Spin, Statistics and ALl That (Benjamin,
New York, 1964); K. Pohlmeyer, Commun. Math. 12, 204
(1969)j. It is not clear that this is a real difhculty, however, for
we are not interested in a complete conformally invariant field
theory but rather only in the high-energy behavior of a very
restricted class of amplitudes such as those which are associated
with inelastic electroproduction, We require only that the high-
energy limits of these amplitudes be conformally invariant.
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pendent, gauge-invariant covariants from four to two. '
This symmetry also strongly restricts the functional
form of the scalar amplitudes associated with these two
covariants. They become functions of only two parame-
ters. Although a special conformal transformation can
Inap a spacelike coordinate interval into a timelike
interval, we can express these scalar amplitudes in terms
of a conformally invariant integral representation that
is manifestly causal. We find that the two conforrnal
covariants remain independent when the Compton
amplitude is evaluated for forward scattering. Thus full
conformal symmetry yields no further information on
the two inelastic structure functions other than that
already provided by simple dilation invariance.

We shall now review the nature of the conformal
group and construct the two conformal covariants of
the Compton amplitude. We exhibit the causal,
conformal integral representation for the scalar ampli-
tudes in Appendix A, and we prove the completeness
of the covariants in Appendix B.

The conformal group is that subgroup of general
space-time coordinate transformations x' —+ x&(x) which
leaves the Minkowski metric t'which we take to have
signature (—,+, +, +)7 invariant save for an over-all
scale factor,

Its name is appropriate in that it leaves the cosine of
infinitesimal "angles" dx"dy„(dx'dy') '" invariant. The
connected subgroup that we shall use is generated by
the infinitesimal transf ormations

which, in view of the definition (1), obey

The trace of this constraint identifies Q. as

(2)

(3)

' This statement is not precisely correct since a third conformal'.
covariant that is also gauge invariant can be constructed. How-
ever, as we show in Appendix B, the amplitude associated with
this covariant is necessarily noncausal and hence can be discarded.

7This result depends upon the dimensionality of space-time.
In two dimensions N, is subject only to the condition that it

If we operate on Eq. (3) with cl„and antisymmetrize in
the indices p and v, we obtain

Bi,(ct„8x„ 8„8x„)=—(g„),8„ q„i,B„)Q.— (5).

Similarly, we may operate on this result with 8, and
antisymmetrize in the indices X and a to arrive at

('gpi8cl9p gpg8&I9p 7/p&8gBp+ gpgBi Bp) Q '= 0. (6)

It is easily verified, by identifying various indices, that
this requires that

B„B„Q=0.

Thus Q. is a, linear function of x, and Eq. (3) can be
integrated immediately to give the remarkable result
that the full connected conformal group is a 15-
parameter Lie group generated by the infinitesimal
transformations'

bx~= ba~+ b~~„x"+bp x~+ (bc~x' 2x—~bc"x.) .(8)

Scan, „=2(8c„x„—x„8c,) (11a)

bp(x) = 2bci,x"— (11b)

There are various discrete operations that leave the
Minkowski metric invariant save for a scale factor. In
addition to the usual reflections of the extended
Poincare group, the inverse radius transformation

(12)

is a discrete conformal transformation. We shall not
require invariance under this transformation, but
simply note that it may be used to produce connected
conformal transformations. In particular, since the
double application of the inverse radius transformation
gives the identity, the sequence of an inverse radius
transformation followed by a space-time translation
followed in turn by another inverse radius transforma-
tion yields an over-all operation which is continuously
connected to the identity. It is straightforward to check
that the infinitesimal version of this four-parameter set
of transformations is a special conformal transforma-
tion. Thus, finite special conformal transformations can
be produced by such a sequence with a finite transla-

satisfy Laplace's equation, and we encounter the familiar state-
ment that all analytic functions provide a conformal map.

We note, incidentally, the connection of this result with the
class of coordinate transformations that can be generated by a
symmetrical, traceless, conserved stress-energy tensor T&". This
tensor will generate a coordinate symmetry if the current
1&=T&"bx, is conserved or, since the stress tensor is conserved, if
T&"B„Bx,=0. Because the stress tensor can assume arbitrary
values constrained only by the condition that it be symmetrical
and traceless, this condition is tantamount to Eq. (3), and we
conclude that the most general Bx& is simply one of the general
conformal transformations given by Eq. {8).Alternatively, if a
current is formed from various coordinate moments of such a
stress tensor (e.g. , T»x„, T»x2, etc.), then this current will be
conserved only for those moments associated with the generators
cof the conformal group.

Here the constant parameters ha~ and Roi""= —Ro"~

describe the translations and homogeneous Lorentz
transformations of the Poincare group, 8p gives a simple
scale change (dilation), and 5c& are the four parameters
of the special conformal transformations. The action of
such a special conformal transformation on a tensor is
described by a local Lorentz transformation and a
dilation that depend linearly upon the coordinate:

Ox~j8x"= b ~+ 8 8x"
where
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tion; in this manner one obtains

where

x"= x" c"x a x )

a (x) = 1+2cx+c'x'.

Under this transformation a finite space-time interval
(x—y) ' becomes

(15)

It is clear that the remainder of the conformal group,
the Poincare group and dilations, also leave the finite
interval (x—y)' invariant except for a constant scale
factor in the case of a dilation. We thus learn that the
full conformal group not only leaves the infinitesimal
interval dx' invariant up to a scale factor, but that it
also leaves a 6nite interval invariant in the same sense.
In particular, the light cone (x—y)'= 0 is preserved by
all conformal transformations. On the other hand, the
denominator o.(x) can vanish for some finite points x",
and the special conformal transformation maps such
points to infinity; moreover, the denominator o(x) can
become negative for certain regions of xj", and thus a
special conformal transformation can take points that
were originally in a spacelike relation into points that
are in a timelike relation. Nevertheless, we construct
in Appendix A an integral representation for a wide
class of amplitudes that is manifestly causal and that is
invariant under infinitesima 1 conformal transformations.

The conformal transformation laws of tensor fields
are readily inferred from their behavior under general
coordinate transformations; we need only restrict the
general coordinate change to a conformal transforma-
tion. For example, under a general coordinate change,
a scalar field X(x) of weight &v obeys

(16)

In particular, a dilation S=px is represented by

X(*)=u"X(x),

which shows that the weight ~ corresponds to the
dimension of the field. If this field X is the source for a
massless spin-zero particle (—8'tt)=X)& then it must
have a weight co= —3. Another example is provided by
a vector current. The conservation of this current,

B„j"(x)=0,

is maintained by a general coordinate transformation
only if it is a vector density which has a weight m= —3
and transforms according to

Again, the restriction of the general coordinate change
to a conformal transformation gives the correct con-
formal transformation law for a conserved vector
current.

We are now in a position to construct the tensor
structure of a conformally invariant Compton ampli-
tude that describes the scattering of a virtual photon
on a spin-zero target. It is convenient to consider first a
generating functional in which the currents are con-
tracted with an external vector potential A„(x):

j~(x) ~ (c)x)A„(x)j~(x). (20)

Here we take 3„to transform as a vector of weight —1,
so that the integral is a conformal scalar. Now gauge
invariance requires that the vector potential occur only
through the field-strength tensor

F„.(x)= cj„A,(x)—c)„A„(x). (21)

The additional terms are annihilated if we difl. erentiate
with respect to both coordinates, and the logarithm
behaves effectively as if it were a scalar. Since the
derivative of a scalar is a vector, we conclude that

h-'(x, x') = (x—x')'a a'" ln(x —x')' (23)

~ Here we have concealed a small technical problem. In order
to obtain conformal scalar amplitudes we must, as we shall discuss
in a subsequent paper, first work with the target particles o8
mass shell and then pass to the mass-shell limit. The off-shell
amplitude is not gauge invariant but rather obeys a Ward identity
that relates its divergence to a vertex function. However, it is
not difBcult to prove that a conformally invariant vertex function
is uniquely determined to be that of a free Geld. Thus, if we
subtract the free-Geld Born approximation from the Compton
amplitude, the remainder is gauge invariant, and we need consider
only the structure of this remainder.

The curl of a vector of weight —1 behaves as a tensor
of weight —2 under general coordinate changes, and
hence F„„transforms as such a tensor under the opera-
tions of the conformal group. Accordingly, all we need
do to construct the tensor structure of the gauge-
invariant, ' conformally symmetric Compton amplitude
is to couple two field-strength tensors F„„(x) and
F„„(x')together in a conformally symmetric manner.
We cannot simply contract the indices of the two field-
strength tensors using the Minkowski metric g»' for,
according to Eq. (10), conformal tensors at different
space-time points undergo different, coordinate-
dependent Lorentz rotations. Hence we must construct
a conformal metric tensor h»'(x, x') such that the index
p, transforms like a vector 6eld at the point x while the
index p' transforms like a vector field at the point x'.

The construction of h»'(x, x') is facilitated by the
remark that ln(x —x') 2 transforms in an additive ma, nner
under the conformal operation (15):

ln(x —x') 2= ln(x —x')' —lno (x) —lno (x') . (22)
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is a conformal tensor" of weight 0. Therefore,

P„,(x)h»'(x, x') h""'(x,x')P„;(x')
is a conformal scalar. The divergence of an
symmetrical tensor is a vector. Hence

One of the authors (L. S.B.) would like to acknowledge
fruitful discussions with M. Baker, M. Gell-Mann,
and T. W. B. Kibble.
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APPENDIX A

[a"P (x)]h»'(x x') [a'"'P ~ (x')] (24b)

is also a conformal scalar. We establish in Appendix 3
that these are a complete set of gauge-invariant
covariants for a causal amplitude. The Compton ampli-
tude is identi6ed by the variation of the external vector
potential, and we obtain

C»'(x, x'; p,p')
8.=8';[h»'(x x') h""'(x x') —h"~'(x x') h~"'(x x')]

X[(*-*')']-'C(*,*';p,p')

+(o,»' a~a,)(o;"—a" a"'a' )h""—'(x x')

X [(x—x')'] 'Cg(x, x', p,p') . (25)

Here the scalar amplitudes C~ and C2 are conformally
invariant. A wide class of such functions is exhibited
by the integral representation of Appendix A. This
integral representation is manifestly causal and involves
a weight function depending upon only two parameters.

To relate our scalar amplitudes to the structure
functions of electroproduction, we must first Fourier
transform Eq. (25) and then go to the forward scattering
limit. This process produces the replacements

8„~ik„, 8'„~—ik„, (x—x')"—& i8/Bk„(26—)

Here we shall construct a wide class of conformally
symmetric scalar amplitudes that are manifestly causal.
We begin by considering the amplitude associated with
the graph in Fig. 1. This is the Green's function for
source fields X of the form

~1(xl) $12(xl)418(xl)414(xl)

in which p b is a free G.eld of mass m b,

&&(x~(»)~~(»)~3(x~)x4(x.)))

(A1)

=iI a+(x„—xg, m. g). (A2)

Since the source fieMs X are composed of local free fields,
this amplitude is manifestly causal. We obtain a causal
integral representation for the four-point function if we
integrate this amplitude over all the various masses
m, & with an arbitrary weight function f(m b ) It is
convenient, however, to integrate over the derivative
of the two-point propagator with respect to its mass
rather than over the original function. Such a derivative
clearly does not spoil the causality. We may make use
of the explicit construction

p =v/k'= —pk/k'.

Using the definition

(27)

in the tensor structures. Since the Fourier transforms of
the scalar amplitudes scale, they become essentially
functions only of the single variable

—i "dP
~ihx2 —im2 j4XA+(x; m) =

Bm' (4n.)'

to write this integral representation in the form

M(xg)x2, x3,xg)

(A3)

lV~"= ImC~"
= [p~—k~(pk/k')][p" —k"(pk/k')]W,

+(g~" k~k"/k')W, , (—28)
we find that

8'z= 2 Im[2pCr'(p) —p'Cg" (p)+2Cg(p)+2pCg'(p)] (29)

00 dX bg dm. a'f(m. b')
0

7@~b

Xexp i Q X.p(x.—xg)' — . (A4)
agb 4x.b

2= —2 Imp[C~" (p)+ C."(p)],
Invariance under a special conformal transformation

(3p)
requires that

M(x) =g (x.)'N(x) . (A5)
where the prime denotes a derivative with respect to p.

We see from the above equations that, apart from
scaling, conformal invariance puts no restrictions on
8'~ and 8'2. It should be emphasized that this result is
not due to our having considered the simpler problem
of spin-zero targets. For the spin- —,

' case one would still
have at least these two invariants, and hence no relation
between the structure functions.

' This structure, save for an over-all difference in weight, is that
of the vacuum polarization ((j&(x)j~'(x'))+) of a free, massless,
spin-~ Geld which is conformally covariant.

(x„—x~)'=(x —x~)'o(x ) 'o(xb) ', (A6)

so that if we scale the integration parameters appro-
priately,

P,.t, ~ Z.po(x.)o(xg) (A7)

This invariance guarantees dilation invariance as well

since, according to the structure of the conformal group,
the composition of a special conformal transformation
with a translation produces a dilation, and the ampli-
tude is manifestly translationally invariant. Now
[cf. Eq. (15)]
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X4 conformal group and the group of pseudo-orthogonal
transformations in six dimensions, ""SO(4,2). The
advantage of this isomorphism is that it provides us
with /incur representations of the conformal group
which involves nonlinear transformations of space-time.
Under an inGnitesimal SO(4,2) transformation, a six-
vector P (2 =0,1,2,3,5,6) undergoes the variation

b pl —$QA $B (B1)

X,

in which the infinitesimal rotation parameters 80gg
form an antisymmetrical set,

(B2)

The isomorphism is easily verified if one endows the six-
space with a metric g~ii of signature ( + + + + —)
and makes the correspondence (y, r = 0, 1,2,3)

FrG. 1. A causal graph. bee„,=80„„ba„=-',(N„b—8Q„s),

bc„=——',(Sn„b+bn„s), 8p= Snss.
(B3)

m. b' —& m.b'o(x.)o(xb), (AS) In particular, if we set

we obtain a conformal symmetric representation if the
weight f(m, b') obeys

f(m, b') = f(m, bso(x, )o(xb)). (A9)

then
5+= tb+b (B4)

This homogeneity condition requires that the weight
be a function of only two parameters" which we may
choose to be

m/3 m24
Q =—

m(2 m342

m]4 m23

m/2 m342
(A10)

It should be emphasized that the integration parameters
),& and m, &2 range over only positive values. Hence we
have manifest invariance only in those circumstances
where all the o (x,) have the same sign. This, while it is
not sufFicient for invariance under the full conformal
group, guarantees invariance under the infinitesimal
subgroup. The full conformal invariance can be ex-
hibited, however, by an analytic continuation to
Euclidean space-time where the o.(x ) always remain
positive. Accordingly, we have a causal integral
representation invariant under infinitesimal conformal
transformations with a weight function of the form

f(m. b') = g(N, n) . (A11)

APPENDIX B

In order to verify that the Compton covariants
exhibited in the text form a complete set, we shall
exploit the isomorphism between the 15-parameter

"our integral representation has some correspondence to the
work of N. F. Bali, D. D. Coon, and A. Katz, J. Math. Phys. 10,
1939 (1959).

This integral representation may be extended to fields
of different weight by inserting appropriate powers of
X,q in the integrand.

Clearly if Pf&=0, the quantity P/f+ transforms like a
four-vector. Hence, if we restrict $~ to the six-space
light cone (an invariant restriction), we can project
into space-time by setting

x"=P!5+ ~ (B6)

8
&"—C'(c) =~c'(t) .

g(A
(Bg)

We may map between a vector current j&(x) and a six-
space field J"($) that transforms as a six-vector in a
similar manner. In this case a factor of (t+)s must
appear to make j"(x) have weight —3. The six-vector
field is rotated by a space-time translation while the
four-vector current is not altered by this operation. This
behavior requires that the projection have the form

j"(*)= (&+)'(~"(t)—x'I:Jb(t)+ Js(E)j) (B9)

Here the six-vector Geld J~($) must be homogeneous of

'2 P. A. M. Dirac, Ann. Math. 3'7, 429 (1936)."G.Mack and A, Salam, Ann, Phys. (N.Y.) 55, 174 (1959).

We can now project from fields in space-time to fields
in the six-space. In the case of a scalar field, the mapping

(B7)

makes p(x) transform as a scalar field of weight co if
C($) is a scalar field in the six-space. In order that P
involve only the four space-time coordinate. x&, this
relationship must be homogeneous in ( of degree zero, or
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degree —3 to keep j)'(x) a function of x" alone,

8
]B JA(]) 3JA(()

gp
(B10)

We can write two of these structures as

~ AA' —~ABCDEF6A'B'C L I I

Our construction does not guarantee that the vector
current jj" will transform correctly under special con-
formal transformations. This is assured if we adopt the
constraint

(B11)

ABcD'E'FgA'B'c'DE LBcL B'c&LDEL D'E'

x(«') '(n~') '~ (,P), (Bfg)

where eA c EF is the completely antisymmetric
invariant in six dimensions with eo"'56=+1, and

a constraint that is akin to the light-cone restriction
needed for P. We note tha, t the map is invariant under
a type of gauge transformation; it is invariant under the
replacement

~'(5) ~~'(k)+ Pf1(E) (B12)

Thus the six-vector field JA($) has only four effective
independent components, and JA(f) can be determined.
from j"(x); the map is reversible. Finally, we note that
the conservation of the four-vector current j~ requires
that the six-vector current JA obey

(B19)

They are automatically conserved, and they project
into linear combinations of the space-time covariants
employed in the text. We can write the remaining two
covariants in the form

~(n+P) . . . , ~(n+P)
~ABCDEB(

3! 8tc 8&
c'

in which

JB(])—JA(()

IAa = b.~/&t —b~/&(A

(B13)

(B14)

X(«') '(nv') '~(n, p)

(1/2!)—~" Eat cgDV a~" Bka k c tD g z

X((~')-'(~~')-'a(n, P) . (B20)

is an operator that preserves the light cone.
We write the six-space analog of the completely oB-

mass-shell Compton amplitude as MAA'((, &', )!,)!'),
where g and g' are the coordinates of the scalar source
fields with weight —3. This amplitude is homogeneous
of degree —3 in each of the coordinates, obeys the
constraints

Current conservation turns out to require that

G(n, P)=L (n+P) (n —P)'3—'"—f(n+P) (B )

~AA' —0—~AA'$~

and has the crossing properties

(815)
XG(n,p), (B22)

(B16)

It is a simple matter to show that, save for irrelevant
gauge terms proportional to tA and $'A', this amplitude
can be expressed in terms of four covariants constructed
from gAB and the four available six-vectors. Each of
these covaria. nts multiplies a homogeneous scalar that
is completely crossing symmetric.

where f(n+p) is arbitrary. (This establishes that these
two covariants are indeed independent of our previous
pair, for otherwise the conservation condition would
allow at least one arbitrary function of n and P.) The
invariant functions G and H have singularities in space-
like regions. This gives a noncausal behavior which we
must exclude. Accordingly, there are only two con-
served, causal amplitudes that are conformally sym-
metric, the structures that we exhibited in the text.


