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We discuss the algebraic aspect of the time evolution for various types of fields interacting with external
potentials. This is a pure c-number problem for the classical wave equations. In the case of interaction, the
equation for s~& ~ exhibits the well-known consistency troubles and the breakdown of causality studied by
Velo and Zwanziger. Other equations, for example, a modified form of the Joos-Weinberg equations, are
shown to lead to different troubles. As for the question of a unitary operator implementing the time-evolution
automorphism in the Pock space of the in-fields, we encounter a peculiar property: The scalar coupling of
s=0 fields (superrenormalizable) leads to the existence of a time-evolution operator, whereas electromag-
netic-type couplings (renormalizable) possess at most an 5 matrix and no evolution operator in the inter-
action region. This Haag's phenomenon holds for arbitrary smooth and short-range external fields.

I. INTRODUCTION

ESlDES its usefulness as a mathematical pre-
liminary to the much more difficult problem of a

fully quantized theory, the investigation of relativistic
wave equations for arbitrary mass and spin in the
presence of external potentials is also important from a
physical point of view: One would well expect that a
system of composite particles, say atoms for instance,
could be treated as elementary as long as it is subject to
potentials which are slowly varying compared to its
size and weak compared to its binding energy. We
know, of course, that in the nonrelativistic limit we can
use the Schrodinger equation for its description. How-
ever, if relativistic corrections are to be included, one
would like to have something intermediate between the
Schrodinger equation and the fully quantized theory
(as in the case of the hydrogen atom). The relativistic
wave equation emerges as a natural candidate for such
a description. From this point of view, the troubles with

higher-spin equations with external potentials are quite
bafQing and merit more investigation.

Whereas there exist many equivalent possibilities of
describing noninteracting spin-s mass-m particles by
covariant causal free 6elds fulfilling linear 6eld equa-
tions, the number of possibilities becomes rather limited
if one uses these 6eld equations for implementing
interactions. ' The discussion of field equations involving
coupled fields requires considerable mathematical
sophistication, and even for the simplest case of the
self-coupling of a scalar neutral 6eld, only incomplete

* Supported in part by the U. S. Atomic Energy Commission
under Contract No. AT-30-1-3829.

' M. Fierz, Helv. Phys. Acta 12, 3 (1939).' M. Fierz and W. Pauli, Proc. Roy. Soc. (London) A173, 211
(1939).For a recent discussion of the problem involving external
interactions, see A. S. Wightman, in Proceedings of the Fifth Coral
Gables Conference on Symmetry Principles at High Energy, Uni-
verssty of Miami, 1968, edited by T. Gudehus, G. Kaiser, and A.
Perlmutter (Gordon and Breach, New York, 1969).
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results have been obtained. ' On the other hand, one can-
not expect every coupled-field equation obtained from.
coupling free fields to yield a reasonable physical theory.
ln many cases, the reason for this is quite elementary
and does not have to be discussed on the rather sophis-
ticated level of renormalization and space-time limiting
procedures. Features of instability' and breakdown of
causality4 can be discussed by coupling the fields to
external potentials and are typical for higher-spin fields
(s~sz). The occurrence of an indefinite metric can be
demonstrated for interactions with stationary external
fields, and this phenomenon happens for every quan-
tized 6eld except the s=-,' Dirac 6eld, '

Using well-known methods' of functional analysis,
we 6rst discuss the algebraic aspect of time evolution.
For scalar and electromagnetic couplings of 6elds up to
spin 1, we show causality and analyticity in the coupling
constant of the algebraic automorphism of time evolu-
tion. For higher spin we rederive the breakdown of
causality4 and discuss the problem of consistency. The
main (a,nd novel) part of this paper is concerned with
the construction of the time-evolution operator in the
Fock space of the incoming particles. Here we find that
with the exception of a scalar coupling to a spin-zero
6.eld (superrenormahzab1e in the fully quantized
theory), the unitary time-evolution operator does not
exist in the interaction region. This Haag s phenomenon,
which to our surprise occurs even though the external

' J. Glimm and A. Jaffe, Commun. Pure AppI. Math. 22, 401
(1969).

4 G. Velo and D. Zwanziger, Phys. Rev. 186, 1337 (1969); 188,
2218 (1969). According to Ref. 12, these problems of causality
breakdown have been discussed by J. Weinberg and S. Kusaka
(unpublished); J. Weinberg, thesis, University of California,
1943 (unpublished).

~ L. I. Schiff, H. Snyder, and J. Weinberg, Phys. Rev. 57, 315
(1940) concluded that strong external interactions lead to cata-
strophic instabilities for the Klein-Gordon field. We recently
reinvestigated this problem and reached slightly di6'erent con-
clusions. See B. Schroer and J. A. Swieca, following paper, Phys.
Rev. D 2, 2938 (1970).' S. L. Sobolev, Transl. Amer. Math. Soc. 7, (1963}; K.
Friedrichs and H. Lewy, Math. Ann. 98, 192 (1928).
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TABLE I. Properties of higher-spin equations. (All theories with a conserved current can be derived from a Lagrangian. }

Type

Fierz-Pauli; Rarita-Schwinger;
p g (si,s2) 0+ (s2,s1)0+ ' ' '

Joos-Weinberg; pg(s, O) 0+ {O,s)

Modi6ed Joos-Weinberg;
Pg {s,O) 0+ {O,s)

Generalized Feynman-Gell-Mann;
(Q+»')4= ~W; ~e(s,O}O+(o,s)

'

(O+»~')4= V4;4=4( o&+4«)

Desirable properties

Unique mass; conserved current

Conserved current; causal
(c-number problem)

Unique mass

Unique mass; causal

Unique mass; conserved
current; causal

Troubles

Noncausality; inconsistency

Several masses; lack of unitarity due to
creation of unphysical mass states

No conserved current leading to violation
of unitarity

No conserved current leading to violation
of unitarity (s &1}

Parity doublets; lack of unitarity due to the
creation of opposite parity states with
indefinite metric

interaction is arbitrarily smooth and rapidly decreasing,
does not impede the existence of the evolution operator
outside the interaction region (i.e., the 5 matrix).

Finally. , some of the properties of higher-spin equa-
tions are summarized in Table I.

II. REDUCTION TO c-NUMBER PROBLEM

The algebraic aspects of time evolution (automorphism
of the field algebra) can be reduced to a, c-number
problem. ~ The precise form of this connection will be
discussed after we derive the functional analysis treat-
ment of the c-number problem. Let us first give a
somewhat heuristic discussion of this point. For ex-
planatory purposes we consider a scalar interaction of
an s =0, massive particle:

(rt, it&+m')A (x) = V(x, t)A (x), (1)

where V(x, t) is a smooth function which vanishes out-
side a 6nite interval, say, outside 0(t& T. Interpreting
the free field A;„(x) to be the field before intera, ction, we
write the Yang-Feldman equation

The problem posed by the coupled-field equation can
now be subdivided into two problems:

(a) Show the existence of the classical time evolution.

(b) Demonstrate that the free field A,„z(x)=A (x),
t) T and A;„(x) are unitarily related.

Before we go into the discussion of the classica, l problem,
let us add two remarks:

(i) The essential ingredient for the reduction to a,

c-number problem along these lines is the linearity of
the field equation in A.

(ii) In order to be able to construct a unitary opera-
tor in the Fock-space generated by the in-fields, we have
to demonstrate a certain Hilbert-Schmidt property of
the classical time-evolution kernel. It is essentially this
property which forces us to use Hilbert-space techniques
in contrast to the test-function methods employed by
Capri. '

Unlike the one-particle nonrelativistic theory, the
physical, s i.e., conserved, inner product for the K.lein-
Gordon equation is indefinite:

A(x) =A;„(x)+ A„,(x—x') V(x')A(x')dx'. (2) d x4~pX= d x W 7'3+~

The solution can be written in the form

A(x) =A; (x)+ Ga(xiti, xit') V(xi't')A;„(x')dx' (3)

with, formally,

GR(x; y) =~zi(x —y)+ &zi(x —») V(xi)

Xha(xi —y) dxi+ ~ ~ ~ ~ ~ ~

The important fact is that the propagation function Gg
is a purely classical one since (1) is linear in the field A.

where we introduced the sometimes-useful two-com-
ponent formalism. The time-evolution operator is
pseudo-unitary, i.e., isometric in the metric (4), and the
time-dependent one-particle Hamiltonian (where m = 1)
1s

H = ——,(rz+zrz) 6+r3 ——,
' (rz+w. z) V)

pseudo-self-adjoint. These features are important for
obtaining a positive-definite Hilbert space for the
quantum theory, but they are unfortunately quite
useless for showing existence of the propagation kernel.
A useful (but nonconserved) positive-definite metric is

' A. Z. Capri, J. Math. Phys, 10, 575 (1969). H. Feshbach and F. Villars, Rev. Mod. Phys. 30, 24 {1958).
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smoothness properties, we will refra, in from proving
them.

Even if we had taken the apparently more singular
electromagnetic wzteractioe, in which ca,se we would ha, ve
obtained (in C basis)

+V 0 0 0
H((t) = +, (14)

0 +V divA+2A '8 iA—' 0

we still would be dealing with an operator which is
bonnded in the energy norm. The "magnetic" part is
evidently bounded in (5) and for the electric part one
obtains (assuming differentiability of V and using the
Schwarz inequa. lity)

(VC K'-'V Ix) =(KVIC }INC KVK 'KC)—
~ const (KC,KC).

The last. inequality follows from Eq. (A4). Summariz-

ing, we proved tha, t the Cauchy initial value problem
for the Klein-Gordon equation with a scalar (1) or an
electromagnetic interaction (14) has an unique solution
in X for data in A. The assumptions on the potentia, ls
are sketched just after (1). (For a precise formulation
see the Appendix, Lemma 1.)

Ke now explain in precise terms what we mean by- the
"reduction to the c-number problem. " The cia,ssica, l

evolution U(t) evidently gives the automorphism of the
quantized Gelds by

A{xt) }r , {x,x', 0 U„{x,x';0)
dx

II(x,t) U&)(x,x', t) Upp(x, x', t)

precisely a canonical mapping of this type. The fact
tha, t this a,utomorphism preserves ca,usality becomes
evident if we use the "physicists' nota, tion"

A(x, t) =
xp' =0

G(x,x') ()„A; (x')d'x'. (15c)

Here G is the solution with 6-function initial value (for
the time deriva, tive) which is, of course, related to the
kernels of the U ma, trix:

LA(x, xp), A(y, yp) j
G(x,x') ().„G(yy') &„, I

A;.(x'), A;.(y')]

G(x,x') 8.,„G(y,y') d'x'.

The result is independent of the hypersurface over which
we integrate since the inner product (4) is conserved
(same as pseudo-unitarity of U). Choosing the surface
to be xo' ——yo', we obtain

[A (x)A (y)] =G(x,y) (15d)

and hence the local commutability is reduced to the
causal Cauchy propa, gation for the c-number solution.

The treatments of this "classical" propaga, tion for an
s =-,'field and an s =1 Geld are analogous. For s =-,', one
uses instead of the energy norm the positive-definite
conserved "physical" norm (&=4-component spinor
function)

15a
(C C)= C& Cd'x

where the U's are the ma, trix elements of the opera, tor
U written as x-space l.ernels. This formula makes
mathema, tical sense because the smeared-out fields at
time t, for exa,mple,

with the conserved 4-vector

ju —(CtrC)C)t)rye xCr)

j (x)j,(x)&0,

A(x, t) f(x) = f(x) U~g(x, x', t)A;„(x')d'xd'x'
which follows by pure algebraic manipulations using the
properties of the y matrices. For this case, one obtains
for the causal sha, dow region

+ f(x) U„(x,x', t) II;„(x')d'xd'x', (15b)

exist, since the free fields can be smea, red with any L,'-
integrable functions, a,nd by our Hilbert-space con-
struction we know tha, t the operator U (and its adjoint)
maps L'-integrable functions into such functions. If we
would not work within the Fock representation but in
an arbitrary representation of the canonical commuta-
tion relation, we would ha, ve to know much more
detailed properties of V a,s a test-function mapping. The
pseudo-unita, rity of U in the indefinite metric is re-
sponsible for the fact that the new Geld operators are
canonical. By "a.lgebraic a,utomorphism" we me}an

~); (gp()k gk()0) Jux = (()urr 0)r"u) .

The energy density is positive and I'"P„&~0. The latter
is a consequence of the property. of P"(x) that P'(x) can

llc'll' (~) & Ilc II'.(0) . (17)

The existence of time evolution for couplings without
derivatives is as easily demonstrated a,s in Schrodinger
theory.

For the case of s=1, one uses the symmetric energy-
momentum tensor T and constructs the energy-
momentum density vector:

P"(X)=(-'(00'+() '+V'+(rOtV)' 7r'f '+r'0 )
i=1, 2, 5 (18)



PROBLEMS OF STAB IL ITY FOR QUANTUM FIELDS 2931

only vanish together with P(x). The field equation
incorporating scalar V(x) and electromagnetic A„
intera, ction is

when
(D„D"+m') V" D„—D4V'" = V(x) V"

D„=B +ieA. „.
(19)

we obtain
8

i—q=(II,+a,) g,
Bt

(21)

0
IIo=z —I+6—grad div

1 —glad dlv

0

and, for example,

Again the divergence is bounded by the positive-
definite Hermitian energy density, which is a positive-
definite form in the variables ~, V, rotV, and V':

g„T'"= g "(IV—)~„+V'8".V +c.c., (20)
with

(IV), = 2ieA „(8"V„B„V")—2i eA „8"V—„
—A,A~V„+ V(x)V„,

L V(x)+1—)B"V„=ieB„F""V„+ieA "V„

+8"V( )xV„ieA —"V(x)V„,
and

~pv =~p~ v ~v~ p ~

Again the boundedness follows for bounded interaction
functions with bounded derivatives (at least if V&1):

II VII'a, ( ) ~
fl VII'a, (o)' ' .

From this we obtain the ca,usality.
The boundedness of the interaction operator in the

energy norm follows in the same way as in the sca,lar
ca,se.

%ith

III. TIME EVOLUTION' AND 8 MATRIX

The classical equations that we have studied all have
a. current which is conserved even in the presence of the
intera, ction. The space integral over the conserved
current defines, therefore, a, conserved inner product.
This inner product for the s =0 ca,se and a,iso the s = 1

case
I
see Eq. (4)] is indefinite, whereas for the s=~ case

we are dealing with a positive-definite inner product.
The classical time-evolution operator whose existence
we have shown is accordingly pseudo-unitary in this
metric (for s=0 or 1) or unitary (for s=2). For inter-
a,ctions which are finitely extended in time, one ha, s no
problem with asymptotic limits and the (pseudo-)
unitarity property also holds for the time evolution
which maps the function before the intera, ction into the
function after the intera, ction.

However, the existence of a unitary operator in the
field-theoretical state space of the corresponding theory
which transforms the field at one time to the field at
anot, her time (in particular, the existence of a unitary
5 matrix) requires further restrictions on the inter-
actions. Let us first discuss this in the case of a scalar
iield with scala, r interaction. As a,n ana, log to Eq. (5),
we write for the field opera, tor

A (x) = (2E) '"a(x)+ (2E)—'t'b& (x),
(x) = —i(-,'E)'I'a(x)+i(-,'E)' "b (x)

(23)

Q
t

=e ''H"T exp i II—; t, (t')dt'
o — b' ~=o

where (in the absence of interactions) ai(x) and a(x)
are the usual creation and annihilation operators of
particles. The existence of a unitary operator U(t)
which implements the canonical transformation from,
say, A a,nd m- a,t time zero to time t is equivalent to the
problem whether the a(x, t) and bt(x, t) belong to the
"no-particle" representa, tion if this was the case at time
zero. Since the time evolution of the particle operators
is given by the classical differential equation (11b), we
write

for the scalar interaction. Ho is self-adjoint and IIi is
bounded in the energy metric. Hence

U(t) =e '~"T exp i II;„t,(—t') dt' (22)

exists and is a bounded operator. Similarly one shows
the existence of the propagation operator for the electro-
magnetic interaction.

The c-number time evolution leads to an algebraic
automorphism and the commutator function can be
related to the propagation kernel of the Cauchy
problem. The proofs are analogous to the ones given for
the case s=0.

where the M matrix is the pseudo-unitary classical
evolution ma, trix. The pseudo-unitarity is necessary and
suKcient for the canonical structure of the a(t) and

b(t), i.e., the validity of the ca,nonical formalism at a
later time t.' The existence of a unitary operator in the
Fock space of the a and ti (operators before intera, ction)
which implements this canonical transformation leads
to conditions for the M matrix, a,nd therefore restricts
the interaction H&. The problem is equivalent to the
existence of a vacuum for the a(t) and b(t) in the Fock
space of the in-field. For the case of Bose statistics, this

'The field is assumed to be complex, i.e., et= I'g)t, b= (bt)t.
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again is equivalent to L=M~~ M» being a Hilbert-
Schmidt (H.S.) operator in L'(d'p). (This has already
been shown by Sha, le.") A similar statement holds for
Fermi statistics, where one has to pa,y attention to the
possible eigenvalue zero of %~~M~~~. We show the
sufficiency of the above condition for the existence of a
vacuum Q(t) in Fock space. If L is H.S., there exist two
orthonormal bases {f,) and {g/,) and positive numbers

such that I.=+X,f,(3g; Con. sider the vector X

=exp( —P a;(b;/)Q, where

t a vacuum Q(t) which is annihilated by a(t) and b(t).
The situation changes in the case of minima, l electro-
magnetic interaction. The interaction part of the
Hamiltonian in the form analogous to (11b) is given by

(1+) (/2A0 (I/2Q) (/2~ (1/21') 1/2A

0(lit�)

1/2

(30)
s = (1/21( )"'(A' —i{c/„A ')) (1/2E) '/'.

d'p f.(p)~'(p), b'" = «'p g'(b)b" (p)

g(1—X,') ' for Bose statistics

II(1+~') for Fermi statistics,

The norm E of X turns out to be given by

(25)

(26)

Since the free part of the Hamiltonian is the same as
before, all the off-diagonal terms of M contain again a,

term of the form (28). Concentrating on the Born term
of M», we find the following expression for the square
of the H.S. norm:

d'xd'x' dtdt'A„(x) A„(x') (g~" a~a")—

M;( ——e+'x'~ 1+Q (—i)" sgn e+i Ktn

)( t/(t )e+(Kto dt i . . 27

The sum over m involves terms with the same number
of time integrations. It is a crucial fact that in the off-

diagonal part of M, all terms contain a part e+iKtve+i '

with the same sage in the exponent. This enables us to
apply the before-mentioned criterion for the unitarity
of the S ma, trix. For arbitrary t, M» can be split into a
bounded part and a part which is H.S. This is the case
because

dt eiKt~eiKt

has a H.S. norm which is the square root of

which is finite if and only if L is H.S. In the case of Bose
statistics, we used the fact tha, t the P s have to be
smaller than 1 as a consequence of the alrea, dy demon-
strated canonical structure. For the same reason, L is
H.S. if and only if M» is H.S. It can easily be checked
that Q(t) =&V 'X(t) is annihilated by a(t) and b(t).

I et us analyze the above condition for the unitarity
of the 5 matrix in terms of the specific models. We start
with a spin-zero field coupled to an external scalar field
(11b). For the 3f matrix, we get the expression (in a
forms, l way of writing)

X [6+(x—x')]'. (31)

From (31) one can read off that only the Born term of
the S matrix, where the time integration runs over the
whole support of A„(,t) is a H.S. operator. The time-
evolution operator for a time t in the interaction region
involves a Born term which is not H.S. It is interest-
ing to note that only the magr/ethic part A has the effect
of making the expression (31) infinite. The pure electric
case has the same virtues as the coupling to a scalar
field, as was discussed previously. But since the high-
energy behavior of higher-order terms is steadily
improving (for s=0), we expect for the case of electro-
magnetic interaction the following qualitative picture
to be true. The time-evolution operator does not exist
for t in the interaction region but for t) T. This is due
to the breakdown of the H.S. property for the Born
term, whereas all higher terms are H.S. even in the
interaction region. Unfortunately, we were not able to
find a useful estimate for the H.S. norm of the higher
terms.

The case of s= —,
' can be discussed with the same

methods. Instead of working with the spinor amplitudes
(15) 4 a,nd C ",one goes over by a, Foldy-Wouthuysen
transforma, tion to amplitudes n, (x) and P, (x) )cor-
responding to (12)]. The "number" norm and the
"physical" norm are the same in this case, and the
interaction operator in the number norm is bounded
(if the interaction is given by bounded functions without
derivative coupling) and self-adjoint. The propagation
matrix

deeds dtdt'Lt(+(x —x')]'V(x) V(x'), (29)
e iFSO(—eiIIptn I/re

—iHptndt

which is smaller than a t-independent constant. 3f(2(t)
is a. H.S. opera, tor and there exist therefore for ea,ch

'o D. Shale, Transl. Amer. Math, Soc. 103, 149 (1961}.

n=p p

eiIIot(Ve (Ho(1(jt (32)—
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ing them in the Yang-Feldman form
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(33)

As mentioned before, it is sufFicient (Fermi statistics)
for the existence of a unitary 5 matrix to show the
H.S. property of M» 'M». The scalar and the electro-
magnetic interaction look very much the same, but the
propagater has a worse high-energy beha, vior than in
the case of spin zero. One expects, therefore, a similar
statement about the existence of the Smatrix to be true
as in the case of spin zero and electromagnetic inter-
action.

For s=1, one can again find a representation of H
such that Ho looks the same as in the case of spin zero.
The same criterion for the existence of the time-evolu-
tion operator can be applied. Since the propagater has
in this case such a bad high-energy behavior, there are
difficulties even in proving the existence of the Smatrix.
We note, however, that the algebraic aspect of the time-
evolution is perfectly a,ll right; it is just on the level of
states where things become awkward. It is also interest-
ing to note in this connection tha, t the s=1 electro-
magnetic intera, ction belongs to the class of non-
renormalizable couplings in the fully quantized theory.

It (x) =It; (x)+ Giii&P&(x —x')J(x')It (x')dx',

with G~y"' being the retarded Green's function to the
differential operator

!
(
&D(im 'a"o —

)

D(im '(Bpo.p
—8'o;)))

(35)—1 i
one sees immediately that G»"' has, in addition to the
physical particle pole, also unphysical poles. As was
shown by Wightman, ' this leads to the unacceptable
consequences mentioned before. We would like to point
out, however, that Weinberg's S-matrix rules do not
come from these equations. They are rather rela, ted to
the "modified" Joos-Weinberg equations whose criti-
cism is more subtle (see Sec. V). The last requirement,
(d) (which is equivalent to the existence of a free
Lagrangian), is sufFicient for the existence of a con-
served current:

& =oiv,
The interactions must be restricted to PJ=JtP. The
scalar product

IV. HIGHER-SPIN EQUATIONS,
CANONICAL STRUCTURE (f 4) = d'x gl"C (36)

In generalizing our discussion to higher spins, we
should be aware of several restrictions which have to be
imposed on the free-field equation which is used to
implement interaction by adding a coupling term.
Writing the held equation as a 6rst-order differential
system,

the free equation (J=O) should satisfy the following
requirements.

(a) Lorentz invariance: S(A)1'&S '(A) =A&„1'",SI'S '
—r

(b) Unique mass: (ct„BI"+nap)/=0 as a consequence
of the free-field equation.

(c) Spins: There should be exactly 2s+1 linearly
independent solutions of the free-field equation for each

y and sign of the energy.
(d) There should be a matrix p such that

pI' =r"p, pr=r'p, p=p', p'=1.
Requirements (b) and (c) result from the well-known
fact' that the free equation (J=O) must yield only
physically acceptable solutions and that a description
of just one particle should lead exactly to 2s+1 classical
solutions. Otherwise, the action of the external field
will result in the production of particles of unacceptable
characteristics. An exa,mple of pathological equations
are the (unmodified) joos-Weinberg equations. "Writ-

'H. Joos, Fortst hr. Phys. 10, 65 (1962); S. steinberg, Phys.
Rev. 133, 81318 (1964).

Pin�(x)

(2~)8ii
d'Pl:~i'"(p) «i(p) c'"*

+b.'"'(p)»(p) c *"'j,

pout(&)
(2m)'"

d'Pl:~i'"'(p)«. (p)c""'

+b.'""(p)"(p)o-"*) (»)
with ui(p) (oi(p)) being plane-wave solutions of the
free equation corresponding to positive (negative)
energies and given helicities. The interacting field is
given by

~()=
(2~) P/2

dppfai'"(p) ug(p, x)

+bi'"'(p)ot, (p,x)), (38)

with ui, (p, x) and ii(p, x) being c-number solutions of

is then time independent. The time independence of
such a scalar product leads to the pseudo-unitarity of
the c-number problem and is necessary for establishing
the unitarity of the quantized theory, as we have
already seen for the case of spin s~ 1 (Sec. II). For the
case of arbitrary spin, we consider a potential which
acts in the interval —T&t(+T and suppose that the
c-number problem has a solution, i.e., for given Cauchy
data, a unique solution of (42) exists for all t. We intro-
duce the free quantized fields
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I'rG. 1. "Causal shadow"
region for which energy in-
equality is derived.

Eq. (34) sa. tisfying

u), (p,x) =u), (p)e'&'

s&, (p,x) =wg(p)e '"" for t~ —T.
(39)

By construction, P(x) =P'"(x) for /(T. Since we want
f(x) =P'"'(x) for t& T, the following relations hold for
the pa, rticle operators:

by the physical field f;„(x) before the interaction takes
pla, ce and tha, t the Yang-Feldman equation expresses
explicitly the Heisenberg field P and the out-field f,„&

as operators in X; . The consideration of Johnson and
Sudarshan" applies oddly to the time-independent case.
The incorrect application of Schwinger's variationa, l
principle in the ca,se of a time-dependent external
potential wa, s a,lrea, dy pointed out by Velo a,nd
Zwanziger. 4

The Fierz-Pauli' field equations are examples of wave
equations fulfilling the requirements, but they are not
genuine hyperbolic equations in the usual mathematical
terminology because the time derivatives have a non-
invertible coe%cient matrix:

(J'"8„+Bm)/=0, s= odd

(F""8 8 +Bm')/=0, s=even (47)

+ ~» "(p p')&i '"'(p')d'p', (4&)

'""(p)= "(p p') ' (p') 'p'

+ ~ "(p p')»'""(p')d'p',

with (physical scalar product)

M» '"(p,p') = (ui(p)e '"",ui (p', x)),
IrI), i "(p,p') = (u), (p)e '&,vt, (p,x)),

)M» "(p,p') = (—l)"+'(vi(p)e '&,ui (p,x)),
V„, (p,p') = (-1)"+'(s,(p)e-'»', ~,.(p,x)),

where t) T. A prerequisite for the unitarity of the
5 matrix is that u'"' and fi'"" given by (44) satisfy the
usua, l commutation (or anticommutation) relations,
which means that M should satisfy (in matrix notation)

where

M22 0 —1 "+'

WVith regard to the physical scalar product (43), ive
remark that in accordance with the theorem on spin
and statistics, it is positive definite for half-integer spin
and indefinite for integer spin, for solutions of the free
equation. As a form, however, the scala, r product is only
positive definite for s=-;. This immedia, tely suggests
tha, t in all other cases troubles with indefinite metric
a,nd complex energies will occur for a sta, tiona, ry external
field. This point has been discussed in the following
pa, per. '

Whatever additional difficulties we encounter for spin
equations with external time dependent jnterac-tions,
there can be no problem with indefinite metric. ' This is
evident from the fact that one state space is generated

with detV=0 for odd s, and detI' =0 for even s.
As an example, let us mention the Rarita, -Schwinger

form of the Fierz-Pauli equation for s= —,':
I'"(n) )

=gn),y"—g),"7n—g"n7), —7~7"7), ,

B(nx) =gn) +vnvx ~

This is the canonical form" of the most general first-
order equation for a vector-spinor P„(x) with (a) the
irreducibility condition 8"$„=0=y"P. following from
the field equa, tion and (b) the conservation law for a
bilinear Hermitian current following algebraically from
the field equation.

V. INCONSISTENCIES AND NONCAUSALITIES
FOR HIGHER SPIN

The method of energy inequalities for deriving caus-
ality of the c-number solution breaks down for fields
with spins s&~23. The divergence of the free energy-
momentum density ("charge-current" density in the
case of half-integer spin) cannot be bounded by the
energy density (charge density). A change in the
definition of the energy-momentum density by taking
parts of the interaction into the deGnition, hence work-
ing with a modified (external field-dependent) density,
which saves the inequality, can only be done at the
expense of losing the property P„(x)P&(x)&~0. This
forces one to construct a propagation cone which is
different from the one in Fig. 1. Indeed, looking directly
at the local propagation cone by employing the methods
of characteristics for symmetric hyperbolic system of
equations, Velo and Zwanziger were able to show that
the local cone will depend on the external Geld, and
hence one loses ca,usality in the sense of the Minkowski
cone. Even worse, many interactions for higher-spin

"K. Johnson and E. C. G. Sudarshan, Ann. Phys. (N. Y.) 13,
126 (1961}.

"E.E. Fradkin, Zh. Eksperim. i Teor. Fiz. 32, 1479 (1957)
)Soviet Phys. JETP 5, 1203 (1957)g.
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fields lead to mathematical inconsistencies. '"" For
explanatory purposes, let us look at the following two
scalar interactions of a spin- —, Rarita-Schwinger field:

CP, (50a)
(I'"(.xi 8~+m& (.x) )4"=

Cf+, Cy y„g„. (50b)

The second equation results from replacing m in the
free equation by m=4.

Writing down the zero component multiplied with
y', we obtain one subsidiary condition:

The zero component as well as the 4-divergence leads to
constraints involving only time derivatives of first
order:

X=8;$8'Vp —8pV'j+m Vp —Tp"V =0, (55a)

4 =—m'8~V„—B„T~"V„=O.

Since the standard techniques for hyperbolic equations
are only applicable to systems in which the matrices of
the highest derivatives are symmetric (Hermitian), we
rewrite our system by using (55b) twice:

X= 8'0,+(q—'8, —m)q "0x+
—Cypgp for (50a) (51a)

Cy"Px for (50b). (51b)

(8"8„+m')V„m'8—„8„T"xV, nz '8—„T„s8xV,
+m '8 T "m '8xT"xVx T,"V—„=O. (56)

In order to obtain another subsidiary condition neces-
sary to arrive at eight components, we contract the
field operator once with y& and once with 8&:

C'vA"
(2y 8y„+28„)P"—3m'„f"= (52a)

m(8„+y 8y„)P"=
8„CP"

(52b)
(8.+v 8v.)%"

For the coupling (50b), the two equations lead to the
subsidiary condition

(53a,)
ol

A=—74"—l( —C') '[(8.+7 87.)C'j4"=0, (53b)

whereas for (50a), an equation which has no diGerenti-
ation acting on f", no subsidiary condition (relation
between Cauchy data for a system of first-order
equations) can be obtained. Therefore in the case of
(50a) there are more independent components in the
interaction region than in the free region. This leads to
a disaster in the propagation from the interacting into
the free region (i.e. , inconsistency with "switching off"
of p) because one has to rnatch a lesser number of
Cauchy data to a prescribed larger number of com-
ponents. '4" This is a heuristic discussion of what we
mean by "inconsistency trouble. " The equation (50b),
which was obtained by replacing m —+ m —4, does not
lead to such a trouble because the number of subsidary
conditions in the interaction region is the same as that
in the free-field region. "

Now to the causality breakdown. Following Uelo and
Zwanziger we illustrate this first in the simple model of
a spin-1 field interacting with an external symmetric
tensor field (an antisymmetric T"" would lead to
causality):

(8,8'+m') V„8„8"V„T„"V„=—O —(54).
'4 This type of inconsistency has been pointed out for the case

of spin 2 and minimal electromagnetic interaction by P. Feder-
bush, Nuovo Cimento 19, 572 {1961).It was also discussed by
Velo and Zwanziger, Ref. 4."It can be shown that for arbitrary equations of the Rarita-
Schwinger or I ierz-Pauli type the replacement ~7z ~ tn —4,
nz' ~ &7z' —s&z4 does not lead to inconsistency trouble.

(8„8'+m')C =m '8„8 T""C'. (58b)

Hence the subsidiary combination propagates also
noncausally as a consequence of (56). Since the chars, c-
teristic equation for the propagation cone is

(nz —m-Pn T n) =0,
the subsidary condition C =0=X (which is equivalent
to 4 =0 =8p@), which is to be interpreted as an initial
condition, only gets rid of half of the noncausal factors
in (57).

As has been stated in Sec. II already, the causality
or lack of causality of the c-number problem reflects
itself in the validity or breakdown of local commuta-
tivity for the quantized fields. In fact, the classical
propagation kernel for the solution of the Cauchy
problem is identical to the field (anti-) commutator.
Whereas in the spin-one case we could have avoided
this noncausal behavior by restricting the couplings to
interactions with scalar or electromagnetic external
fields (as we did in Sec. I), this would have not been
possible for s ~ —,'. The discovery of this peculiar behavior
of higher-spin equations has. been attributed to Wein-
berg and Kusaka. The present authors have become
aware of the causality breakdown as a result of the work
of Velo and Zwanziger.

Using, again, methods similar to those used by Velo
and Zwanziger, we brieQy demonstrate this in the case
of an s= ~ Rarita-Schwinger field. The consistent scalar

This equation leads to the following equation for
vectors e„orthogonal on the local characteristic cone:

det(n'g " m'—Tx"n„nx (tz ~—i) m4T '—T""n n&, }
=(nz)'(n' —m 'n T n)'=0 (57)

Up to this point we followed exactly the discussion of
Uelo and Zwanziger. Now we ask the question about the
field equation for the subsidary combination X and C

which follow from the symmetric system (56). A
straightforward (but lengthy) computation yields

8pC = m'X+m —'8, Tp"C',

8pX=m '8'8;C+C m'8'8„T, &.—

This evidently implies the second-order equation
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coupling L50(b)] in a more explicit for.in is

I&"B. —(m —C') 74' —B.CE(B.+v Bv.)+74"
—L(B.+v Bv.)C']CB.0"

—[(B„+y By„)C]Cy BC[(B.+y By,.)C](P"

+L(B,+v By.)C]C-:( —+)y.P"+y,( —C)y V.=0;
(59)

here C =—', /(m —C )'.
The characteristic determinant for the normals e„on

the local propagation cone is (C"= B"4)

detg„y~n„— nC(C "+y„e~y")—(v ~ ~) (@,+y„+" —y,)
XC .y" (~ +y.~"y")]

= ( 'n)'( 'nC'—~„),n'"4 'e)""-4&.n.]' (6. 0)

1n order to show that in the transition from (50b) «
(59) nothing was lost, we have to demonstrate that (59)
leads to an equa, tion of motion for the subsidia, ry
components X, h.. Using only (59), we obtain a system
of first-order equations in time for X and A. which is
equivalent to the second-order equation for A:

(B B'+m')il. —y BC((B"+y By')C]B.h.

+(terms with lower derivation) =0. (61)

The characteristic determinant is

(n2) 2 [n2 C2e in ~(l)i e~v a@ On ]2 . (62)

hence the subsidiary condition h. =0, BOA=0 (equiv-
alent to X=O) at a hypersurface eliminates only half
of the noncausal factors.

The causality situation does certainly not improve
with more complicated interactions. The electro-
magnetic (minimal or not) is noncausal and the charac-
teristic determinant is (for the minimal case)

Any external interaction in()oli)ing a field of spin with

s& 1 is always eo~zcausal.
For higher-spin Fierz-Pauli and Rarita-Schwinger

equations one can demonstrate this statement, but we
have not been able to give a general proof which is
independent of the coupling scheme on which the field

equation is built. Looking at spin 2, one can see that
even the minimal electroma, gnetic interaction becomes
inconsistent. The loss of consistency for the minimal
electromagnetic interaction going from s=~ to s=2
could create the suspicion that except for couplings to
scalar fields, if one replaces m by m —(t) in the free-field

equation, all interactions for s&~2 are inconsistent.
However, as was pointed out by Federbush, " for s= 2

and electromagnetic coupling one is able to add to the
minimal interaction a "consistency completion. "

For the quantized version the difference of the propa-
gation case versus the Minkowski case implies that the
commutators for boson fields (anticommutators for
fermion fields) do not vanish outside the light cone or
vanish outside a cone coetaieed im the light cove."Both
cases ("noncausal" and "supercausal") are in contra-
diction with the conventional concept of Einstein
causality for spacelike separated observables.

The natural question to ask therefore is whether
there are other types of field equations (i.e., without
subsidiary equations) which are free of causality
problems. Consider, for example, the already mentioned
Joos-Weinberg equation. We modify the corresponding
Yang-Feldman equation by writing

)P(x) =(P;„(x)+ Gii'(x —x') J(x')(P(x'),

where Gii' I.ri ' with th——e poles in addition to p'=m'
being projected out, i.e.,

e2 4

(m')'(e' —— r r~p'" e.
9 nz'

where F„n=F„n and F„„=~ie„„„iF"i(in the case of
minimal coupling). The equa, tion of motion correspond-
ing to (61) is

(D„D~+m')tt ,'iem 'D"F„y—( —y"D„+2m).A—
ieF~"o„„lt=—0 (63)

Gii" (x) =C

I.=
D(im 'B'a )

D(im 'B'o )—

L*(p)
eiyzd4p

P.2 —m2

o(im—'(a', —a';)))
—1

D('~- (a ..—a'.,)))
1

and leads to the determinant

e2 2

( ')'(m' ———I"„rr" m

9m'
(64)

One can show that this new Yang-Feldman equation
(which does not bring in unphysical solution for external
interactions) formally leads to Weinberg's S-matrix
rules:

and hence the subsidiary condition can only eliminate
half of the noncausally propagating components. A
tensor interaction leads to the same difficulty as the
example (50a), and hence is inconsistent in the sense
explained there. From the examples studied, one might
be inclined to suspect the validity of the following
statement:

S=T exp i (P*(x')J(x')(P(x')d'x'—

0 1
4*=4'vo, vo =

03

In this case there are no obeiols difficulties with
causality because the field equation belonging to the
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modified Yang-Feldman equation is (B„B&+m2)iP
=eL*J(x)P and is therefore causal outside the region
of interaction. However, it does rot belong to the class
of strictly causal equations because in the interaction
region the hyperbolic operator L* is dominating over the
Klein-Gordon operator. An investigation of such non-
strictly causal equations has not been carried out.
Another difficulty is the requirement of a conserved
inner product. In the interaction-free case, we have

d'
(p, ip) = tp(p) y ply(p) =2—ip*(x) a()ip(x) d'x.

0

We have not been able to find an interaction J and an
expression for (It,iP) which agree with the above for
J=O, such that (iP, iP) is conserved.

The original (unprojected) Joos-Weinberg equations
have a conserved current at the expense of the occur-
rence of unphysical particles. The modified Joos-
Weinberg equations have physical particles but do not
seem to lead to a conserved current. Closely related to
this is the trouble with generalizing the Feynman —Gell-
Mann equations for the electromagnetic interaction of
an s= 2 particle to higher spins. Using the current of the
original Joos-Weinberg equation and rewriting it in
terms of (2s+1) components C (i.e. , following the same
procedure which leads from the s= ~ Dirac formulation
to the Feynman —Gell-Mann formalism), one easily
checks that there is no interaction of the form ( +m2)4'
=J.C which keeps the current conserved. Of course,
one can rescue the conservation by using the current

j„(x)=C (x)B„C (x)+H.c.

if one does not try to relate the 4
'

to 4 . This means
that one introduces two independent spinor fields. This
causes the well known "parity doubling" of states. In
the case of s =

~ this is equivalent to having two s= 2

particles, one with positive and the other with negative
metric. Because of the metric trouble (the interaction
mixes the different states), this idea of parity doubling
must also be rejected.

Vote added i22 proof. After the completion of this
work we learned that Dr. Bongaarts has obtained
analogous results as to the unitarity of the 5-matrix for
the case of spin i2LP. J. M. Bongaarts, Ann. Phys.
(N. Y.) 56, 108 (1970)$.

APPENDIX

of motion is given in the two-component formalism:

lj&p

iBiC =(Hp+Hi)C, C =
Cg

0 1Ho=i, E=+(1—6)'t2,—E' 0

V

�

+1
0 3'= V.

iA—2+ {Bi,A') V

(A1)

C is an element of the Hilbert space X with the energy
norm (5)"' derived from the scalar product

(C,C) = (EC p,JtCp)+(C„C,) .

The domain of Ho is the set

&(Ho) = {@E&IHo@E&) .

(A2)

Ho is self-adjoint. %e state now a lemma which was
used previously.

Lemma. For fixed ] let 2& and B,A& be elements of
L„(d'x). Furthermore, let the Fourier transforms of
A' and oj„Ao be in Li(d'x). Then Hi(t) is a bounded
operator in X.

Proof. It is suKcient to estimate (&,Hi/) in terms of

d, s
I
v(s) IF(s) llc'112llipfl 2 (A4)

I+p2 i/2

F(s) =sup
1+(p —s) '

F(s) & (4+s') '".

The existence of the right-hand side of (A4) follows from
the assumption

VELi and p„VELi. (A5)

The second term is bounded again by (A5):

1(c'i, v0i) I

~
lf vll. llc ill2IIAII2 (A6)

The third term can be treated by the following rough
estimate:

(C',H i'�) = (&C'o,r VII o)+ (C'i, VII'i) —i(C'i, ~So)
+(C i, (BiA')fp). (A3)

The first term can be estimated if EVE ' is a bounded
opera, tor in L'(d'x). But this follows from the estimate

1+p2 it2

d'pC'(p) — V(p —q)4(C)
1+q

The following lemma is important for the proof of 1(c',~2~to?
I
~If~off Ilc II if&4 If

existence for the solutions of the partial differential
equations (A].), (11a), and (].4) for a particle of spin Finally, the last term is

zero in an external electromagnetic field (A'= V, A).
I (C g,Aig ) I

((Iloj,A~II +3(PIIAill ))
The precise assumptions are stated below. The equation

"Although we only explicitly established the connection
between the commutator and the c-number Cauchy propagator
in the case of a scalar equation, such a connection can be shown
to exist in general.

XIIC ill, lllt@o, .

From Eqs. (A4)—(AS) one obtains the inequality

I (C'»i') «onst IIC'll lfkll


