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From the assumption that the S operator transforms as an irreducible tensor operator under an ap-
proximate symmetry group, called a two-particle symmetry group, it is shown that partial-wave scattering
amplitudes can be calculated. Two models, based on different two-particle symmetry groups, are presented.
Investigation of the first model makes it clear that an energy-dependent amplitude can be calculated, but
the amplitude cannot be identified as a unique partial-wave amplitude. This problem suggests the investi-
gation of the second model, which is then used to calculate S-wave proton-proton elastic scattering phase

shifts. Further research along these lines is suggested.

I. INTRODUCTION

BASIC problem in high-energy physics is the

formulation of models capable of predicting the
structure of scattering amplitudes that describe strong-
interaction scattering processes. Since no fundamental
theory of strong interactions exists, many approaches
towards the solution of this problem are being investi-
gated.

It is natural that any attempt to construct a model of
a scattering amplitude begin with some consideration
of the model-independent features of the scattering
amplitude. It is generally believed that scattering
amplitudes must satisfy crossing, analyticity, and uni-
tarity.! These model-independent properties are de-
rivable from relativistic quantum field theory for certain
special scattering processes (e.g., pion-nucleon scatter-
ing)?; however, it is not generally considered essential
that these properties be derivable from relativistic
quantum field theory, as many physicists assume these
properties as fundamental.?

A great deal of work has been done in an attempt to
find a model that satisfies these three conditions. The
recently developed Veneziano model* satisfies analy-
ticity and crossing, but it does not satisfy unitarity.’
Dispersion models® satisfy analyticity and unitarity,
but they do not satisfy crossing; a similar statement can
be made about the Regge-pole model.”

In addition to analyticity, crossing, and unitarity,
further restrictions on the structure of scattering ampli-
tudes come from conservation laws and symmetry argu-
ments. It is well known that Lorentz and translational
invariance imply that scattering amplitudes are
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Poincaré scalars; also, the conservation of internal
quantum numbers suggests that they are at least
“approximate” SU(3) scalars. These conditions have
been used to analyze scattering amplitudes in several
ways. For example, from the assumption that the scat-
tering amplitude is a Poincaré scalar it is possible to
derive the Jacob-Wick partial-wave expansion® and
Toller’s expansions.’ Also it has been postulated that
scattering amplitudes might approximately satisfy a
“higher symmetry.” This idea was used in the formula-
tion of Barut’s O(4,2) model,'* and in the two-particle
symmetry model proposed by Klink.!!

Now the point is that though much is known about
the properties of scattering amplitudes, yet the prob-
lem of mathematically determining the structure of
scattering amplitudes is not solved. This means, for
example, that the energy dependence of scattering
amplitudes has not been theoretically predicted. It is
partially the purpose of this paper to discuss the two-
particle symmetry model and to demonstrate how this
model might be used to calculate the energy dependence
of partial-wave scattering amplitudes.

The two-particle symmetry model is developed from
two assumptions. First, it is assumed that the two-
particle space of the direct product group PR K (@
denotes the Poincaré group and K denotes an internal
symmetry group) is spanned by a representation space
associated with an irreducible unitary representation
of a group G. G, which will be called the two-particle
symmetry group, must contain ®® K as a subgroup.
The second assumption is that the 7" operator trans-
forms as a tensor under G and as a scalar under PR K.
These two transformation requirements do not com-
pletely specify the transformation properties of the T
operator. The remaining transformation labels are fixed
by choosing one component of the 7" operator to cor-
respond to the physical two-particle 7" matrix. In Sec.
IT these two assumptions are discussed in detail and it
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2 SYMMETRIES TMPOSED ON
is shown how one might use them to find the energy
dependence of partial-wave amplitudes. 2.

Unitarity, analyticity, and crossing!? will -not be
discussed in this paper; instead, our main purpose is
to consider several specific two-particle symmetry
groups and to calculate the energy dependence of
partial-wave scattering amplitudes using these groups.
This is done in Sec. III. It is found that for these two-
particle symmetry groups, partial-wave amplitudes
cannot be uniquely identified unless they are S-wave
amplitudes. Thus proton-proton S-wave phase shifts
are calculated and compared with the experimental low-
energy elastic scattering phase shifts.

Several mathematical problems are discussed in the
appendices. In particular, Appendix A deals with the
question: How do unitary irreducible representation
spaces of G- decompose into unitary irreducible ‘repre-
sentation spaces of ®® K when G is restricted to ®Q K?
A strong condition is found that allows us to say im-
mediately that certain groups are not two:particle
symmetry groups. In Appendix D it is shown that
InO(1,n) satisfies this condition. The unitary irreduc-
ible representations of /#O(1,n) are discussed in Ap-
pendix B and in Appendix C the Clebsch-Gordan coeffi-
cients that must be known in order to find the partial-
wave amplitudes are calculated:

II. REVIEW OF TWO-PARTICLE SYMMETRIES
A. Two-Particle Symmetry Groups

In this section a method for calculating the energy
dependence of partial-wave scattering amplitudes
describing the relativistic reaction

142 —>3+4 (1)

will be discussed. This method is based on a two-particle
symmetry group which by definition satisfies two con-
ditions. First, it contains the Poincaré group and some
internal-symmetry group as subgroups, that is,

GOOPRK, (2)

with G, ®, and K denoting the two-particle symmetry
group, the Poincaré group, and the internal-symmetry
group, respectively. The product symbol. @ means
direct product. The second condition is that G have a
representation space associated with a unitary ir-
reducible representation that covers the two-particle
scattering space of ®®K. The implications of these
conditions will be made clear after the notion of two-
particle spaces has been defined. _
Consider single-particle wave functions in a repre-
sentation space of P®K labeled by mass, spin, the
eigenvalues of the Casimir operators of K (denoted by
m, J, and I, respectively), and a complete set of diag-
onal quantum numbers, the three-momenta, spin com-

12 Crossing in the two-particle symmetry model has already been
discussed. See W. H. Klink, Phys. Rev. 181, 2027 (1969).
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ponent, and diagonal quantum numbers of K (denoted
by p, o, and 4, respectively). The norm of the wave
function ¥ (m;,7;,1,1(P1,04,71) describing the /th particle is

+J1 dp
H‘l/[ml.Jz,Il]H2= Z Z ____l

ol1=—J1 11 1

X I\[’lmz,Jt,Iz](plyo’l:il) | <o, (3)

so that ¢ is an element in the Hilbert space 3¢(m?J,I)
of unitary irreducible representations of P® K.

Now the wave function formed by coupling two non-
interacting-particle wave functions [say particles 1 and
2 in Eq. (1)] has the norm

H\l/[ml,.n,n, I1;m2,J2,c72,12]H2
@

-x =/

(m1+ma)*

J dp
dm?* Y, 3 | —

o=—J 1 E
X 1¢(m7J>I’p7677:) l 2w ) (4)

with E?=p?4m? and m? = (p1+ p2)2 Joand I, are fixed
by the single-particle labels Ji, J, and Iy, 7, respec-
tively. The Hilbert space of unitary representations
spanned by two-particle states of PQ K is

GC(ml,jl,IbO'l; 77L2,J2,12,0'2)

=/°°

(m14-me)

i S sem D). (5)

J=Jo I=Ip

Now denoting the Hilbert space of unitary irreducible
representations of G by 3C(X), it is required that X,
labeling the unitary irreducible representations of G,
be chosen such that

JC(X) = 3@(7%1,]1,[1,0‘1; MQ,jz,lz,o’g) . (6)

Note that Eq. (6) implies that X is fixed by the single-
particle labels of the particles in the two-particle system.
Any group that satisfies Egs. (2) and (6) is by definition
a two-particle symmetry group.

Before discussing how two-particle symmetry groups
might determine the structure of partial-wave ampli-
tudes, consider the problem of finding a group G satisfy-
ing Egs. (2) and (6). It is not difficult to find many
groups that satisfy Eq. (2), but it is not obvious which
groups have representations that satisfy Eq. (6). It is, in
fact, worthwhile to consider how 3C(X) reduces into con-
stituents 3C(m,J,I) when G is restricted to ®® K, since
this reduction process will indicate restrictions on the
structure of G and hence will simplify the task of
choosing G.

In Appendix A it is shown that a group!® G can be
decomposed into double cosets with respect to its

3 The restriction to groups with :induced representations
simplifies the mathematical problem and yet allows a wide choice
of G. Induced representations and the subgroup theorem are

discussed by Mackey. See G. W. Mackey, University of Chicago
Mathematics Department report, 1955 (unpublished).
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inducing subgroup!* A and its subgroup P® K,
G=U Hgp(®PQK). (7
D

The double-coset representatives gp are a function of
continuous parameters, one of which can be related to
the mass of the two-particle system. If Eq. (6) is
satisfied, other continuous double-coset parameters can
have no physical interpretation. Thus two-particle
symmetry groups have double-coset representatives
that are a function of one continuous parameter. This
restriction allows one to say (with little work) that
certain groups do not qualify as two-particle symmetry
groups.

B. Dynamics from G

Two-particle symmetry groups have been introduced
in®order to make statements about the partial-wave
scattering amplitude for the reaction of Eq. (1). This
can be done if it is assumed that the 7" operator trans-
forms as an irreducible tensor operator under G and if
it is assumed that one component of the irreducible
tensor operator corresponds to the physical two-particle
T matrix. There is no apparent criterion for choosing
the transformation properties of the T operator except,
of course, it must transform as a scalar under PQ K
(excluding any symmetry breaking in K). Since the
choice of transformation properties of the 7' operator
(equivalently, the choice of the component of the 7'
operator that corresponds to the two-particle 7" matrix)
is arbitrary, it is necessary to treat the choice as a
parameter in the model.

We will denote the reduced amplitude resulting from
the partial-wave expansion as'!

@J.n,ﬂz,aa,u(\/s) = <[Xf:|x:y! Tl[XS] I [X’»]T:y> ) (8)

with the subscript on 7 indicating that it is a PR K
scalar and the superscript indicating that it trans-
forms as an irreducible tensor under G. [[X]Jx,y) is
a basis state in the Hilbert space 3¢(x) with [X] the
representation labels of G, « the set of quantum num-
bers arising from the subgroups ®® K, and y the addi-
tional labels necessary to uniquely specify the basis
state. Note that if 3¢(X) spans the two-particle space of
®Q® K, x completely labels the basis state.

Now the Wigner-Eckart theorem can be used to
reduce the partial-wave amplitude [Eq. (8)] into a
Clebsch-Gordan coefficient of G times an unknown
coefficient which is a constant for a given reaction:

(O Je | o [ [X ) = (DX Je | DX 015 (X Jw)
X (X dma,ma 5,0 4, I3,1 1,0 5,04 T
XX imayme, T 1,0 0,11, 2,01,00) . (9)
14 How to get the inducing subgroup H is given by W. H. Klink,

in Lectures in Theoretical Physics XID, edited by K. T. Mahan-
thappa and W. E. Brittin (Gordon and Breach, New York, 1969).
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(X T™|[x;]) is a function of the representation
labels of G, but [X;] and [X,] are partially fixed by
single-particle quantum numbers of the particles in
Eq. (1) and [X,] is assumed fixed?; therefore ([X,]]!
XT™J|[X;]) is a constant for a given reaction. This
implies that all of the dynamics in Eq. (8) is contained
in the Clebsch-Gordan coefficient ({X, x| [X,]1; X, Jx)
of G.

Note that the matrix element [Eq. (8)] can be
uniquely associated with a partial-wave scattering
amplitude that describes a specific reaction, since [X;]
and [X,] are fixed by single-particle quantum numbers
[see Eq. (6)], and » is the set of all two-particle
quantum labels. Thus, the usual notation for a partial-
wave amplitude ®s,,(1/s) can be used for Eq. (8); the
two-particle energy, v/s=[(p1+p2)%]"/% and the total
angular momentum J are in the set x, whereas the de-
generacy labels » (i.e., single-particle helicity or spin-
component labels) come from [X;] and [X/].

In this work we will restrict our attention to low-
energy elastic scattering, below any inelastic thresholds
so that, from unitarity, it is possible to write @ ,(v/s)
as

Qs 0(V/5)= €79 sing; (v/s) . (10)

Using Egs. (9) and (10), the phase shifts §;(1/s) can
be calculated and compared with the experimental
phase shifts. Note, however, that Eq. (9) actually holds
for any sort of two-body reaction, elastic or not.

It should be emphasized that any statement about
the dynamics of a scattering system depends upon G and
the assumed transformation properties [X,] of the 7°
operator. [X,] can be considered a parameter in the
model at this point, but when explicit two-particle
symmetry groups are considered we will find that [X,]
is not completely arbitrary. Also, no statement can be
made about the static properties of the particles in the
scattering system, since this information is used as input
into the model.

III. SPECIFIC TWO-PARTICLE
SYMMETRY GROUPS

A.InSL(n,c)

The Poincaré group can be written in matrix form®® as

A H(a)A—+
o " )}
0 A
with AGSL(2,c) and H(a) a 2X2 Hermitian matrix.

A group with similar structure is the semidirect product
group /nSL(n,c):

(11)

H(A)I““F)} ’ 1)

1‘
InSL(n,c)= {(
0 -1+
15 Ideally [X,] would remain the same for all reactions.
16 See, for example, W. H. Klink, J. Math. Phys. 10, 1477
(1969).
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. o 4 with '&SL(n,c) and H(A) an nXn Hermitian matrix.

g & R I InSL(n,c) contains ® and the internal-symmetry group

= g g g & S . .

5 S Z S E < S SU(n—2) as subgroups, but its double cosets contain

S © [T . .

& S 5 fx . Y Al many continuous parameters!” and therefore, recalling

- o 5 3
@ rZ s83 T the argument after Eq. (6), InSL(n,c) is not a useful
s e = ' two-particle symmetry group.

o = : 2

DAY - + B. InO(l,n)

i) g— - N /él

é 5 < “ SR Al Consider the semidirect product group /#20(1,x):

~ 3
L [
' R InO(1,n) = , (13)
CREI : ~ 0 1

v L5 X N .

= 2§ g L &V ) _

= : S8 PEERARY! with T&0(1,%), the group of (n+1)X (n+1) matrices

z T v 8 S ALY satisfying

ez - h -
<e‘< o = = \ 1 0
. It =y, 7= )
SO 0 —I,
18 = V- B . . S .
2E g < §& Ly I, the n-dimensional identity, and 4 an (z-+1)-dimen-
Z o e — S . . .
2|2 S R AVE: 2 S Vi sional vector. InO(1,n) contains ® and O(n—3) as a
= S Sy _ . o . .
= S 2 gls% ALY direct-sum subgroup, ® ®0(z—3), and it is not difficult
& 3 » A to show that its double cosets defined by Eq. (7) contain
- one continuous parameter (Appendix D). Thus,

. 2 : ) InO(1,n) seems a reasonable candidate for a two-

£ 3 = R particle symmetry group.

g 3 RS -

SN LS e S v

| = S0 /?| \ﬁl ~
! A 2 C. In0O(1,4)
‘ b2 g
| < O - 2
. ) The simplest example arises when #=4. The internal-

. Vg : - symmetry group, in this case, is the identity. It is

= sEET T oFouvy obvious that GD®® 1, since @ can be written as

3 VIS 55 8 1y

S A T A0 a

L8« 777 sz ®=2+10 1 0f, (14)
; 0 0 1

£ 3 - F a0 with AE0(1,3) and a a four-vector.

3 g 8 g - . . .
5 2 vigE, 3 ! In order to find if a representation space of G satisfies
g1A TT Vi g ; £ s Eq. (6), it is necessary to calculate the representations
i a8 =77 s ! of G. All representations of G can be found using little-
§ : group-techniques in exactly ’Fhe same way the‘repre—
5 8 N sentations of @ are found. Since this analysis is well
] ~ - vig f - understood for the Poincaré group it is easy to obtain
Slg < 3 »\E;l g H the representations of G. The four classes of representa-
Sle S 4 FesE §F G tions for both groups are listed in Table I (see also

[N T - 5 I A dix B
& T o & ppendix B).
O = S . o e .
) In Appendix D it is shown that the Hilbert space of
2 “timelike” unitary representations of I#O(1,4) can be
= 2 = Vi written as
£ < = \71 oo »
S 7 Be(U ) f dm? 3 se(U),(15)
& 5 % & mro =k
17 There are eight parameters for # =4 and more than eight for

c 8 g = n>4.
alg 8 o 3 2 18 For a discussion of the Poincaré group, see J. I. Boyce,
S § ; 3 g = R. Delbourgo, A. Salam, and J. Strathdee, International Centre
©lg T & 24 g for Theoretical Physics, Trieste, Report No. IC/67/9, 1967

95" 2 & E < 2 (unpublished). For a discussion of O(4), see B. Kursunoglu,

] («;3; 5 2" A Modern Quantum Theory (Freeman, San Francisco, 1962).
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with Je(U 1) the Hilbert space of timelike unitary
representations of ®. We see that in the representation
UM.n.5] the physical mass is continuous from M2 to «
and the spin occurs in finite towers. In principle, a two-
particle symmetry group contains an infinite tower of
spins, since one wants to calculate all partial-wave
amplitudes in a coherent manner. However, infinite
numbers of partial-wave amplitudes (or equivalently,
phase shifts) are never used to fit partial and total
cross sections so that, in practice, having finite towers
of spins imposes no restriction on our calculation.

The physically interesting object is the matrix ele-
ment [Eq. (8)] which can be written as

@J,vl,ag,as.m;(\/s) = <[Mf2;nfaj0f]\/sap)])a; 03?U4i
X Tl[XS] l I:Mq:27n’i:jﬂi]\/s)pyjza-; 01)02> . (16)

The representation labels [#,7,,M ] are fixed by the
single-particle quantum numbers labeling the particles
in the reaction of Eq. (1) in the following way. The c.m.
energy squared of the initial system has the spectrum
(m1+m2)?’<s< o and it is known that M2<s< o
[Eq. (D14)]; therefore, M ;> is chosen to be M
= (m1+my)? Similarly, M,? is fixed at (ms+mq)>
The two-particle spin angular momentum equals the
minimum value of the total angular momentum but
70<J [Eq. (D14)]; therefore, jo; and 7o; are fixed by
151*32,Sj0i§ 151+S2f and !sa‘-&lf SjofS l53+84|,
with s;, the spin angular momentum of the ith particle.
Finally, the ‘“principal quantum numbers” #; and %, are
fixed by the number of partial waves one wants to
consider. This number is, in principle, fixed by experi-
ment.

There are four possible ways one can choose 71!*s! to
transform, but interestingly only one yields‘‘reasonable”
nontrivial results. This can be seen in the following way.
Consider a basis state in a representation space of G
with the same transformation properties as 7" (i.e.,
I[x]1)). The tensor product decomposition

‘ [X.—_‘l)‘ [:M,;Z,’VL,',].M]PJO'>

= [ (O s DX T s T )
X|IM pyns josJpTo)y  (17)
always results in a condition
pitps=ps, (18)

where p; and p; [p denotes a five-vector; see Eq. (C3)]
are related to the four-momenta in the c.m. frame by

Vs Vs
0 0

pi= 0 L, pr= 0 .
0 ! 0 i

(=) (s—M 212

Obviously, energy and momenta are not conserved if
the four-momentum content of p, is nonzero so that it

H. KLINK AND G. J.
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is necessary to restrict p, to

0
0
ps=10].
0|
x)
Referring to Table I it is obvious that p, must be “space-
like” or “null.” If p, is spacelike, then in the c.m. frame
Eq. (18) becomes

Vs ,’0 V'S
0 0 0
0 +lo|= 0 . (19)
0 0 0

(=2 o) |Gs—Mve

so that energy and momenta are conserved. However,
equating the fifth components in Eq. (19) fixes
s=(M2—p*—M ;*)?2/4p>+ M 2 Thus all transformation
properties of 7'11*s] are unreasonable (i.e., nonconserva-
tion of energy) or trivial (i.e., s fixed) unless [X,] is a
“null-like” representation.

Thus, we want to calculate the Clebsch-Gordan co-
efficient that occurs in the reduction of the matrix
element [ Eq. (16) ] when [X, ] is null-like. This has been
done in Appendix C, where it is shown [Eq. (C16)] that

<[Mf2,nf:j0f]7\/S;py])a')n8/;jOS/;j&,[ [Mi2,ni,j0i]7
\/s,p,J,a; [kO)C];n8)1>
= Dnyr o i 000,001 (L) 8(A—Top) (20)

with T, a representative of O(1,4)/0(4) defined by
Tep=p, and DUWocl(T,) an O(1,4) representation
matrix defined by

Dy jog e 015,0,0,0%0 (L) = ([ko,c Ins, Jos', ' o' = 0]
XU(PE)[[kO)C]nS;jOS::js:Gs‘_‘O). (21)

U(T.) is a unitary operator associated with T', and
[[&o,¢]#s, J0s, 75,05) 18 @ basis state in the representation
space of O(1,4) (see Table I).

Equation (20) is a disappointing result since all
quantum numbers that label the reaction (except M?)
have “dropped out” of the Clebsch-Gordan coefficient.?
On the other hand, the Clebsch-Gordan coefficient does
have a nontrivial energy dependence, since the param-
eters in T', are functions of the four-momenta, p=T,p.
An explicit functional form for the D functions can be
obtained by analytic continuation of the Jacobi poly-
nomials P, @ *(x); however, since it is not possible to
make any comparisons with experiment, these functions
will not be discussed.2

¥If 7,=0, then J=0. If 7,0, then J is not uniquely deter-
mined.

2 A. Erdélyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi,
Bateman Manuscript Project, Higher Transcendental Functions
(McGraw-Hill, New York, 1953), Vol. 2. See also D. A. Akyeam-
pong, J. F. Boyce, and M. A. Rashid, International Centre for
Theoretical Physics, Trieste, Report No. 1C/67/74, 1967 (un-
published).
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It is worth mentioning several conclusions one can
make about /20(1,7) from studying the group /70(1,4).
First, the timelike representations always contain the
timelike representations of @, and therefore it is these
representations that must be tested to see if Eq. (6)
is valid. Second, choosing the 7" operator to transform
as a timelike or “lightlike” representation will always
violate conservation of energy. Also, if 7" transforms as
a null representation, then the angular momentum label
will never appear in the Clebsch-Gordan coefficient
[Eqg. (9)] so that all partial waves that occur in the
representation are predicted to be the same. Finally, the
matrix elements [Eq. (9)] are nontrivial functions of
the energy if 7" transforms as a spacelike representation
and #>4. Each of these statements can be proved by
simple generalizations of the I#0(1,4) analysis; they
indicate new prospects for physically interesting two-
particle symmetry groups, the simplest being 7#0(1,5).

D. InO(1,5)

The two-particle symmetry group /#0(1,5) contains
both @ and O(2) subgroups. O(2) will be considered the
internal-symmetry group and its irreducible representa-
tions will be denoted by Q (charge or baryon number).
The irreducible representations of /#0(1,5) are divided
into the same four classes as ®; the timelike and space-
like irreducible representation labels and a complete
set of commuting observables are given in Table I.
We have used the fact that an O(n) eigenstate is
uniquely labeled by the invariants in the chain O(n)
D0(m—1)D---D0(2). The six-momentum P
(|P|2=M?) is related to the two-particle c.m. four-
momenta

Vs
0
=10
0
by
Vs
0
0
O b
(s—M**'/? sinf
(s—M?2)V2 cosb

(22)

with —7<6<7 and M2<s< 0.

The timelike representations of /#0(1,5) contain the
timelike representations of ®, and in Appendix D, Eq.
(D18), the Hilbert-space decomposition with respect to
representations of ®@O(2) is given as

0

mY Y Y se(UimIay. (23)

n,j0 J=jo Q=—x

Fe(UIM.#MT) ~
Mﬂ
The sums on 7, j, and J are fixed by (u,\), the irreduc-

ible representation labels of O(5), and can easily be
determined by investigating O(5) weight diagrams.
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The T operator must transform as a “spacelike”
representation under G and as a scalar under ®HO(2).
These transformation requirements do not completely
specify the transformation properties of 7" and it is
necessary, in addition, to assume some value for #,.
It is convenient to pick #,=0.

Now the matrix element [Eq. (8)] can be written
using the Wigner-Eckart theorem and the Clebsch-
Gordan coefficients derived in Appendix C, Eq. (C25):

(M 2us, N IP sy, o, o | TytEoes)
XM 2 ui N ]Pssn, jo,J o)
=8(P;—P,—P)s(P;—TP)s(P,—TI'pTP,)
X Do,0,0,05m.59,7,0 M (P, 1) Do,0,0,0;n,,0,0,0 ¥+
X (Ps,I'pT)Do,0,0,0;,40,7,0 1 (Py,T) .
X(OM 2 NI T W0 |CM 2, i N )

with T' a representative of 0(1,5)/0(4),

(24)

coshD 0 sinhD
F D= 0 ] 4 0 5
sinhD 0 coshD

and sinhD= (M 2—M 2402 /2Mp. The 0O(5)/0(4)
“rotations” (P,;,I') and (P,I') and the 0(1,4)/0(4)
rotations (P, I'pT’) are defined by

(P,T)=T(TP)TT(P), (25)

with T'.(P) a representative of 0(1,5)/0(5) defined by
I'.(P) P=P. The first and last D functions are matrix
elements of an O(5) representation and the second D
function is an O(1,4) representation matrix element.

All degeneracy parameters have been set equal to
zero. As was pointed out in Sec. IT B there is no physical
motivation for setting these “extra” labels to zero.
However, there is a very good practical reason, namely,
it is then possible to evaluate explicitly the D functions
in Eq. (24). This evaluation gives the energy dependence
of the D functions for the special case when the de-
generacy parameters are zero.

We are primarily interested in the energy dependence
of the D functions, and in order to find this dependence
we make use of the fact that these functions are eigen-
functions of the Laplace-Beltrami operator, the differ-
ential operator associated with the quadratic Casimir
operator 5

> X2=1
=1

of 0(5)/0(4). In a spherical basis its form is?!
{ 1 0 0 1

— sinda— +

sin®a da da  sina

1 9 d
X[—"— — sin%y—

1
. + ——VZ] } F(a,x[/,ﬁ,qb)
sin%) oy 0%

sin%y
=e(e+3)F(a¥,0,9), (20)

2t Reference 20, p. 235.
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with e a constant. This is a separable differential equa-
tion and has the solution

A(sina)™
T. d cosf™t!
17 (sing) d7+1(cosny)

Tn dcosy/+1!

dn+1
[Pesa(cose) ]

Fn,J,,‘(a,J/,B, (P) =

Y.7(6,0), (27)

with 4. a constant,
T=[e*(e2—12)(e2—22)- - (e—n2) 12,

and T,=[n2n2—12)- .- (m2—J*)JV% Now these func-
tions are equal to the special D functions

FnJu“(aﬁb;ey‘P): DO,U,O,O;n,O,J,o-[”’”(P,r‘>

with e directly related to [u,A].22 The energy dependence
is known if a connection between the four-momenta and
the variables a, ¢, 6, and ¢ can be made.

In order to see this connection, consider the action of
R, a representative of O(5)/0(4), on the vector P;”
=(~/5,0,0,0,0,(s—M;2)1/2) (T denotes transpose)?*:

Vs
(s—M ;%2 sina siny sinf cose
(s—M »)V? sina siny sind sing
(s—M ?)'/? sina siny cosf
(s—M )2 sina cosy
(s—M 2 cosa

(28)

RP;= (29)

This is the most general form for the six-momenta £ in a
spherical basis, the same basis used to write Eq. (26).
Next consider the action of (P;,I'), a representative of
0(5)/0(4), on P;:

Vs
0
(P'Uf‘)Plz 0 )
— M ; sinhy coshg
—M ; sinhf8

(30)

2 ¢ is uniquely related to a specific subset of all O(5) repre-
sentations. See Table II.

23 We make use of the theory of homogeneous spaces (see
Appendix B) in this calculation. Obviously O(5) decomposes into
right cosets with respect to

o
0(5)=U (Oé‘*) ?)Rc,

with R, a representative of O(5)/0(4). We assume that R and
(P,T’) are associated with the same arbitrary point ¢ in the horrlo—
geneous space O(5)/0(4) so that x is defined by ¥ =xR =x0(P,I).
xo=(0,0,0,0,1) is the stabilizer with respect to

)

Now R and (P,T') are parametrized differently, R in terms of
(\a,¢) and (P,I') in terms of the components of the four-
momenta, and it is the relation between the parameters that we
wish to find. This is readily done by considering xoR =xo(P,T).

as
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with /s=M; coshy cosh and cothg= —cothD.2*
(P;,T)P; is obviously not a general six-momentum
vector because I' has been constructed such that the
three-momentum content of P; is zero and the four-
momentum of P, (i.e., the first four components of P;)
is zero. Comparing Egs. (29) and (30), we see that
= ¢=¢=0 in the c.m. frame and

cosa=3p/(s—M 212, (31)

The above argument for calculating the energy
dependence has been carried through for the rotation
(P,,T'), but it also holds for (P;,I') and (P,,I'pD).
However, the 0(1,4) matrix elements D®o.e)(P, T',T)
do not satisfy Eq. (26) but instead are eigenfunction
solutions of

1 9 ad 1
(—-ﬂMM—+—*mQ%W@@
sinh®x da da  sinhix

=1G(ay,0,¢),

with 7 a constant and V,? the four-dimensional Laplace-
Beltrami operator. The solution to this equation is a
hypergeometric function with a hyperbolic argument.
It is not necessary to evaluate these functions, since the
0(1,4) matrix element

Dy,0,0,0;0,0,0,0%<1 (P, T'pT)

(32)

is a constant. This can be seen by writing the solution of
Eq. (32) as a Jacobi polynomial and then setting all
indices to zero.?® Thus, the final form for the matrix
element [Eq. (24)] in the c.m. frame is

(M 2 s, m, §o=0, 7, o
X Ty lk0.¢.0] § [M,ﬂ,p,)\]\/s, n, j0=0; J; o'>
A(sinay)"(siney)™  dt

= Peyi(cosa)
(TOXT,)?*  dcosfrtt o

anrtt

p 0;:11’ er1(cosay),
COs

X (33)

with 4 a constant that contains the O(1,4) matrix
element, the reduced matrix element, and the normali-
zation constant 4..

If a specific reaction is considered, then several state-
ments can be made about the matrix element, Eq. (33).
Thus, consider proton-proton elastic scattering; this
fixes M ;*=M ;= (2m,)% The spin angular momentum
is either 0 or 1, so representations of O(5) must be picked
that contain the minimum angular momentum repre-
sentations 7o=0, 1. We identify 7, as the spin angular
momentum, since jo<.J. The angular momentum con-

2 These relations come from the d-function conditions P;=TP;
and P;=Tpi'P,. See Appendix C, after Lq. (C25). Note that
(4] =B4, ﬁ =wus, and Y =Q4.

2 Reference 20, pp. 169-175.
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Tasre II. Lower-dimensional representations of O(S) are analyzed with respect to their O(4) and angular momentum content. The

label e picks out those representations of O(S) which contain the O(4) representations { (#,0), (#—1, 0), ..., (0,0)}.
o(s) (0]CY)
representation representation
dimension dimension € (,70) J

1 1 0 (0,0) 0

4 4 e (1,0 0,1
5 1,4 1 1,0, (0,0) 0,0,1

10 9,1 (2,0), (0,0) 0,0,1,2

14 9,4,1 2 (2,0), (1,0), (0,0) 0,0,0,1,1,2

16 8,8 2,1, 2,1 1,1,2,2

20 16, 4 e (3,0, (1,00 0,0,1,1,2,3

30 16,9,4, 1 3 (3,0, (2,0), (1,0, (0,0) 0,0,0,0,1,1,1,2,2 '3

tent of the lower-dimensional representations of O(5)
is given in Table II.

Now Eq. (33) isvalid for 7,=0; therefore, it is possible
to calculate the amplitudes Qenjp?= Qeno?, where the
superscript indicates the dimension of the O(5) repre-
sentation. All partial waves that occur in the repre-
sentation are predicted to be the same unless #=0
(i.e., J=0), since the angular momentum dependence
has dropped out of the amplitude. Thus, the amplitudes
Re00? are unique S-wave amplitudes whereas Qe10%, for
example, is not unique (J=0,1). The phase shifts
associated with @igo®, @200'%, and Qu1o® are plotted as
functions of the energy in Figs. 1-3.26 We have also
looked at phase shifts associated with Qeno? when # is
large (#>5) and have found that they are nearly con-
stant at all energies.

Ideally, the spacelike mass parameter can be adjusted
such that the experimental phase shifts are predicted.
We have calculated phase shifts for several values of p
between 1 and 600 MeV. The maximum value of p
is restricted by the minimum value of the laboratory
energy according to Eq. (34), which comes directly
from Eq. (31):

pmnx< 2(2mpElab)1/2- (34)

The phase shifts plotted in Figs. 1-3 have been calcu-
lated for 50 < E14,<400 MeV, except in the case p=1
MeV. In that case the energy dependence has been
checked down to 1 MeV.

E. InO(1,n), n>5

Tt might be hoped that the angular momentum de-
pendence problem is solved by considering larger
groups (#>5). This is not the case, and in fact the
matrix elements become more ambiguous for larger
groups because new eigenvalues arise which have no
physical interpretation. Also, the transformation prop-
erties of the T operator are less well defined by demand-
ing that it transform as a scalar under P@ K so that a
large number of additional assumptions must be made

26 Experimental and one-pion-exchange model S-wave phase
shifts have been taken from M. H. MacGregor, R. A. Arndt, and
R. M. Wright, Phys. Rev. 169, 1128 (1968).

with no physical motivation. Finally, when @ and K
are contained as a direct-sum subgroup in G, spin-
statistics violations arise. That is, one representation of
G can contain both half-integer and integer representa-
tion of the angular momentum.

IV. CONCLUSION

It has been shown how a two-particle symmetry

" model can be used to derive the energy dependence of

partial-wave amplitudes. The only parameters in the
model come from the quantity ([X,]||7%|[xx)
[Eq. (9)] and the transformation properties of the 7'
operator under the two-particle symmetry group. How-
ever, as was shown in Sec. ITI, the T-operator trans-
formation properties are not completely arbitrary, being
restricted by the demand that the 7 operator transform
as a scalar under ®® K. It is possible that demanding
that 7 be unitary further restricts its transformation
properties. These restrictions would arise if the uni-
tarity condition, which implies that the tensor product
space 3¢([X]®[X]) uniquely contains the identity, is a
“stronger” restriction than the ®® K scalar condition.

60 T T T T T T 1T
40 |-
[2]
w
w 20 |-
@
[l
w
o
1
o
w 9 0
«©
-20 —
40 (AR TR NN SR SR S B
[¢] [{o]o] 200 300 400

ENERGY - MeV

F16. 1. S-wave proton-proton elastic scattering phase shift
8100° is plotted as a function of beam energy for p =550 MeV. The
point at which 8190 crosses zero degrees is nearly independent of p.
The experimental phase shift (solid line) is plotted for com-
parison.
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F16. 2. S-wave proton-proton elastic scattering phase shift
200" is plotted as a function of beam energy for p =550 MeV. The
point at which 8ap crosses zero degrees is nearly independent of p.
The experimental phase shift (solid line) is plotted for com-
parison.

It should be pointed out that since we have taken a
group-theoretical approach towards calculating partial-
wave cross sections using unitary representations, such
cross sections will always be square-integrable functions
of the energy; yet experimentally it seems that partial-
wave cross sections are non-square-integrable functions
of the energy.?” This would imply that nonunitary
representations be considered somewhat in the spirit
in which Toller has used nonunitary representations to
get Regge behavior from group theory.®

For the InO(1,n) two-particle symmetry group, it has
been shown that no unique association between the
matrix element Eq. (16) [or Eq. (24)] and a partial-
wave amplitude is possible unless the total angular
momentum is zero. (See Figs. 1-3 for the prediction of
the model for J=0.) The angular momentum depen-

Or—T—T T T T T 1T 1

- DEGREES

5
8[[0

SOV I SN TR R N R SRR
[o] 100 200 300 400
ENERGY - MeV

Fi1c. 3. Proton-proton elastic scattering phase shift 8110° (dashed
line) is plotted as a function of beam energy for p =140 MeV. The
one-pion-exchange phase shift (dotted line) and experimental
phase shift’ (solid line) are plotted for comparison.

% For some comments on this problem see M. Toller, Nuovo
Cimento 37, 631 (1967).
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dence is lost because the Poincaré group and internal-
symmetry group are considered as a direct sum in G.
It is possible that the angular momentum dependence
will not be lost if ® and K are considered as direct-
product subgroups of G. In addition, it can be shown
that spin-statistics violations arise if @K is used in-
stead of ®P® K. Thus, whether the direct-product or
direct-sum subgroup is considered appears to be an
important consideration and work is being started on
the problem of calculating matrix elements for PR K
as a subgroup of G.

Finally, it is interesting to note that the threshold
behavior of the amplitude Eq. (33) is dominated by the
factor (sina)?* (a~~ay; for p>>1). sina can be written
as a function of s and has the singularity (s—4m?)—"
for equal-mass scattering processes. It is known that
the kinematic singularity in an equal-mass partial-
wave amplitude is proportional to (s—4m?2)~7.2 Thus
the kinematic singularity naturally arises if #=J and
after the kinematic singularity is removed the amplitude
is well behaved near threshold. Since this threshold be-
havior was not built into the model in any way, we are
encouraged to investigate two-particle symmetry models
further.

APPENDIX A: REDUCTION OF 3C(x)

For two-particle symmetry groups that have unitary
irreducible representations which can be written as
induced representations, Mackey’s subgroup theorem
can be used to reduce 3C(X) into constituents 3C(m,J,7).13
Let H be a subgroup of G with representation L defined
on a Hilbert space J¢(L)."* The representations of G
induced by L are defined on a Hilbert space 3¢(U¥*) of
square-integrable functions that map g&G into 3C(L)
and have the property f(hg)=L(k)f(g), h=H. The in-
duced representations are defined by

U™ (g0) f(9)= f(gg0),

where go is a fixed element of G and U% denotes the
unitary representations of G induced by the representa-
tion L of H.

Now G can be decomposed into a union over double
cosets with respect to H and PR K:

D

(A1)

(A2)

with gp a double-coset representative. Mackey has
shown that the unitary representation UZX(%'), &’ an
element of ®® K, decomposes into unitary representa-
tion UL2(h') as a direct integral:

UL(h’)z/dD Uuko(i'), (A3)

where Lp=L(gphp™") is a representation of the sub-

28 J. D. Jackson and G. E. Hite, Phys. Rev. 169, 1248 (1968).
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group Hp=gp 'HgpNPR® K defined on the Hilbert
space 3C(Lp). The representation U?(%’) is defined on
the subspace 3¢p(U%) of 3¢(UL) labeled by the double-
coset parameters D. The representation of ®® K induced
by Lp is, in general, reducible so that it is necessary to
decompose UZL? further into a direct sum of irreducible
representations of ®® K ; then from this decomposition
it is obvious whether or not U¥ can be chosen such that
Eq. (6) is satisfied.

APPENDIX B: ANALYSIS OF GROUP /nO(1,n)

The group 7#0(1,#) can be written in matrix form as

o= D)

with T an arbitrary (#+1)-dimensional orthogonal
matrix that leaves the metric

1 0
()
0 —I,

IyIT=y,

(B1)

invariant,?
(B2)

and A an arbitrary (n+1)-dimensional vector. The
group law of multiplication is matrix multiplication:

<I‘ A)(I" A') (FF’ I‘A’-{—A)
o 1/\o 1/ \o '
Since I#0(1,n) is a semidirect product group, all of

its representations can be written as induced representa-
tions, with the inducing subgroups defined by

H={g|gEG, eK-v40™ = gik-4}

(B3)

(B4)

where ¢*X-4 is a representation of

(v )
0 1
‘with K an (n+1)-dimensional vector that labels the

irreducible representation of the translations 4.3
Equation (B4) implies that

TK=K. (BS)

There are four classes of vectors satisfying Eq. (BS),
and associated with each class is a class of equivalent
irreducible representations of /#0(1,z). It is sufficient
to choose a “standard vector” in each class of vectors

to characterize all irreducible representations of
mO(1,n).

2 I, denotes the n-dimensional identity matrix.
30 The scalar product is defined with respect to the metric

~(1 0)
= 0 “'Iu

so that K-A =K7TvA.
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1. K-K>0, Timelike Representations

Consider first the class of vectors defined by K- K>0
with standard vector K7=(M,0,0,...,0), M real and
positive.? Using Eq. (B5),

1T 0 A
= [0 o) J , (B6)
0 0 1
which has representations
L=exp(iK - A) Dy, 5 1(0()), (B7)

where D,,,1(O(n)) are O(n) representation matrices,
[x] denotes the set of irreducible representation labels,
and # denotes a complete set of eigenvalues of diagonal
operators in the representation space 3¢(X) of O(n).

The irreducible representation labels of 7#0(1,n) are
[M,x] with M?= K- K while a complete set of diagonal
quantum numbers can be chosen to be K and 7.

In exactly the same way as is done for the Poincaré
group,3? it is not difficult to calculate the action of an
arbitrary group element (T',4)&En0(1,#) on the basis
state |[M ,X]Kn):

U(r,4)|[M XIK n) =€ 43 Dy XI(K,T)
7]I

X|[MXITK,y"). (B8)
(K,T) is an arbitrary element of O(n) defined by
(K,I)=T(TK)IT:"(K), (B9)

with I';(K) a coset representative of O(1,#)/0(n) de-
fined by K=T,(K)K [i.e., T,(K) is the analog of a
boost in the Poincaré group]; I'.(I'K) is similarly
defined.

2. K-K <0, Spacelike Representations

A second class of irreducible representations is given
by choosing K7= (0,0, .. .,0,p), p real and positive. Using
Eq. (B3), the inducing subgroup is

o(l,n—1) 0 A
H= { 0 1 , (B10)
L 0 0o 1
which has representations
L=exp(iK-A)D,, X1(0(1,n—1)),  (B11)

with Dy, XJ(O(1,#—1)) representation matrices of
0O(1, n—1). Now [ X ] labels representations of O(1,n—1)
and 7 is the set of eigenvalues of operators diagonal in
the representation space 3¢(X) of O(1, n—1).

The irreducible representations of InO(1,n) are
labeled by [p,X]; a basis state in the representation
space J3C(p,X) is labeled by [p,X], K, and 7.

31 The “caret” notation, i.e., R, will be used to denote standard
vectors.

% P. Moussa and R. Stora, in Lectures in Theoretical Physics
(University of Colorado Press, Boulder, 1964), Vol. VIIa.
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3. K+ K=0, Null-Like and Lightlike
Representations

The class defined by K-K=0 has two standard
vectors, K=0 and K= (,0,0,...,0,0). The null-like
representations are derived if K=0, and they are just
the representations of O(1,%). The lightlike representa-
tions arise if K= (w,0,...,0,0). The inducing subgroup
is the Euclidean group in #—1 dimensions. In contrast
to the spacelike and timelike cases, the standard vector
label w does not partially label the irreducible represen-
tations.

Using the analysis outlined above, it is easy to find
all representations of I7O(1,n) provided the representa-
tions of the inducing subgroups are known. In Table I
the important results of this analysis are listed for
In0(1,3), InO(1,4), and In0O(1,5).

APPENDIX C: InO(1,n) CLEBSCH-GORDAN
COEFFICIENTS, SPECIAL CASES

Clebsch-Gordan coefficients resulting from the de-
composition of tensor-product representations of
ImO(1,n) can be obtained using techniques discussed in
Ref. 14. In this appendix the derivation of the Clebsch-
Gordan coefficients resulting from the tensor-product
decomposition of null-like and timelike representations
of In0(1,4) and of spacelike and timelike representations
of In0O(1,5) will be given.

1. Twofold Tensor-Product Decomposition of Null-Like
and Timelike Representations of /n0O(1,4)

The right-coset decompositions of I#0(1,4) with
respect to the timelike and null-like inducing subgroups

are

G=U Hyg. (c1)
and

G=Ge, (C2)
with

1 0

T, 0

G=In0(1,4), H=|0 O(4) , gc=<0 1),

0 0 1

and T, an arbitrary right-coset representative of
0(1,4)/0(4). The null-like representations have as their
inducing subgroup the whole group so that the identity
element ¢ is the only coset representative.

Induced unitary irreducible timelike representations
are defined by the action of the unitary operator U(T",4)
(I,4)EIn0(1,4), on square-integrable functions over
right cosets, f7,(T.), as

(](F)A)flv(rc) =e‘(p(zj3 FCA)

n +J

X Z Z DJJ,J’U'[n'jﬂ(k)f.l’v'(rlc’)7

JI=jo o'=—J

(C3)

KLINK AND G. ]J.

SMITH II 2

with % an element of O(4), I';s defined by I'.I'=kT,
and Dy, s 91(0(4)) representation matrices of O(4).%

Unitarity irreducible null-like representations are
just the representations of O(1,4):

Dn,jg,.f,rr;n’,jo',.”,v’ [ko’c](P)E <Ek0,€]n,j0,],o’l U(P)
X I [kOyC]n/xj0l7J/>Ul> ’ (C4)

with U(T) the unitary irreducible operator associated
with the element T' of O(1,4) and |[ko,cn,70,/,0) a
basis element in the representation space JC(ko,c) of
0(1,4).

The first step in the decomposition of the twofold
tensor-product space is the decomposition of the outer
product group (G1,G2) into double cosets (gp1,gp2) With
respect to (Hi,H») and the diagonal subgroup (G,G)
of (G1,G»):

(G11G2) = U <H17H2) (ng;gD2) (GJG) .

D1,D2

(Cs)

The method for calculating double cosets outlined in
Appendix D can be used to show (gp1,gps)=(e,e), so
that the inducing subgroup in the subspace of the
tensor-product space labeled by double cosets is

H p=(gp1,gn2) " (H1,H2)(gp1,802)(G,G)

10 A
= {0 0(4) J : (C6)
o 0 1

The right-coset decomposition of G with respect to
is given by

1 0 A
I'. 0
G=U [0 0#4) ( >, (C7)
¢ 0 1
0o 0 1

with T', a representative of O(1,4)/0(4).
Now the Clebsch-Gordan coefficients can be written
as

<[M2,”,j0]P;J,0§ n [ [M12,111,j01:]p,J1,01;
LCkoycJna, oz, T 2,02)

:/(tiDﬁ'Jr’,/;p’JY‘,”ﬁ'n'jO](FC)

XD[n,Jl’,n’;p.-h,ﬂ[“flz,nlvﬂ”](F0>
XDnz',joz’,Jz',uz’;nz‘joz,Je,w[ko’c](Fc) ) (CS)
with the first two “D functions” defined by

Ds.yt,00p,7,0 MmN (T ) = ((M2n, 50 1p,J o' | U(T.)
X ][M2,n,j0]p,f,o) . (Cg)

[[M?n,jq]p,J,o) is a basis element in the representation
space JC(M2n,7o) of InO(1,4). The last D function is

2 Subscript and superscript labels are given in Table I.
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defined by Eq. (C4). 5 is the set of degeneracy param-
eters {J1,01',ns, 702’ Jo ,02'} and the labels J’ and o’ are
giVCIl by J]ll‘leI SJ’S l]ll—l"]gll and ()'I=(7'1’—|—¢Tzl.34
The D functions can be evaluated since it is not diffi-
cult to calculate the action of the irreducible unitary
operator U(T) on a basis element [see Eq. (B8)]:

LT(I‘> l [M"’,n,jo]p,],cr)= Z DJ'.W';J,U[n'jOJ(pyF)
J! e’

X |[M%n,5,]Tp, 0"y (C10)
and

U(F) l [ko,C]%,jo,],O’)

= Z Dn',jo',J',v’;n,jo,J,ﬂ(ko’c](P)

W g0’ 6"
X [[kﬂ;cjnlaj()’:],;"!> ’ (C11>

with (p,I") an element of O(4) defined by
(@, T)=Tu(Tp)TT:(p). (C12)

I',7'(p) is a representative of O(1,4)/0(4) that “boosts”
P to p, p=T,(p)p. For the special case I'=T,, (p,I'c)
equals the identity. This is proved by deriving the most
general form for I', consistent with

M /s

0 0
0|=r." 0

0 0

0 (s—M?2)1

Recalling that T', is a representative of 0(1,4)/0(4)
[Eq. ( C7)], it is easy to see that

Ws)/Mm 0 (s—M)'"/M)
0

I 0
Ls=MDVYM 0 (Vs)/M

so that T',=T',(p). Then, calculating (p,T.), we find that
(@,T.)=To(Tep)T.T:1(p)

=T.I™!
=e.

.= , (C13)

(C14)

Now using Eq. (C14), the Clebsch-Gordan coefficient,
Eq. (C8), reduces to

<[M21”’j0]p)~770'; n l [Mlz;”l>joljpyjly01§
LCkoycJn2, jos,J 2,02)

=fdrca(f)—Fcp)ﬁn,u’a/,J’aal,ul'

XDnz'nyZ',JZ’,dl’; nzyjoz.Jz,az[ko'chC)

(C15)

— ko,
“Dnz’,jaz’,Jz,az’;nz,joz,Jz,az[ 0 c](Fc) ’

3 Primed subscripts are fixed in such a manner that the D
functions transform as their associated square-integrable func-
tions. See Ref. 37.
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with T, fixed by p=Tp, 02’=0—0ay/, and | J1—J, | <J
<|[J+TY].

Finally, as a special example of Eq. (C15), consider
the case when |[ko,c 12, jo2,J 2,02) transforms as a scalar
under the Poincaré group. This situation arises only if
].02:.]2:0'2202

(EM2)naj0jp1];g; j02,yn2laj2/)02/ l [MIZ,”LJ.OI:]P;JIJU
[ko,cInz, jor=J2=02=0)

= D"z',fo‘z',Jz’,az’:nz,O,O,O[kO'C](PI:) .

(C16)

2. Twofold Tensor-Product Decomposition of Spacelike
and Timelike Representations of /nO(1,5)

The subgroups H; and H, that induce unitary ir-
reducible timelike and unitary irreducible spacelike
representations of /#0(1,5) are given in Appendix B,
Egs. (B6) and (B10), respectively. The double-coset
decomposition of the outer product group (G1,G») with
respect to its diagonal subgroup (G,G) and (H1,H>) is

(G1,G2)= U (Hy,H2)(gnp1,g02)(G,G), (C17)
D1,D2

I'p, O
(gp1,gp2) =[< >, 6],
0 1

with

(coshD 0 sinhD |
P D= O ] 4 0 ! )
(sinhD 0 coshD;

obtained by using the technique in Appendix D. Using
the definition of Hp and (gp1,£p2), it is easy to see that

1 0 A
Hp= [o 0(4) , (C18)
0 0 1

so that the right-coset decomposition of G with respect

to Hp is
10 Ay _
£, 0
6=U |0 o ( )
; 0 1
0 o0 1

with T'; a representative of 0(1,5)/0(4).
Now the Clebsch-Gordan coefficient can be written as

<EM.2,}1,)\]P,1Z,].0,],0; 771 { [M12;”'lxkljplsnlyj()h]h”l;
[p2ko,c JP2,ms, fo2,J 2,02)

~ . ~
=/d1‘ DPD'H’,jo’,J',zr’;P.n,jo,J.«r[M '"')\](F)

A M2 s B
XDI’l,m’,jol’,Jl’,a1’;P1,n1.j01,J1,zrlb 1t M](F)

. 2 I = ~
XDPz’,nz’,joz’,Jz‘,wz';Pz,nz,jm,Jz,az[p ’ko'C](FDF)~ ((/19)
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The first D function, defined by

Dppon o 000 P ms g o VEEA(T)
= <[:M2:M:>\]PD)"’I>J.0/J/>G,I

X Lr(f‘) I [szﬂxkjp)nyj()y-]y"? ’ (CZO)

must transform the same as a square-integrable func-
tion in the tensor-product representation space so that
n’, jo', J', and o’ become fixed by the degeneracy param-
ete{s n= {711/,joll,.]ll,o'll,n2l,jozl,]2’,0'2/} and PD = PDH11)2
—+P1. The second and third D functions, defined by
Di’lv"l' i’y »01’;Pl,nw'othﬂ[Mlz'”l’)\”(f‘)
= (M 2ui,\]JPnd s jo T ot |

X U(D)|[M %1, M]Pyma, jor, Jr,01)  (C21)

and

Dﬁ'zyw’,joz'u’z'-02':1’2'"2,102,12.’2[pz'ko'C](FDf‘)
= ([o%ko,c 1Pomy, oo T2 oo | U(TpT)

X I EPZ;k%C]P27n27j02;]2:‘72> ) (sz)

have the same transformation properties as the square-
integrable functions upon which the timelike and space-
like representations are defined. Each D function can
be simplified, since it is known how U(T) [U(T'»T)]
acts on a basis element. That is,

U(f> [ I:M2,y,)\]P,7L,j0,J,O'>
2 Dy einios,s#MP,T)
o T
X |[M2u TP 5o T o), (C23)

with (P,I) a representative of O(5)/0(4) and DM
X (P,I') and O(5) representation matrix; and

U(I‘Df‘) I [:p2,k0,C]P2,7L2,j02,]2,0'2>
2

ne',jo2’,Jo o2’

[ko,c]

Dnz' ,j02’, J2' 02’ ; n2,502,J 2,02

H. KLINK AND G.
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with (P, I'pl') a representative of 0(1,4)/0(4) and
Do.cl(P, T'pT) an O(1,4) representation matrix.

Thus, the Clebsch-Gordan coefficients become

<|:M2)“)>\]Pan7j07‘]y‘7; 77; l[Mlzyﬂlp\ljplynb,7-01:]1)‘71;
[PQ,ko,CjP2,n2,j02,J2,02>
:(PD—'f‘l))(pl—f‘Pl)(P2—PDI~‘P2)
XDn’,jo'vJ'J';n'foyJ,U[”’M(P)F)
XD"l'-J'm’le’yﬂl':"h]‘ou-’l:ﬂ[M'M](Plyf)
anz’Juz’,J‘z"ﬂz’:m-fonwz[ko'c](P%FDF) ’

with T and T'p fixed by the 6 functions.

Now consider the special case when the D function
[Eq. (C22)] transforms as a scalar under Poincaré
transformation and charge transformation; then joo=J»
=go=0 and

(C25)

0
0
0
Po= 0
p sinf
p cosf

The é-function conditions can be used to show that
P=P+P; and in the c.m. frame (i.e., the physical
three-momentum content of P and P; is zero) this
condition can be written generally as

Vs ( 0 ( Vs
0 0 0
0 1o 0
0 - 0 + 0
(s—M?)1/2 ging p sinf (s—M12)'/2 sinfy
(s—M?)12 cosh p cosfly

(s—M19) V% cosby
(C26)

Now T must be the most general element of O(1,5)/
O(4) consistent with Eq. (C26), the §-function condi-
tions Py=TP; and P,=TpI'P,. A general element I’ of

X Py, T'pl), (C24) 0(1,5)/0(4) (no conditions) can be written as
cosha; sinhay 0 0 O O){coshaz O sinhas 0 0 0
sinha; cosha; 0 0 0 O 0 1 0 0 00
i 0 0 n sinhas 0 coshas 0 0O O
0 0 0 0 0 I;
0 0 0 0 0
0 0 0 0 0
( coshas 0 0 O O sinhas [ 1 0 0 00 O I, 0 0 0 O
0 1, 0 0 cospir O 0 O sinB 0 0 0 0 O
XX 0 0 0 0 I3 0 0 0 cosB O O sinB
0 0 0 0 0 0 0 0 I, 0
0 0 0 0 0 0 0 0 0
sinhes 0 0 0 O cosha;j (0 —sinB; O O O cosBi |0 O —sinBy O 0O cosBe
Is 0 0 0 ( 14 0 0
0 0 0 | 0 0
0 0o 0 || 0 0
X 0 0 O «cosB;s O sinB; l 0 0 (C27)
0 0 0 0 1 0 /{0 O O O cosBs sinBy
0 0 0 —sinB; O cosBsJ 0 0 0 0 —sin8s cosPs



2 SYMMETRIES IMPOSED ON TWO-PARTICLE SYSTEMS.

The condition Py=Tp,T'P; implies that coshassinhD
= —coshD sinhas, and Py= TPy, with P,7=(/s,0,0,0,
(s—M12)'? sinby, (s—M1?)'2cosfr) implies ar=as=
a;=B1=Ls=B3=0, Bs=0;, and v/s=M coshas coshas.
These conditions can be used to write the rotations
(Py,T), (P2, T'pT), and (P,T’) explicitly in terms of the
components of Py, Py, and P.

APPENDIX D: REDUCTION OF
(M%) TO 3¢(m,J,1)

In this appendix the Hilbert space 3¢(3,X) of unitary
irreducible timelike representations UM:x! of G
=In0(1,n) will be decomposed into irreducible con-
stituents when G is restricted to H'=®®0(r—3). It is
convenient to use Mackey’s subgroup theorem, which
can be implemented if the double-coset decomposition
of G with respect to its subgroups H=InO(n) and
H' is known. That is, double-coset representatives gp
defined by the double-coset decomposition

G=U HgpH' (D1)
D

or, what is equivalent,

o(1m)=U O(n)gn[0(1,3)®0(1r—3)] (D1’)

must be calculated. Given gp, Hp=gp‘Hgp(H' can
be calculated and UZ(H’) decomposed into a direct
integral (sum) over ULP(H’).

In order to find double-coset representatives, it
proves convenient to introduce homogeneous spaces.
The following definitions and notation are taken from
Gel’fand et al.%® Let the elements in G transform some
space X into itself. If for every x,y&X there exists
g&G such that y=xg, then G is said to be transitive on
X and X is called homogeneous with respect to G. In
the homogeneous space X there exists some point o
such that xo=x¢k, & H ; %, is called the stabilizer of G
with respect to H. If x=ux,g, then it is also true that

x=xohg, so that for each & X there exists a correspond- -

ing right-coset representative defined by g=Ag., g and
g.£G.

Now consider the decomposition of G with respect to
H:

G=U Hg. (D2)
or
O(1,m) (A PO 0
7” c
( { }>=U 0 O(n) (g ) (D3)
0 1 . 0 1
0o 0 1

The representative g.&G is equivalent to a vector x in
X=0(1,2)/0(n). The point of stability with respect to

3 1. M. Gel’fand, M. L. Graev, and N. Ya. Vilenkin, Generalized
Functions (Academic, New York, 1966), Vol. 5.
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O(n) is the vector x,"= (1,0,0,...,0) since

o o)
X9 =Xy .
0 O(n)

It is easy to see that an arbitrary point x in the homo-
geneous space can be reached through the action of a
right-coset representative on the stabilizer point .

The double-coset representative gp defines a new
point xp=xgp, and an arbitrary point in X can be
written as

(D4)

x=xph’,

(D5)

with #'&EH’. Note that H’ contains a subgroup Hp
defined by
Hl):{h/lhIEH,, xl):th'}. (D6)

H is just that subgroup of H’ that induces representa-
tions in the subspaces 3Cp(U%) of 3C(U¥) labeled by
double-coset parameters D.?%

Now if one chooses

coshD 0 sinhD
g D= 0 ] n—1 O , (D 7)
sinhD 0  coshD

with 0< D< o, then Eq. (D5) is satisfied. The stability
point of Hp is xp= (coshD,0,...,0,sinhD) and the re-
striction xp=xph’ [Eq. (D6)] implies

1 0 0 0 4
0 0(3) 0 0
Hp=|0 0 Om—4) O (D8)
0 0 0 1
0 0 0 0 1
The representations Ly of Hp are
Lp=L(gok'gp™)
= ¢"2 4D, 1(0(3)) Dps 11O (n—4)), (DY)

with Kp=gpK, Ds.1(0(3)) reducible representation
matrices of O(3) and Dgg [?1(O(n—4)) reducible repre-
sentation matrices of O(n—4).
The mass is directly related to the double-coset label
by
m2=Kp-Kp=M?(142 sinh?D)

so that Eq. (D8) can be written as
U@ e0(n—3))

(D10)

z/ dmrU 3 (@@0(n—3)). (D11)
MZ

Since [ ] and [a] label reducible representations, it is
necessary to decompose them into a sum of irreducible
representations, [J,1]; then using the relation

Ut I (EHOm—23)) = U I(ESO0Mn—3)),
3 W, H. Klink, J. Math. Phys. 10, 606 (1969).

37 The Frobenius reciprocity theorem is proved by Mackey,
Ref. 13.
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Eq. (D11) can be further decomposed. Now . {J (»*.7.11
X(@®O0(m—3)) is, in general, a reducible representa-
tion of ®@O(m—3) and must be further reduced into
irreducible constituents. The multiplicity in each re-
duction can be found using the Frobenius reciprocity
theorem.?” We will illustrate the problem of the decom-
position of 3¢(U"*x1(®®O(n~—3))) by considering two
examples.

First, consider the timelike representations U (M?n.50)
of InO(1,4). The decomposition of UM*m.ol([’),
H'=®®1, can be written [using Eq. (D11)] as

0

U[1W2,71,j0]((9) = / dm2U[’"2"” ((P) . (D12>

Jom?

The reducible representations U(j) decompose into
an irreducible representation U(J) with multiplicity 1,

U= UW),

J=jo

so that Eq. (D12) can be rewritten as

UBeinl (@) ~ / dm? Y, U 71(@) (D13)
M3 L

J=jo0

with U(m?*J) an irreducible representation of H ;. The
spectrum of J is obtained by investigating the weight
diagrams of O(4) representations. The representations
U.71(®) are obviously irreducible representations of
®.

The decomposition of the Hilbert space e({/[M*d0.n])
can be taken directly from Eq. (D13):

5(:([][)12,11,.[0])%‘/ dm? Z %(U[Aﬂ,J}(G))). (D14)
Mm?

J=jo

AND G. J.

SMITH 11 2

As another example, consider the timelike representa-
tions of I#0(1,5). The internal-symmetry group 0(2)
has representations labeled by an integer Q; Eq. (D11)
is written as

U (@D 0(2))

z/w dm2U (@@ 0(2)). (D15)

Note that no labels [a] appear because the representa-
tions of Hp are completely labeled by [m?7]. Again
U(m?,7) is reducible and U7 must be written as a
direct sum over representations induced by irreducible
representations of Hp:

UBrENE®0(2))

~ / i dm* Y, U@ @®0(2)). (D16)

J

The spectrum of J can be found by investigating O(5)
weight diagrams.

The representations U /(®HO(2)) are not ir-
reducible representations of ®@O0(2); however, it is
easy to decompose the identity into irreducible repre-
sentations of O(2) so that finally

UBe e (@@ 0(2))

%/w dm* 3. f‘f U@ @0(2)). (D17)

J Q=—»
The Hilbert-space decomposition is

Je(U M7 k)

@ oo
z/ dm*y, >, (U7l (D18)
M2

J Q=



