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Symmetries Imposed on Two-Particle Systems. III. Energy
Dependence of Partial-Wave Amplitudes
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From the assumption that the S operator transforms as an irreducible tensor operator under an ap-
proximate symmetry group, called a two-particle symmetry group, it is shown that partial-wave scattering
amplitudes can be calculated. Two models, based on different two-particle symmetry groups, are presented.
Investigation of the first model makes it clear that an energy-dependent amplitude can be calculated, but
the amplitude cannot be identified as a unique partial-wave amplitude. This problem suggests the investi-
gation of the second model, which is then used to calculate S-wave proton-proton elastic scattering phase
shifts. Further research along these lines is suggested.

I. INTRODUCTION

~

~

~

~

BASIC problem in high-energy physics is the
formulation of models capable of predicting the

structure of scattering amplitudes that describe strong-
interaction scattering processes. Since no fundamental
theory of strong interactions exists, many approaches
towards the solution of this problem are being investi-
gated.

It is natural that any attempt to construct a model of
a, scattering amplitude begin with some consideration
of the model-independent features of the scattering
amplitude. It is generally believed that scattering
amplitudes must satisfy crossing, analyticity, and uni-

tarity. ' These model-independent properties are de-
rivable from relativistic quantum fieM theory for certain
special scattering processes (e.g. , pion-nucleon scatter-
ing)'; however, it is not generally considered essential
that these properties be derivable from relativistic
quantum field theory, as many physicists assume these
properties as fundamental. '

A great deal of work has been done in an attempt to
6nd a model that satisfies these three conditions. The
recently developed Veneziano model' satisfies analy-
ticity and crossing, but it does not satisfy unitarity. ""

Dispersion models' satisfy analyticity and unitarity,
but they do not satisfy crossing; a similar statement can
be made about the Regge-pole model. '

In addition to analyticity, crossing, and unitarity,
further restrictions on the structure of scattering ampli-
tudes come from conservation laws and symmetry argu-
ments. It is well known that Lorentz and translational
invariance imply that scattering amplitudes are
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Poincare scalars; also, the conservation of internal
quantum numbers suggests that they are at least
"approximate" SU(3) scalars. These conditions have
been used to analyze scattering amplitudes in several
ways. For example, from the assumption that the scat-
tering amplitude is a Poincare scalar it is possible to
derive the Jacob-Wick partial-wave expansion' and
Toiler's expansions. ' Also it has been postulated that
scattering amplitudes might approximately satisfy a
"higher symmetry. "This idea was used in the formula-
tion of Barut's O(4, 2) model, " and in the two-particle
symmetry model proposed by Klink. "

Now the point is that though much is known about
the properties of scattering amplitudes, yet the prob-
lem of mathematically determining the structure of
scattering amplitudes is not solved. This means, for
example, that the energy dependence of scattering
amplitudes has not been theoretically predicted. It is
partially the purpose of this paper to discuss the two-
particle symmetry model and to demonstrate how this
model might be used to calculate the energy dependence
of partial-wave scattering amplitudes.

The two-particle symmetry model is developed from
two assumptions. First, it is assumed that the two-
particle space of the direct product group (PS' ((P
denotes the Poincare group and E denotes an internal
symmetry group) is spanned by a representation space
associated with an irreducible unitary representation
of a group G. G, which will be called the two-particle
symmetry group, must contain (PE as a subgroup.
The second assumption is that the. 1 operator trans-
forms as a tensor under G and as a scalar under 6'E.
These two transformation requirements do not com-
pletely specify the transformation properties of the T
operator. The remaining transformation labels are fixed

by choosing one component of the T operator to cor-
respond to the physical two-particle T matrix. In Sec.
II these two assumptions are discussed in detail and it
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is shown how one might use them to find the energy
dependence of partial-wave amplitudes.

Unitarity, analyticity, and crossing" will not be
discussed in this paper; instead, our main purpose is
to consider several specific two-particle symmetry
groups and to calculate the energy dependence of
partial-wave scattering amplitudes using these groups.
This is done in Sec. III. It is found that for these two-
particle symmetry groups, partial-wave amplitudes
cannot be uniquely identified unless they are S-wave
amplitudes. Thus proton-proton S-wave phase shifts
are calculated and compared with the experimental low-

energy elastic scattering phase shifts.
Several mathematical problems are discussed in the

appendices. In particular, Appendix A deals with the
question: How do unitary irreducible representation
spaces of G decompose into unitary irreducible repre-
sentation spaces of 6'SE when G is restricted to (P|3EP
A strong condition is found that allows us to say im-
mediately that certain groups are not two-. particle
symmetry groups. In Appendix D it is shown that
InO(1,n) satisfies this condition. The unitary irreduc-
ible representations of ImO(1, n) are discussed in Ap-
pendix B and in Appendix C the Clebsch-Gordan coeffi-
cients that must be known in order to find the partial-
wave amplitudes are calculated;

ponent, and diagonal quantum numbers of E (denoted
by p, a, and i, respectively). The norm of the wave
function ]p[, q, , r, ](pi,ai,ii) describing the 3th particle is

+Jt dpi
[~']»,r~] ,II

' =

&&!]p[~l,», ri](P[)a&)~&)! (™l (3)

so that ]P is an element in the Hilbert space ~(m', J,I)
of unitary irreducible representations of 6'j3E.

Now the wave function formed by coupling two non-
interacting-particle wave functions! say particles 1 and
2 in Eq. (1)) has the norm

J=Jp I=Ip
(ml+m2)

with g'= p'+m' and m' = (pi+ p2) '. J, and Io are fixed
by the single-particle labels J&, J2 and I&, J2, respec-
tively. The Hilbert space of unitary representations
spanned by two-particle states of (PE is

K(mi Ji Ii ai m2 Ji I9 a2)

GQ [P]RE, (2)

with G, 5', and E denoting the tmo-particle symmetry
group, the Poincare group, and the internal-symmetry
group, respectively. The product symbol - 8 means
direct product. The second condition is that G have a
representation space associated with a unitary ir-
reducible representation that covers the two-particle
scattering space of (PE. The implications of these
conditions will be made clear after the notion of two-
particle spaces has been defined.

Consider single-particle wave functions in a repre-
sentation space of (PQE labeled by mass, spin, the
eigenvalues of the Casimir operators of E (denoted by
m, J, and I, respectively), and a complete set of diag-
onal quantum numbers, the three-momenta, spin com-

~2 Crossing in: the two-particle symmetry model has already been
discussed. See W. H. Klink, Phys. Rev. 181, 2027 (2969).

II. REVIEW OF TWO-PARTICLE SYMMETRIES

A. Two-Particle Symmetry Groups

In this section a method for calculating the energy
dependence of partial-wave scattering amplitudes
describing the rela, tivistic rea, ction

1+2~ 3+4.

will be discussed. This method is based on a two-particle
symmetry group which by definition satisfies two con-
ditions. First, it contains the Poincare group and some
internal-symmetry group as subgroups, that is,

Now denoting the Hilbert space of unitary irreducible
representations of G by X(X), it is required that X,
labeling the unitary irreducible representations of G,
be chosen such that

3C(X) = X(mi, Ji,Ii,ai,' mg, J2,I2,a2) . (6)

Note that Eq. (6) implies that X is fixed by the single-
particle labels of the particles in the two-particle system.
Any group that satisfies Eqs. (2) and (6) is by definition
a two-particle symmetry group.

Before discussing how two-particle symmetry groups
might determine the structure of partial-wave ampli-
tudes, consider the problem of finding a group G satisfy-
ing Eqs. (2) and (6). It is not dificult to find many
groups that satisfy Eq. (2), but it is not obvious which
groups have representations that satisfy Eq. (6). It is, in
fact, worthwhile to consider how X(X) reduces into con-
stituents K(m, J,I) when G is restricted to [PANIC, since
this reduction process will indicate restrictions on the
structure of G and hence will simplify the task of
choosing G.

In Appendix A it is shown that a group" G can be
decomposed into double cosets with respect to its

'3 The restriction to groups with: induced representations
simplifies the mathematical problem and yet allows a wide choice
of G. Induced representations and the subgroup theorem are
discussed by Mackey. See G. W. Mackey, University of Chicago
Mathematics Department report, 1955 (unpublished).
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lnduclng subgloup H aI1d its subgroUp {PE)

G=U HgD(a'K).

The double-coset representatives ga are a function of
continuous parameters, one of which can be related to
the mass of the two-particle system. If Eq. (6) is
satisfied, other continuous double-coset parameters can
have no physical interpretation. Thus two-particle
symmetry groups have double-coset representatives
that are a function of one continuous parameter. This
restriction allows one to say (with little work) that
certain groups do not qualify as two-particle symmetry
gl oups.

3. Dynamics from G

Two-particle symmetry groups have been introduced
in",order to make statements about the partial-wave
scattering amplitude for the reaction of Eq. (1). This
can be done if it is assumed that the T operator trans-
forms as an irreducible tensor operator under G and if
it is assumed that one component of the irreducible
tensor operator corresponds to the physical two-particle
T matrix. There is no apparent criterion for choosing
the transformation properties of the T operator except,
of course, it must transform as a scalar under {pE
(excluding any symmetry breaking in K). Since the
choice of transformation properties of the T operator
(equivalently, the choice of the component of the T
operator that corresponds to the two-particle T matrix)
is arbitrary, it is necessary to treat the choice as a
parameter in the model.

We will denote the reduced amplitude resulting frow&

the partial-wave expansion as"

RJ, ..,.,(v'3) = (Cxr]x,el Ti"'
I Cx']x,Y&

with the subscript on T indicating that it is a {PE
scalar and the superscript indicating that it trans-
forms as an irreducible tensor under G. I[x)x,y) is
a basis state in the Hilbert space K(X) with [X7 the
representation labels of G, x the set of quantum num-
bers arising from the subgroups (PE, and y the addi-
tional labels necessary to uniquely specify the basis
state. Note that if K(X) spans the two-particle space of
(PE, x completely labels the basis state.

Now the Wigner-Eckart theorem can be used to
reduce the partial-wave amplitude [Eq. (8)) into a
Clebsch-Gordan coeKcient of G times an unknown
coefficient which is a, constant for a given reaction;

(CX 7 I
T '"'I[X~]*&=(CXr]*I[X]1 [X']*&

x (f&q)m3 m4 J3 +4 I3 I4 &3 o4II T'"'
x jj[x;]mt)ms)Ji) J3,Ii)I3)rri)o 3) . (9)

4 Hp~ to get the inducing subgroup II is given by %. H. IQjnk,
in Lectures in Theoretical Physics XID, edited by K. T. Mahan-
thappa and W. E. Brittin (Gordon and Breach, New York, 1969).

([Xr]j!Tl"'ljj[X;]&is a function of the representation
labels of G, but [X;7 and [Xf] are partially fixed by
single-particle quantum numbers of the particles iv
Eq. (1) and [X,] is assumed fixed"; therefore ([Xf]jj
XT'" ljj[X;)) is a constant for a given reaction. This
implies that all of the dynamics in Eq. (8) is contained
in the Clebsch-Gordan coeScient ([Xf)xjCX,)1;[X,]x&
of G.

Note that the matrix element CEq. (8)] can be
uniquely associated with a partial-wave scattering
amplitude that describes a sPecific reaction, since CX,]
and CXf) are fixed by single-particle quantum numbers
Csee Eq. (6)], and x is the set of all two-particle
quantum labels. Thus, the usual notation for a partial-
wave amplitude fi', z „(Qs) can be used for Eq. (8); the
two-particle energy, Qs= [(pi+ps)3]'f', and the total
angular momentum J are in the set x, whereas the de-
generacy labels 3l (i.e., single-particle helicity or spin-
component labels) come from [X;]and [Xf].

In this work we will restrict our attention to lov-
energy elastic scattering, below any inelastic thresholds
so that, from unitarity, it is possible to write 6,1,„(+s)
as

&g,„(v's) = e'" & ' sining(+s) . (10)

Using Eqs. (9) and (10), the phase shifts g~(Qs) can
be calculated and compared with the experimental
phase shifts. Note, however, that Eq. (9) actually holds
for any sort of two-body reaction, elastic or not.

It should be emphasized that any statement about
the dynamics of a scattering system depends upon G and
the assumed transformation properties [X,) of the T
operator. CX,) can be considered a parameter in the
model at this point, but when explicit two-particle
symmetry groups are considered we will find that [X,)
is not completely arbitrary. Also, no statement can be
made about the static properties of the particles in the
scattering system, since this information is used as input
into the model.

III. SPECIFIC TWO-PARTICLE
SYMMETRY GROUPS

A. InSL (33,C)

The Poincare group can be written in matrix form" as

A H(a)h —. '+)
(P=

0 A—'+ )

I' H(A) I'—'+
rmsL(n, c) = ( ) (12)

"ideally Lx,g would remain the same for all reactions.
"See, fop example, W. H. Klink, J. Math. Phys. 10, 1477

(1969).

with AESL(2,c) and H(a) a 2X2 Hermitian matrix.
A group with similar structure is the semidirect product
group InSL(n, c):
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with FQSL(n, c) and H(A) an nXn Hermitian matrix.
InSL(n, c) contains (P and the internal-symmetry group
SU(n —2) as subgroups, but its double cosets contain
many continuous parameters'~ and therefore, recalling
the argument after Eq. (6), InSL(n, c) is not a useful
two-particle symmetry group.

B. InO(l, n)

Consider the semidirect product group InO(1, n):

Ino(l, n) =
( ) (13)

I„ the n-dimensional identity, and A an (n+1)-dimen-
sional vector. InO(1, n) contains (P and 0(n —3) as a,

direct-sum subgroup, 6'60(n —3), and it is not difficult
to show that its double cosets defined by Eq. (7) contain
one continuous parameter (Appendix D). Thus,
InO(l, n) seems a reasonable candidate for a, two-
particle symmetry group.

C. InO(1, 4)

The simplest, example arises when n= 4. The internal-
symmetry group, in this case, is the identity. It is
obvious that GQ(P631, since 6' can be written as

A
CV=& 0

0

0 u

0
0 1

with ACO(1, 3) and a a four-vector.
In order to find if a representation space of G satisfies

Eq. (6), it is necessary to calculate the representations
of G. All representations of G can be found using little-
group techniques in exactly the same way the repre-
sentations of 6' are found. Since this analysis is mell
understood for the Poincare group it is easy to obtain
the representations of G. The four classes of representa-
tions for both groups are listed in Table I" (see also
Appendix 3).

In Appendix D it is shown that the Hilbert space of
"timelike" unitary representations of InO(1,4) can be
mritten as

~(+[M,n, jo])
Oo n

dm' Q 3C(Ut ~&)

~2 J=jo
(15)

"There are eight parameters for n =4 and more than eight for
n &4.

"For a discussion of the Poincare group, see J. F. Boyce,
R. Delbourgo, A. Salam, and J. Strathdee, International Centre
for Theoretical Physics, Trieste, Report Xo. IC/67/9, 1967
(unpublished). For a discussion of O(4), see B. Kurqunoglu,
Modern Qzsuntunz Theory (Freeman, San Francisco, 1962).

with I'QO(1, n), the group of (n+1)&((n+1) matrices
satisfying

0
r ~r+
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always results in a condition

P)+P~ Pf )

where p, and pf [p denotes a five-vector; see Eq. (C3)7
are related to the four-momenta in the c.m. frame by

Qs
0
0
0 I

(s—M ') 'i'J

0
0
0

.(s—Mf') '"I
Obviously, energy and momenta are not conserved if
the four-momentum content of p, is nonzero so that it

with BC(U'"" s') the Hilbert space of timelike unitary
representations of O'. We see that in the representation
U~~ " j0~ the physical mass is continuous from Af ' to ~
and the spin occurs in finite towers. In principle, a two-
particle symmetry group contains an infinite tower of
spins, since one wants to calculate all partial-wave
amplitudes in a coherent manner. However, infinite
numbers of partial-wave amplitudes (or equivalently,
phase shifts) are never used to fit partial and total
cross sections so that, in practice, having finite towers
of spins imposes no restriction on our calculation.

The physically interesting object is the matrix ele-
ment [Eq. (8)] which can be written as

8j ., „., „(Qs)= ([Mf ',n f jof]"))/s p,J,o; o o,o 4 I

XTiI» j I[M,',n, ,jo;7V sp, J, )r;)ri, o&). (16)

The representation labels [n, jo,M] are fixed by the
single-particle quantum numbers labeling the particles
in the reaction of Eq. (1) in the following way. The c.m.
energy squared of the initial system has the spectrum
(fni+mo)'&s& ~ and it is known that M, '&s& ~
[Eq. (D14)7; therefore, M is chosen to be M,'
= (fni+fnz)'. Similarly, Mf' is fixed at (fno+fn&)-'.
The two-particle spin angular momentum equals the
minimum value of the total angular momentum but
jo&J [Eq. (D14)7; therefore, jo, and jof are fixed by
lsi —sol & jo& lsi+sol and Iso —s4l & jof& lso+s4I,
with s;, the spin angular momentum of the ith particle.
Finally, the "principal quantum numbers" n; and nj are
6xed by the number of partial waves one wants to
consider. This number is, in principle, fixed by experi-
ment.

There are four possible ways one can choose T&'"' to
transform, but interestingly only one yields "reasonable"
nontrivial results. This can be seen in the following way.
Consider a basis state in a representation space of G
with the same transformation properties as T (i.e.,
, [X]1)).The tensor product decomposition

I [X]1)I [M,',n, ,jo,]pJo)

([Mf ) f)j of]PJal [x,]1;[M. . .,2'0)]PJa)

x
I
[Mf',«,jof]pjo) (17)

is necessary to restrict p, to

0'
0
0
0
xJ

Referring to Table I it is obvious that p, must be "space-
like" or "null. " If p, is spacelike, then in the c.rn. frame
Eq. (18) becomes

0
0
0

(s —M )

0
0

+ 0
0
p

0
0
0

I (s—Mf')'"

(19)

so that energy and momenta are conserved. However,
equating the fifth components in Eq. (19) fixes
s =- (ilf,'—p' —Mf')'/4p'+M . Thus all transformation
properties of Ti'»' are unreasonable (i.e., nonconserva. —

tion of energy) or trivial (i.e. , s fixed) unless [X,] is a
"null-like" representation.

Thus, we want to calculate the Clebsch-Gordan co-
efficient that occurs in the reduction of the matrix
element [Eq. (16)7 when [X,]is null-like. This has been
done in Appendix C, where it is shown [Eq. (C16)7 tha, t

([Mf nf jof] ))/S, p,J,o,n, 'j 0' j' I
L. M'', n, jo~],

Qs,p,J,o", [ko,c],n„l)
= D, ',fo, 'f, '0;, 0, 0,,0'","'(.F ) ~(P F P) ) (20)

' If j,=O, then J=O. If j,&0, then J is not uniquely deter-
mined.

"A. Erdblyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi,
Bateman Manuscript Project, EIigher Transcendenta/ Functions
(McGraw-Hill, New York, 1953), Vol. 2, See also D. A. Akyeam-
pong, J. F. Boyce, and M. A. Rashid, International Centre for
Theoretical Physics, Trieste, Report No. IC/67/74, 1967 (un-
published).

with F, a representative of O(1,4)/0(4) defined by
F,p = p, and D'""'(I',) an 0(1,4) representation
matrix de6ned by

D)),'fp, ', f ',0;n, o, o, , o
' (F.) = ([&o,c]n ', jo ',j '))r.'= 0l

x v(F,) I [ko,c]n„jo,=- j.= o,=0). (21)

U(F,) is a unitary operator associated with I', and

I [ko,c]n„jo.,j„o,) is a basis state in the representation
space of O(1,4) (see Table I).

Equation (20) is a disappointing result since all
quantum numbers that label the reaction (except M')
have "dropped out" of the Clebsch-Gordan coefficient. "
On the other hand, the Clebsch-Gordan coefficient does
have a nontrivial energy dependence, since the param-
eters in F, are functions of the four-momenta, p= I',p.
An explicit functional form for the D functions can be
obtained by analytic continuation of the Jacobi poly-
nomials P ' &(x); however, since it is not possible to
make any comparisons with experiment, these functions
will not be discussed. "
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It is worth mentioning several conclusions one can
make about InO(1, n) from studying the group InO(1,4).
First, the timelike representations always contain the
timelike representations of (P, and therefore it is these
representations that must be tested to see if Eq. (6)
is valid. Second, choosing the T operator to transform
as a timelike or "lightlike" representation will always
violate conservation of energy. Also, if T transforms as
a, null representation, then the angular momentum label
will never appear in the Clebsch-Gordan coefhcient

[Eq. (9)j so that all partial waves that occur in the
representation are predicted to be the same. Finally, the
matrix elements [Eq. (9)j are nontrivial functions of
the energy if T transforms as a spacelike representation
and n&4. Ea,ch of these statements can be proved by
simple generalizations of the InO(1,4) analysis; they
indica, te new prospects for physically interesting two-

particle symmetry groups, the simplest being InO(1, 5).

0
0

.0.

0
0
0

(s —M') ']' sin8

.(s—3f')"'cos8,

(22)

with —~&0&~ and W'&s& ~.
The timelike representations of InO(1, 5) contain the

timelike representations of 6', and in Appendix D, Eq.
(D18), the Hilbert-space decomposition with respect to
representations of ]PQ]0(2) is given as

D. In 0 (1,5)

The two-particle symmetry group InO(1, 5) contains
both (P and 0(2) subgroups. 0(2) will be considered the
internal-symmetry group and its irreducible representa-
tions will be denoted by Q (charge or baryon number).
The irreducible representations of InO(1, 5) are divided

into the same four cia,sses as (P; the timelike and space-
like irreducible representation labels and a complete
set of commuting observables are given in Table I.
We have used the fact that an 0(n) eigenstate is

uniquely labeled by the invariants in the chain 0(n)
QO(n 1)Q —QO(2). The six-momentum P
(lPl'=HE') is related to the two-particle c.m. four-

momenta

The T operator must transform as a "spacelike"
representation under G and as a scalar under ]PRO(2).
These transformation requirements do not completely
specify the transformation properties of T and it is
necessary, in addition, to assume some value for n,
It is convenient to pick n, =0.

Now the matrix element [Eq. (8)j can be written
using the Wigner-Eckart theorem and the Clebsch-
Gordan coeflicients derived in Appendix C, Eq. (C25):

([m, ',],,],jP„,j.,I, l
T,~"' "

X l [K,',]i;,]i,jP;,n, jo,J,~)
=8(Pr —P,—P,)b(P, —FP,)b(P, —I"z I'P, )

XD0, 0,0, 0; jmJO, a
' (Pf F) D,O,O,O;On, ,0,0 0

X(P FDf')Do 0 0 0. z '
' (P f')

x([~,',„,~,jllT'~ "]ll[u,~,„„x,]), (24)

of 0(5)/0(4). In a spherical basis its form is"

——sin'n —+ ——

sin'n Bn Bn sin'n

with F a representative of 0(1,5)/0(4),

coshD 0 sinhD
FD= 0 I4 0

sinhD 0 cosh D

and sinhD= (ilIIi' —M'+p')/2', p. The 0(5)/0(4)
"rotations" (P,,F) and (Pr, F) and the 0(1,4)/0(4)
rotations (P., FiiF) are defined by

(P,F) = F,(FP)FF,—(P), (25)

with F,(P) a represents, tive of 0(1,5)/0(5) defined by
I',(P) P= P. The first and last D functions are matrix
elements of an 0(5) representation and the second D
function is an 0(1,4) representation matrix element.

All degeneracy parameters have been set equal to
zero. As was pointed out in Sec. II 8 there is no physical
motivation for setting these "extra" labels to zero.
However, there is a very good practical reason, namely,
it is then possible to evalua, te explicitly the D functions
in Eq. (24). This evaluation gives the energy dependence
of the D functions for the special case when the de-

generacy parameters are zero.
We are primarily interested in the energy dependence

of the D functions, and in order to find this dependence
we make use of the fact that these functions are eigen-
functions of the Laplace-Beltrami opera, tor, the diGer-
ential operator associated with the quadratic Casimir
opera, tor 5

g(& (P ]M, y, X ])
n-

d '2 2 Z ~(II' '") (23)
~, io ~=io Q=~

8
X ———sin'f +

sin'P BP Bf sin'P
V' F (0.,$,8,&)

The sums on n, jo and J are fixed by (]i,X), the irreduc-

ible representation labels of 0(5), and can ea,sily be
determined by investigating 0(5) weight diagrams. "Reference 20, p. 235.

=~(~+3)P(~A 8A), (26)
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with ~ a constant. This is a separable differential equa-
tion and has the solution

with 3, a constant,

—[02(02 12)(02 22). . . (02 "2)71/2

and T =n[n'(n —2 1') (n' —J')7'/2. Now these func-

tions are equal to the special D functions

~nsn'(~, 4', ', p) = Do, o, o, o;», o,z, n/"'"'(P, i') (28)

with 0 directly related to [p,X7.22 The energy dependence
is known if a connection between the four-momenta and
the variables n, P, 8, and q can be made.

In order to see this connection, consider the action of

R, a representative of O(5)/O(4), on the vector P,'
—=(Qs,0,0,0,0,(s—M')'/') (T denotes transpose) 22:

Qs
(s—M')"'

~p (s—M ')"'
(~ M.2)1/2

(s—M')"-'
(~ M, 2)1/2

sinn sing sin8 cosy
sinn sing sin9 sing
sinn sing cos8
sinn cosP
cosa

(29)

This is the most general form for the six-momenta P in a
spherical basis, the same basis used to write Eq. (26).
Next consider the action of (P,,I'), a representative of

O(5)/O(4), on P;:

A, (sinn)" d"+'
I'„,g;(n, g, 8, y) = — —— [P,+1(cosa)7

T, d coso"+'

i'(sing) ~ d~+'(c os')x -~.'(0, '), (»)T„dcos/'+'

with Qs=M; cosh'coshp and cothp=- —cothD. '4

(P,,F)P, is obviously not a general six-momentum
vector because I' has been constructed such that the
three-momentum content of I; is zero and the four-
momentum of P, (i.e., the first four components of P,)
is zero. Comparing Eqs. (29) and (30), we see that
8= p= /= 0 in the c.m. fraine and

cosn= —,'p/(s-M'2) '/'. (31)

The above argument for calculating the energy
dependence has been carried through for the rotation
(P,,I'), but it also holds for (Pf, I') and (P„FDF).
However, the O(1,4) matrix elements D& ''(P„FDI')
do not satisfy Eq. (26) but instead are eigenfunction
solutions of

1 8 t3 1—sinh' —+— 'V, ')G(,4,4, n)
sinh'n Bo, Bo, sinh'n

Do, o, o, o;0,0, 0, 0
""(P.,r Dr)

is a constant. This can be seen by writing the solution of
Eq. (32) as a, Jacobi polynomial and then setting all
indices to zero."Thus, the final form for the matrix
element [Eq. (24)7 in the c.m. frame is

([Mf', p, X7+s, e, j,0=0, ~, a'~

XT1/"""~[M 2 p X7+s, 22, jo ——0, j, g)

=IG(n, g,8, y), (32)

with I a constant and V4' the four-dimensional Laplace-
Beltrami operator. The solution to this equation is a
hypergeometric function with a hyperbolic argument.
It is not necessary to evaluate these functions, since the
0(1,4) matrix element

(P, , r)P, =
0
0

—M; sinhy coshP

.—M; sinhp

(30)
(T.)'(T-)'

(Sin&r)n(Sin& )n dn+1

P,+1(cosn;)
d cose

22 e is uniquely- related to a specific subset of all O(5) repre-
sentations. See Table II.

"%e make use of the theory of homogeneous spaces (see
Appendix B) in this calculation. Obviously O(5) decomposes into
right cosets with respect to

O(4) 0

O(5) =U R„

with R, a representative of O(5)/O(4). Ke assume that R and

(P,F) are associated with the salve arbitrary point c in the homo-

geneous space O(5)/O(4) so that x is defined by x=xpR=xp(P F).
x0 ——(0,0,0,0,1) is the stabilizer with respect to

O(4) 0

Now A and (P,F) are parametrized differently, E. in terms of

{X,n,g, y) and {P,l) in terms of the components of the four-
momenta, and it is the relation between the parameters that we

wish to find. This is readily doric by considering xpR=x'p(P f~).

dn+1

X — — P,.i(cosuf), (33)
d cos0"+'

with A a constant that contains the O(1,4) matrix
element, the reduced matrix element, and the normali-
zation constant 3,.

If a specific reaction is considered, then several state-
ments can be made about the matrix element, Eq. (33).
Thus, consider proton-proton elastic scattering; this
fixes M,2=M'2= (2ns„)2. The spin angular momentum
is either 0 or 1, so representations of 0(5) must be picked
that contain the minimum angular momentum repre-
sentations jp= 0 1. We identify jp as the spin angular
momentum, since jp& J. The angular momentum con-

These relations come from the b-function conditions P; =FP;
and P, =FDI'P, bee Appendix C, after Eq. (C25). Note that
O.'=P4, P =-n5) and y=a4 ~

» Reference 20, pp. 169-]75.
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TABLE II. Lower-dimensional representations of O(5) are analyzed with respect to their O(4) and angular momentum content. The
label e picks out those representations of O(5) which contain the O(4) representations ((a,0), (e—1, 0), . . . , (0,0)1.

0 (5)
representation

dimension

1

5

10
14
16
20
30

O(4}
representation

dimension

1
4
1, 4
9, 1

9, 4, 1

8, 8
16, 4
16, 9, 4, 1

(n, jp)

(0,0)
(1,0)
(1,0), (0,0)
(2,0), (0,0)
(2,0), (1,0), (0,0}
(2 1), (2 1)
(3,0), (1,0)
(3,0), (2,0), (1,0), (0,0)

0
0, 1

0, 0, 1

0, 0, 1, 2

0, 0, 0, 1, 1, 2
1122
0, 0, 1, 1, 2, 3
0, 0, 0, 0, 1, 1, 1, 2, 2, 3

tent of the lower-dimensional representations of 0(5)
is given in Table II.

Now Eq. (33) is valid for jo——0; therefore, it is possible
to calculate the amplitudes 8,„;p"=8,„0", where the
superscript indicates the dimension of the 0(5) repre-
sentation. All partial waves that occur in the repre-
sentation are predicted to be the same unless n=0
(i.e., J=O), since the angular momentum dependence
has dropped out of the amplitude. Thus, the amplitudes
Q,,oo" are unique S-wave amplitudes whereas 0'„&0", for
example, is not unique (J=O, I). The phase shifts
associated with Q, ypo', 8200 and 0', yyo are plotted as
functions of the energy in Figs. 1—3."We have also
looked at phase shifts associated with 8, 0" when n is
large (n&5) and have found that they are nearly con-
stant at all energies.

Ideally, the spacelike mass parameter can be adjusted
such that the experimental phase shifts are predicted.
We have calculated phase shifts for several values of p
between 1 and 600 MeV. The maximum va, lue of p
is restricted by the minimum value of the laboratory
energy according to Eq. (34), which comes directly
from Eq. (31):

p... (2(2rn~Et. b) "'.

with no physical motivation. Finally, when 5' and E
a.re contained as a direct-sum subgroup in G, spin-
statistics violations arise. That is, one representation of
G can contain both half-integer and integer representa-
tion of the angula, r momentum.

IV. CONCLUSION

It has been shown how a two-particle symmetry
model can be used to derive the energy dependence of
partial-wave amplitudes. The only parameters in the
model come from the quantity (Lxf7((T« l((Lx;a)
LEq. (9)7 and the transformation properties of the T
operator under the two-particle symmetry group. How-
ever, as was shown in Sec. III, the T-operator trans-
formation properties are not completely arbitrary, being
restricted by the demand that the T operator transform
as a, scalar under (PSE. It is possible that demanding
tha. t T be unitary further restricts its transformation
properties. These restrictions would arise if the uni-
tarity condition, which implies that the tensor product
space K([x7 Lx7) uniquely contains the identity, is a,

"stronger" restriction than the (Pt3E scalar condition.

The phase shifts plotted in Figs. 1—3 have been calcu-
lated for 50 &Ej,b&400 MeU, except in the case p=1
MeV. In that case the energy dependence ha, s been
checked down to 1 MeV.

40—

I I I I I I I I

E. Ino(l, n), n)5
It might be hoped that the angular momentum de-

pendence problem is solved by considering larger
groups (n)5). This is not the case, and in fact the
matrix elements become more ambiguous for larger
groups because new eigenvalues arise which have no
physical interpretation. Also, the transformation prop-
erties of the T operator are less well defined by demand-

ing that it transform as a scalar under (PQ3E so that a
large number of additional assumptions must be ma, de

'Experimental and one-pion-exchange model S-wave phase
shifts have been taken from M. H. MacGregor, R. A. Amdt, and
R. M. Wright, Phys. Rev. 169, j128 (1968).

(h
tLJ
4J
K
C9
tsar

O
I

O

40

20

-20—

-40
0

I I I

100 200 300 400
ENERGY - INeV

Ixc. 1. S-wave proton-proton elastic scattering phase shift
8Ipp' is plotted as a function of beam energy for p =550 MeV. The
point at which BIpp' crosses zero degrees is nearly independent of p.
The experimental phase shift (solid line} is plotted for com-
parison.
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It should be pointed out that since we have taken a,

group-theoretical approach towards calculating partial-
wave cross sections using unitary representations, such
cross sections will always be square-integrable functions
of the energy; yet experimentally it seems that partial-
wave cross sections are non-square-integrable functions
of the energy. '7 This would imply that nonunitary
representations be considered somewhat in the spirit
in which Toiler has used nonunitary representations to
get Regge behavior from group theory. '

For the In0(1,n) two-particle symmetry group, it has
been shown that no unique association between the
matrix element Eq. (16) Lor Eq. (24)j and a partial-
wave amplitude is possible unless the total angular
momentum is zero. (See Figs. 1—3 for the prediction of
the model for I=O.) The angular momentum depen-

FIG. 2. 5-wave proton-proton elastic scattering phase shift
8200'4 is plotted as a function of beam energy for p =550 MeV. The
point at which 82OO crosses zero degrees is nearly independent of p.
The experimental phase shift (solid line) is plotted for com-
parison.

dence is lost because the Poincare group and internal-
symmetry group are considered as a direct sum in G.
It is possible that the angular momentum dependence
will not be lost if (P and E are considered as direct-
product subgroups of G. In addition, it can be shown
that spin-statistics violations arise if (Pg)E is used in-
stead of 5'E. Thus, whether the direct-product or
direct-sum subgroup is considered appears to be an
important consideration and work is being started on
the problem of calculating matrix elements for 5'ISE
as a subgroup of G.

Finally, it is interesting to note that the threshold
behavior of the amplitude Eq. (33) is dominated by the
factor (sinn)'" (o.,~ny for p))1). sinn can be written
a,s a function of s and has the singularity (s—4m') "
for equal-mass scattering processes. It is known that
the kinema, tic singularity in an equal-mass partial-
wave amplitude is proportional to (s —4m') ~.2s Thus
the kinematic singularity naturally arises if n= J and
after the kinematic singularity is removed the amplitude
is well behaved near threshold. Since this threshold be-
havior was not built into the model in any way, we are
encouraged to investigate two-particle symmetry models
further.

APPENDIX A: REDUCTION OF R(g)

For two-particle symmetry groups that have unitary
irreducible representations which can be written as
induced representations, Mackey's subgroup theorem
can be used to reduce K(x) into constituents K(m, J,I)."
Let H be a subgroup of G with representation L defined
on a Hilbert space K(L)." The representations of G
induced by L are defined on a Hilbert space K(U~) of
square-integrable functions that map g+G into K(L)
and have the property f(hg) =L(h) f(g), h+H. The in-

duced representations are defined by

60
I I I I I U'(go)f(g) = f(ggo), - (A1)

40

V)
w 20
IJj
K
LsJ
O

1 O
g) — 0

00

G =U Hg n(a'S K), (A2)

where go is a fixed element of G and U~ denotes the
unitary representations of G induced by the representa-
tion L of H.

Now G can be decomposed into a union over double
cosets with respect to H and (PE:

-20

-40—
0

I I

300
I I I

l00 20,0
ENERGY- MeV

I

400

with gD a double-coset representative. Mackey has
shown tha, t the unitary representation U~(h'), h' an
element of 5'|3E, decomposes into unitary representa, —

tion U~n(h') as a direct integral:

FIG. 3. Proton-proton elastic scattering phase shift bIIO' (dashed
line) is plotted as a function of beam energy for p =140 MeV. The
one-pion-exchange phase shift (dotted line) and experimental
phase shift (solid line) are plotted for comparison.

"For some comments on this problem see M. Toiler, Xuovo
Cimento 3"l, 631 (1967}.

U'(h') = dD U'n(h') (A3)

where LD= L(gnhn ') is a rep—resentation of the sub-

"J.D. Jackson and G. E. Hite, Phys. Rev. 169, t2&8 (&96&).
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APPENDIX B: ANALYSIS OF GROUP InO(l, n)

The group InO(1, n) can be written in matrix form as

Ino(1,n'I =
( ) (81)

with I' an arbitrary (n+1)-dimensional orthogonal
matrix that leaves the metric

group IID gD
——'IIgDPPSE defined on the Hilbert

space X(LD). The representation U~D(h') is defined on
the subspace K&(U~) of R(U~) labeled by the double-
coset parameters D. The representation of 5' E induced
hy I.D is, in general, reducible so that it is necessary t.o
decompose U~~ further into a direct sum of irreducible
representations of 5'E; then from this decomposition
it is obvious whether or not U~ can be chosen such that
Eq. (6) is satisfied.

'j. 0
II= 0 0(n)

,0 0
(86)

which has representations

L=exp(iE' A)D», '&'(0(n)), (87)

where D», '&'(0(n)) are 0(n) representation matrices,
LX7 denotes the set of irreducible representation labels,
and g denotes a complete set of eigenvalues of diagonal
operators in the representation space K(X) of 0(n).

The irreducible representation labels of InO(1, n) are
PI,X7 with cV'= E Ewhile a com'plete set of diagonal
quantum numbers can be chosen to be K and p.

In exactly the same way as is done for the Poincare
group, " it is not difFicult to calculate the action of an
arbitrary group element (F,A)QInO(1, n) on the basis
state

(
LM', x7Kg):

1. X- K&0, Timelike Representations

Consider first the class of vectors defined by E E)0
with standard vector Er=(Ã, 0,0, . . . ,0), M real and
positive. "Using Eq. (85),

invariant, '9

I'yF~= y, U(F,A)
~ Pf,x7K, &) =e'« "P D„.„&~~(K,F)

and A an arbitrary (n+I)-dimensional vector. The
group law of multiplication is matrix multiplication:

Since InO(1, n) is a sernidirect product group, all of
its representations can be written as induced representa-
tions, with the inducing subgroups defined by

x [ Lcv, x7FK,„'). (8s)

(E,I") is an arbitrary element of 0(n) defined by

(E,I') = F,(FE)I'I', '(E'), (89)

with F,(E) a coset representative of 0(1,n)/0(e) de-
fined by E=r,(E)E $i.e., F,(E) is the analog of a
boost in the Poincare group); F,(FE) is similarly
defined.

{g~gEG e~x ~ gA0 ~ —eiIc A) (84) 2. EC E; &0, Spacelike Representations

where e'~'~ is a representation of

(' ",)
with E an (n+I)-dimensional vector that labels the
irreducible representation of the translations A."

Equation (84) implies that

(85)

There are four classes of vectors satisfying Eq. (85),
and associated with each class is a class of equivalent
irreducible representations of InO(1,n). It is sufficient
to choose a "standard vector" in each class of vectors
to characterize all irreducible representations of
InO(1,n).

"I denotes the n-dimensional identity matrix.
'o The scalar product is defined with respect to the metric

so that E' A =E~yA.

A second class of irreducible representations is given
by choosing E~= (0,0, . . . ,O,p), p real and positive. Using
Eq. (85), the inducing subgroup is

-0(1, n —1) 0 A~

0
0 0

which has representations

L= exp(iE A)D» h'(0(1, n —1)), (811)

with D». h'(0(1, n —1)) representation matrices of
0(1, n 1).Now—LX7 labels representations of 0(1,n 1)—
and g is the set of eigenvalues of operators diagonal in
the representation space K(x) of 0(1, n 1). —

The irreducible representations of InO(1, n) are
labeled by Lp, X7; a basis state in the representation
space K(p, x) is labeled by Lp, X7, K, and g.

"The "caret" notation, i.e., X, will be used to denote standard
vectors.

32P. Moussa and R. Stora, in Lectures ie Theoretical Physics
(University of Colorado Press, Boulder, 1964), Vol. VIla.
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3. K X=O, Null-Like and Lightlike
Reyresentations

The class de6ned by E E=O has two standard
vectors, X=O and X= (op, 0,0, . . . ,0,&d). The null-like

representations are derived if X=-O, and they are just
the representations of 0(1,n). The lightlike representa, —

tions arise if E= (oo,0, . . . ,O,oo). The inducing subgroup
is the Euclidean group in n —1 dimensions. In contrast
to the spacelike and timelike cases, the standard vector
label co does not partially label the irreducible represen-
tations.

Using the analysis outlined above, it is easy to 6nd
all representations of InO(1,n) provided the representa-
tions of the inducing subgroups are known. In Table I
the important results of this analysis are listed for
InO(1, 3), InO(1, 4), and InO(1, 5).

APPENDIX C: InO(l, n) CLEBSCH-GORDAN
COEFFICIENTS, SPECIAL CASES

Clebsch-j ordan coefFicients resulting from the de-

composition of tensor-product representations of
InO(l, n) can be obtained using techniques discussed in
Ref. 14. In this appendix the derivation of the Clebsch-
Gordan coefFicients resulting from the tensor-product
decomposition of null-like and timelike representations
of InO(1,4) and of spacelike and timelike representations
of InO(1, 5) will be given.

l. Twofold Tensor-Product Decomyosition of Null-Like
and Timelike Representations of InO(1,4)

The method for calculating double cosets outlined in
Appendix D can be used to show (gioi, gnp)= (e,e), so
that the inducing subgroup in the subspace of the
tensor-product space labeled by double cosets is

~&n= (a» aD-) '(H—:iHp)(g» g»)A(G G)

0
0 0(4)

,0 0 1.
(C6)

The right-coset decomposition of 6 with respect to BJ~
is given by

with k an element of 0(4), I', defined by I',I'=kl", ,

and D~, J', '" '»(0(4)) representation matrices of 0(4)."
Unitarity irreducible null-like representations are

just the representations of 0(1,4):

D, , r,.;, ;,.r, ' "(I')=([ko,cjn jo,I,oTI U(l')

X
I [ko,cjn', jo',I', o.'), (C4)

with U(I') the unitary irreducible opera. tor associated
with the element I' of 0(1,4) and

I [kp, cjn,j„I,or) a.

basis element in the representation space X(ko,c) of

0(1,4).
The first step in the decomposition of the twofold

tensor-product space is the decomposition of the outer
product group (Gi,Gp) into double cosets (gai, gDp) with
respect to (Hi, Hp) and the diagonal subgroup (G,G)
of (Gi,Gp):

(G„G,) = U (H„H,)(a~i gnp)(G, G). (C5)
D I., D2

The right-coset decompositions of InO(1,4) with
respect to the timelike and null-like inducing subgroups
are

0 zi-

G=U o o(4) (C7)

G=U Hg, (CI) .0 0

with

G= t"e, (C2)
with I', a representative of 0(1,4)/0(4).

Now the Clebsch-Gordan coefFicients can be written

A I', 0
G=InO(1, 4), H= 0 0(4), g, =

0 1.0
and I', an arbitrary right-coset representative of
0(1,4)/0(4). The null-like representations have as their
inducing subgroup the whole group so that the identity
element e is the only coset representative.

Induced unitary irreducible timelike representations
are defined by the action of the unitary operator U(1',A)
(I',A)QInO(1, 4), on square-integrable functions over
right cosets, f~,(1',), a,s

V(I',2)fr.(l', ) =exp(ij I',2)

D~..~ "'" '"(k)f,i - (I'"), (C3)
J'=jo O'=—J

([&',n, jpjP, I,~; ~ I
[~i',ni, jpap Ji,~i;

[kp, c]np, jpp, Jp, orp)

tofo, n, jo] (p )

tilII2 n, l jcOI]XDpt, ~i c,', p, .ri, cx"" "' ""(I'c)

XDno', joo', Jo', co'; no, joo, J'o, co ' (I c) y (C8)

with the first two "D functions" de6ned by

D;,',. ,...~
' "'"(1.) =([~', ,jojP,&', 'I tI(1'.)

X I
[cVP,n, jo)P,I,P) (C9)

I [cV,n, jpjp, I,oT) is a basis element in the representation
space X(M',n, jo) of InO(1, 4). The last D function is

""' Subscript and superscript labels are given in Table I.
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and
x

I I
m', n, jo7rp, J',~') (c1o)

U(I')
I pkp, c7n,j i&,J,o)

D»', jo', J', 0'; njord, ,0 ,
' (r)

n', jp', J', 0'

X I fkp c7n jp &
J o' ) (C11)

with (p, F) a.n element of O(4) defined by

(p, r) =r.(n)rr. -'V)

def'ined by Eq. (C4). &j is the set of degeneracy param-
eters fJi',oi', n2', jpp', J2',op') and the labels J' and o' are
given by I

Ji' —J2'
I
&J'&

I
Ji'+ Jp'

I
and o.'= o.i'+o.p'."

The D functions can be evaluated since it is not diK-
cult to calculate the action of the irreducible unitary
operator U(F) on a basis element

I
see Eq. (BS)7:

U(F) IpI2, n, jp7p, J,o)= Q Dg . . J .~" jo&(p F)

with F, Axed by j=rp, o2' ——o —&ri', and
I Ji—J2'I& I

&
I J.+J.'I
Finally, as a special example of Zq. (C15), consider

the case when
I [kp, c7n2, jo2 J2 o2) transforms as a scalar

under the Poincare group. This situation arises only if
j02= J2= ~2= o:

([jV,n, jo7p,J,o; jo2', n2', J2',o 2'I LjVi,ni, joi7p Ji,&T&'

Lko, c7n2, j» -——J2-——o 2 ——0)
=D„;,,;,g.. ,.. „,, p, p, p' ' "'(F,.). (C16)

2. Twofold Tensor-Product Decomposition of Spacelike
and Time1ike Representations of InO(1, 5)

The subgroups HI and H2 that induce unitary ir-
reducible timelike and unitary irreducible spacelike
representations of InO(1, 5) are given in Appendix 8,
Eqs. (86) and (810), respectively. The double-coset
decomposition of the outer product group (Gi,G2) with
respect to its diagonal subgroup (G,G) and (IIi,H2) is

0
0 =I'
0

.0.

0
0
0

(s—jV2) '"

F, '(p) is a representative of O(1,4)/0(4) that "boosts"
P to p, p= F, '(p)p. For the special case I'= F„(p,F,)
equals the identity. This is proved by deriving the most
general form for I', consistent with

with

(G&,G2) = U (Hi, H )(g»,g»)(G, G), (C17)
DI., D2

FD 0
(gDi, gD2) =

0

~coshD 0 sinhD
FD= 0 l4 0

i sinhD 0 coshD&

Recalling that F, is a, representative of 0(1,4)/O(4) obtained by using the technique in Appendix D. Using
Eq. C7, it is easy to see tha, t

the definition of HD and (gDi, gD2), it is easi to see that;

(gs)/jV 0 (s —jV ) '~ /IV i

I', = 0 Ip 0, (C13)
i (s—jV2) '~2/jV 0 (Qs)/jV

1 0
HD = 0 O(4)

.0 0
(Clg)

(p, r,) = r, (r,p) r,r,-'(p)
=r,r;I (C14)

so that I', = F,(p). Then, calculating (p, F,), we find that
so that the right-coset decomposition of G with respect
to HD is

Now using Eq. (C14), the Clebsch-Gorda, n coefficient,
Zq. (CS), reduces to

K~, ,~.»,J,.;.I L~. ..~:7p,J,-;
Lko, c7np, jp2, J2,o')

dr. ~(P F.P)~., "~~,~ ~.2,.2—

G=U o o(4)

0.0

(I jV', j2, X7P,n, jp,J,o, g I I
pIi', j22, 3,27Pi, ni, jpi Ji,oi,.

I p', ko, c7P2 n2 jp2 J2 &r2)

with F, a representative of O(1,5)/O(4).
Now the Clebsch-Gordan coeKcient can be written as

[kp, cj(~XD»2, j02', Z2, 02; »2, j02, Z2, »2 ( 0)

fkp, c7 (Tn2', jpo', J2, rr2'; n2, jO2, J2 0'2 g c (C15)

&fr Dro „. I .2& „ f&ij,», &j(r)

'4 Primed subscripts are 6xed in such a manner that the D
functions transform as their associated square-integrable func-
tions. See Ref. 37.

[CVI2 PI&)l lj PT
~ I& nl jpl', jl', O'I';Pl, nl, jp], & Jl, ol ' ' yE

XDP2', »2', j02', Z2', &&2' 'o2, &&2, j02, J2, 02 (FDF) . (C19)
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The first D function, defined by

[M2, p, X] pP

=- (pf 2, /4, X]Pn,n', jp'J', o'I

X U(f')
I
[3rr2, /4, 'A)P, nj p,J,O), (C20)

must transform the same as a square-integrable func-
tion. in the tensor-product representation space so that
n', jo', J', and a' become fixed by the degeneracy param-
eters p=- {ni',jpi,Ji', o'i', np', jp2', J2', op') and Pn FD 'P——

2

+Pi. The second and third D functions, defined by

with (P2, I'DI') a representative of 0(1,4)/0(4) and
D'0"'(P2, FDF) an 0(1,4) representation matrix.

Thus, the Clebsch-Gordan coefficients become

([M', /4, x]P,n, jp,J,o; g I I
[Mi', pi, l~i]Pi, ni, jpi,Ji,oi,

[p kp c]P2 n2 jpo J2 (/2)

=(p —rp)Ip, —rp, )(p,—r fp, )
XD„, , &, , „, & [4,&l(P f')

[ui, »] (P
XD„;,„./. .. , „,,„/. ..~'0 '~(P2, F/2f'), (C25)

Pl, nl, jol', Jl', ~1', pl, nl, jol, J1,gl

= ([Mi,/4i, ki]Pi, ni', jpi', Ji', o i'I

x U(I')
I
[Mi', /4i, xi]Pi,ni, jpi,Ji,o.i)

with I' and FD fixed by the 6 functions.
Now consider the special case when the D function

[Eq. (C22)] transforms as a scalar under Poincare
(C21) transformation and charge transformation; then jp2 J2

=02=0 and

P2222 202 /2 2 i 202202/202 ( n )
= ([p kp, &]P2,n2', jp2, J2', 2/2'I U(FDI')

X I [p', kp, &]P2 n2 j02 J2,o2), (C22)

have the same transformation properties as the square-
integrable functions upon which the timelike and space-
like representations are defined. Each D function can
be simplified, since it is known how U(I') [U(FDF)1
acts on a basis element. That is,

U(I')
I
[M2, /4, x]P,n, jp, J,o)

Dn'/0', /', .', , n20/. '"
,
",'(P, , r)

n/ j0/ J/ ~/

x I
[3f',/4, x]FP,n',j,',J',o), (c23)

with (P, I') a representative of 0(5)/0(4) and D't' "'
X (P, I') and 0(5) representation matrix; and

U(r n f')
I [p', kp c]P2 n2 jp2 J2 o 2)

[kP 2 C]Dn2 j02, J2', &2; n2, j02, J2, &2

n 2', j02', J2', rr 2'

x(p„r r), (c24)

0
0
0
0

p sine

p COSH

The 5-function conditions can be used to show that
P=Pi+P2 and in the c.m. frame (i.e., the physical
three-momentum content of P and Pi is zero) this
condition can be written generally as

s ' 0 s
0 0 0
0 0 0
0

=
0 + 0

(s —M')' ' sin8 P sin82 (+ ~12)'" »nei
,(s—cv') '"cos8, (p cos82i (s—cvi2) "'cos8i,

(C26)

Now f' must be the most general element of 0(1,5)/
0(4) consistent with Eq. (C26), the 8-function condi-
tions I'~= I'I'~ and P~= F~FI'~. A general element F of
0(1,5)/0(4) (no conditions) can be written as

I cosh+~ sinhn~ 0
sinhe~ cosh+~ 0

0 0 I4
0 0
0 0
0 0

~cosho, 5 0 0
0 I4
0
0
0

I
sinhn; 0 0

X. X

0 0 0, ~coshn2 0
0 0 0 0 1

sinhn2 0
0 0
0 0
0 0

0 0 sinhn5 I 1
0 0
0 0
0 0
0 0

0 0 cosho. ;i i0
'IB

X'0
0 0

(0 0

sinhe& 0
0 0

coshnq 0
0 IB
0
0

0 0
costi 0

0 IB
0
0

—sin/i 0
0
0
0

0 cosP2
0 0
0 —sin/2

0 oi
0 0
0 0

0 0 0 CI

0 0 sing& 0
0 0 0
0 0 0
0 0 0

0 0 costi i 0 0
0 0 P,
0 0
0 0
0 sin/2,ol 000
0 cosPo 0 0 0

0 0
0 0

cosP2 0
0 Ig
0

—sinP2 0
0
0
0
0

0 cosP4
0 —sin/4

0 0
0 0
0 sinP2

0
0

0 cosP2

0
0

(C27)

sin/4
cosP4
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The condition Pa ——I'DPPa implies that cosh+a sinhD
= —coshD sinhna, and Pi I~P——i, with Par=(+s, 0,0,0,
(s—Ma')'" sin8i, (s—3Ei')"' cos8i) implies n& ——aa ——

na=Pi=Pa=Pa=O, P4= Oa, and Qs=M cosh+4 coshna.
These conditions can be used to write the rotations
(Pi, I'), (Pa, l'i)l'), and (P, i') explicitly in terms of the
components of P~, P2, and P.

APPENDIX D: REDUCTION OF
K(M, g) TO K(m, J, I)

In this appendix the Hilbert space X(M,X) of unitary
irreducible timelike representations U &~ && of G
=InO(1, n) will be decomposed into irreducible con-
stituents when G is restricted to H'= PQO(n —3). It is
convenient to use Mackey's subgroup theorem, which
can be implemented if the double-coset decomposition
of G with respect to its subgroups H=InO(n) and
H' is known. That is, double-coset representatives g~
defined by the double-coset decomposition

O(n) is the vector xp = (1,0,0, . . . ,0) since

(I
!xo xo

&0 O(n))
(D4)

It is easy to see that an arbitrary point x in the homo-
geneous space can be reached through the action of a
right-coset representative on the stabilizer point xo.

The double-coset representative g~ defines a new
point xD = x&gD, and an arbitrary point in X can be
written as

x= xah', (DS)

with h'gH'. Note that H' contains a subgroup HD
defined by

HD {h'!h'gH——', xD = xoh'} . (D6)

HD is just that subgroup of H' that induces representa-
tions in the subspaces X&(U~) of X(Uz) labeled by
double-coset parameters D."

Now if one chooses

G=U Hg~H'

or, what is equivalent,

cosh D 0 sinhD
gg)= 0 I g 0

.sinhD 0 cosh D.
(D7)

O(1,n) =U O(n)gDLO(1, 3) SO(n 3)j —(D1')

must be calculated. Given gD, H~= gD 'Hgo+H' —can
be calculated and Uz(H') decomposed into a direct
integral (sum) over U~i'(H').

In order to find double-coset representatives, it
proves convenient to introduce homogeneous spaces.
The following definitions and notation are taken from
Gel'fand et al. 35 Let the elements in G transform some
space X into itself. If for every x,y+X there exists
g+G such that y= xg, then G is said to be transitive on
X and X is called homogeneous with respect to G. In
the homogeneous space X there exists some point xo
such that x,=x,h, h&H; xp is called the stabilizer of G
with respect to H. If x= xog, then it is also true that
x= xphg, so that for each x+X there exists a correspond-
ing right-coset representative defined by g=hg„g and

g,FG.
Now consider the decomposition of G with respect to

H:

with 0(D& ~, then Eq. (D5) is satisfied. The stability
point of HD is xD= (coshD, O, . . . ,O, sinhD) and the re-
striction xD= xDh' LEq. (D6)$ implies

1
0

Hg)= 0
0
.0

0 0 0
O(3) 0 0

0 O(n —4) 0
0 0 1
0 0 0

(DS)

m'= KD. KD ——M'(1+2 sinh'D)

so that Eq. (D8) can be written as

(D1o)

The representations I-~ of JI~ are

Lz) =L(gg)h gz) ')
= e'xr' ~D ~ ~&~(O(3))Dpp. t ~(O(n —4)), (D9)

with KD=gDK, D„ t"(O(3)) reducible representation
matrices of O(3) and Dpp ' '(O(n —4)) reducible repre-
sentation matrices of O(n —4).

The mass is directly related to the double-coset label

by

G=U Hg, (D2) U~""~(O fi)O(n —3))

or

pO(I, n) {A} =U 0 O(n)
0 1 c .0 ( ). (D3)

The representative g,&G is equivalent to a vector x in
X=0(l,n)/O(n). The point of stability with respect to

'5 I. M. Gel'fand, M. I. Graev, and N. Ya. Vilenkin, Generalized
I&'unctiorls (Academic, Ne~ Pork, 1966), Vol. S.

dm'U'"' ' ~&(5'SO(n 3)) (D—11).

Since Ljj and Lng label reducible representations, it is
necessary to decompose them into a sum of irreducible
representations, )J,Ij; then using the relation

U& trna&rl(p O(n , 3,))=Q U(~a, J', &l(6a O(n 3))
3' W. H. Klink, J. Math. Phys. 10, 606 (1969).
"The Frobenius reciprocity theorem is proved by Mackey,

Ref. 13.



U'[M'p, n, jp] ((P) dm'U["' "([P). (D12)

Eq. (D11) can be further decomposed. Now U'"' ' I'
X([PSO(n —3)) is, in general, a reducible representa-
tion of [PSO(n 3—) and must be further reduced into
irreducible constituents. The multiplicity in each re-
duction can be found using the Frobenius reciprocity
theorem. '~ We will illustrate the problem of the decom-
position of K(U[ ' «]([PO(m —3))) by considering two
examples.

First, consider the timelik. e representations U'~' " jo~

of InO(1,4). The decomposition of U' ' " "'(H'),
H'= [P1, can be written )using Eq. (D11)$ as

As another example, consider the timelike representa-
tions of ImO(1, 5). The internal-symmetry group O(2)
has representations labeled by an integer Q; Eq. (D11)
is written as

U[arp, y, x]([p g3O(2))

dm'U["' I]([P$0(2)) . (D15)

Note that no labels t («7 appear because the representa-
tions of H» are completely labeled by $m', jj. Again
U(nz', j) is reducible and U' ' " must be written a,s a
direct sum over representations induced by irreducible
representations of HL '.

The reducible representations U(j) decompose into U™"'"]([PO(2))
an irreducible representation U(I) with multiplicity 1, QC

35I 2

(fm' P O'"" I]([PSO(2)). (D16)

U' [11lp, ,jp, p] ([P)
n

dm, ' g U [-' '](o )
J=jo

so that Eq. (D12) can be rewritten as

(D13)

The spectrum of I can be found by investigating O(5)
weight diagrams.

The representations O' ' I]([PQO(2)) are not ir-
reducible representations of [PO(2); however, it is
easy to decompose the identity into irreducible repre-
sentations of O(2) so tha, t finally

with U(m', I) an irreducible representation of H». The
spectrum of J is obtained by investigating the weight
diagrams of O(4) representations. The represents, tions
U' ' I]([P) are obviously irreducible representations of
(P.

U [&1IP,p, «] ([P g3 O (2))

dm' P Q U'"' @([PSO(2)) . (D17)

~(U'[MP, p, x])

The decomposition of the Hilbert space ~(U[~]IP, jP, ») The Hilbert-sPace decomPosition is

can be taken directly from Eq. (D13):

~(U'[pip, n, jp])

00 n

dm' Q K(U['" I]([P)). (D14)
v'

(](~2 g p ~(U[~pp I,Q]) . (D1g)


