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A compact formula for the renormalized transition probability in quantum electrodynamics is derived
and its interpretation in terms of the diagrams is given. This formula is used next to prove the equivalence of
the Coulomb gauge and the Feynman gauge. It is shown that, contrary to widespread belief, the problem
of the gauge invariance becomes a very delicate one when the radiative corrections are included. The common
practice of dropping k„and k„ terms in the photon propagator D„„(k) is justified, but the justification
requires a nontrivial analysis of the gauge transformations of the propagators involved.

I. INTRODUCTION

A REMARKABLE feature of the quantum theory
of electromagnetic phenomena is that it can be

formulated in so many different ways, all leading to the
same predictions for the observable effects. The
equivalence of different formulations is believed to be a
result of the gauge invariance, ' but all standard proofs
of this invariance fail when applied directly to the
transition amplitudes. The reason for this failure is the
appearance of gauge-dependent -objects (usually the
electron propagators) in all explicit formulas for the
transition amplitudes. So far no one has been able to
express explicitly even the simplest electron transition
amplitudes in terms of the gauge-invariant objects
alone. ' Until such expressions are found, the direct
proof of gauge invariance of the transition amplitudes
is still necessary for the logical completeness of quantum
electrodynamics.

The questions of gauge invariance or gauge indepen-
dence of the physical amplitudes are usually dealt with
in one or two sentences, as typified by the following
example taken from a recent article on the renormali-
zation theory in quantum electrodynamics': "Ulti-
mately because of gauge invariance, the k„k„ terms will
not contribute to any physical amplitude and we may
drop them. "

We shall prove in. the present paper that such state-
ments are justified and that we may indeed drop the
gauge terms in the photon propagator.

As was pointed out by the present author, 4 the
renormalization procedure, which is necessary to com-
pute observable results, is gauge dependent, and this
fact invalidates various simple proofs of gauge in-
variance given in the literature. The renormalization

* Supported in part by the U. S. Atomic Energy Commission
under Contract No. AT-30-1-3829.

' Various aspects of gauge invariance will be studied in detail
in Sec. IV.

'We have no reasons to doubt that all observable effects in
quantum electrodynamics can be expressed in terms of gauge-
invariant objects (like, for example, the vacuum expectation
values of the currents), but the explicit formulas may turn out
to be exceedingly complicated.

3 P. K. Kuo and D. R. Yennie, Ann. Phys. (N. Y.) 51, 496
(1969).

4 I. Bialynicki-Birula, Phys. Rev. 155, 1414 (1967).
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is intertwined with the gauge invariance in a very
intricate way, and if a proof of gauge invariance is to
have any physical significance, it should be carried out
on the reeormulised transition amplitudes or reeormal-
jsed transition probabilities.

Out of the three renormalizations in quantum
electrodynamics, the mass renormalization and the
charge renormalization (or the photon-propagator
renormalization) have a clear physical interpretation,
but the meaning of the electron-wave-function (or the
electron-propagator) renormalization is made obscure
by the gauge dependence of the corresponding renormal-
ization constant.

The purpose of this paper is to derive a new formula
for the renormalized transition probability and then
use it to give a simple and complete proof of its gauge
invariance. Our formula does not contain explicitly
the wave-function renormalization constants even when
expressed in terms of the unrenormalized propagators.
The elimination of all gauge-dependent renormalization
constants makes the proof of the gauge invariance
fairly simple.

In Sec. II we derive our formula for the renormalized
transition probability. In Sec. III we describe a natural
generalization of the method of Feynman diagrams to
the transition probabilities. In Sec. IV we prove the
independence of the transition probabilities on the
gauge of the photon propagator.

II. RENORMALIZED TRANSITION
PROBABILITIES

To establish our notation, we shall write the expres-
sion for the transition amplitude T(p; q; k) in the form
which follows directly from the reduction formula

5 See, for example, J. D. Bjorken and S. D. Drell, Relativistic
Quantum Fields (McGraw-Hill, New York, 1965), p. 146; S.
Gasiorowicz, Elementary Particle Physics (Wiley, New York,
1966), p. 102. Symbols p, q, and k will be often used here to
denote sets of four-vectors pi - ~ p, gi. ~ q, and ki k„. We will
introduce a small photon mass p, to avoid the infrared catastrophe.
Throughout Secs. II and III we will use the Feynman gauge for
the photon propagator.
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iV (p; q; k) =Zz- *Z,—"'"i'-(—i)"u(p() . . u(p„)
XHm —P") "(m—p-)G"'"""(P q k)

X (m —q„) (m —
q&) (p' —kP). (p' —k ')j

Xu(q. ) u(q') ~, (ka) ~ (k ) (2)

where we have made use of the relations

(m+p) u(p) = 2mu(p)

k&e„(k) =0. (7b)
where (2m)45(4&G is the Fourier transform of the
connected part' of the unrenormalized propagator

(2")'~(4)(rp' —Zq; —Zk()G, ". (P; q; k)

d'"xd'"yd' s exp(imp; x,—iraq, 'y, —iQk'. s&)

x (~ I ~(4 (x ) " P(x.)4 (y.) " 4 (y )

XA„,(s,) A„„(s„))n),„.„. (3)

Prior to taking the mass-shell values of the initial and
final momenta in the Fourier transform of the propa-
gator, we must cancel all the singularities in G with the
help of the appropriate factors m —p, m —q, and p' —k'.
The same prescription must be followed also in all
similar situations encountered further in this paper.
For simplicity we treated in the formula (2) all the
four-momenta p; as outgoing and all the four-momenta

q, and k~ as incoming. However, this is not a real
restriction provided we allow for the negative values of
the time components of these four-momenta and we

interpret the resulting transition amplitudes in accord-
ance with the requirements of crossing symmetry.

The Fourier transform of the propagator contains
all the terms given by the corresponding connected
Feynman diagrams, including all self-energy corrections
to the external electron and photon lines. It is con-
venient to separate those corrections and to write G
in the following factorized form:

G„,...„„(p;q; k) = (-i)'"+"g„,„,(k,) g„.„„(k„)
XG(Pi)" G(P.)F" "-(P; q; k)G(q. ) "G(q ), (~)

where g„„(k) and G(p) are complete (unrenormalized)
one-photon and one-electron propagators. The trun-
cated part F of the propagator G defi.ned by this
formula' will contain no contributions corresponding
to the external lines.

The residues of the propagators G(p) and of the
transverse parts g„„"'(k) of the propagators g„„(k) will

now be expressed in terms of the wave-function re-
normalization constants in the standard fashion.

h. (p, unpol) =m+p,

p„„(k,unpol) = g„„+u 'k„k„,—

and the transition probability in this case is

(10a)

(10b)

&(P q' k) =(2~)'~(4)(ZP' —Zq —Zk()
XZP"Z' (—g„,„,+p 'k„,k„,) . . ( g„„„„+u'k„„k—.„,)
XTr( (m+p&) (m+p„)F»' ' &"(p; q; k)'

X(m+q ) (m+q, )F"&" ""(p;q; k)}. (11)

Now we will again use the relations (5) and we will

eliminate completely all the renormalization constants.

The transition probability (or, more precisely, the
density of the transition probability in momentum
space) is constructed from the product of M and its
complex conj ugate M*,

F(p; q; k) = (2~)'~(4&(EP' —Eq —Zk() I~I',
~3I ~'=Zg'"ZB p»„, (kg, Xg) p„„,„(k",X )

XTr{h(pg, st) h(p",s„)F "'""(p;q; k)

XA(q, s„)'''A(q($], )F" . . ."-(p; q; k)}, (9)

where A (p,s) =u(p)u(p) and p„„(k,X) = e„(k)«„*(k) are
the density matrices for the initial and final electrons
and photons with the specified polarizations, and the
bar over F denotes the "bispinor conjugation, " i.e., the
Hermitian conjugation in the bispinor space with the

acting as the metric matrix.
We shall limit ourselves from now on to the study

of the transition probabilities for unpolarized initial
and final states of the electrons and photons. This
assumption does not actually restrict the types of
measurements that can be made, because all the polari-
zation measurements can be reduced (and in practice
are almost always reduced) to the measurements with
unpolarized beams involving additional intermediate
interactions whose role is to produce or to detect the
polarization. For the unpolarized states, the density
matrices are

(m' —p')G(p)
~

„'= '= (m+p)Z2, (5a.)

(~' —k') g. "(k)
I
'2="= (—g"+~-'k„k„)Z,„(sb)

and the final formula for M reads

M(p; q; k) =Z2"Z3 "u(pg) u(p )F»'"""(p q k)

Xu(q„) u(qg)e„, (kg) e„„(k„), (6)

The disconnected parts describe several transitions taking
place independently.

7 The definition of the truncated part applies only to connected
propagators. FIG. 1. Symbolic representation of the transition probability.
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The final formula for the transition probability is

P(p; q; k)

= (2~) '~(~) (Zp' —Z v~
—Zk ~)II (~'—P")

P( Pi

XT.«(p, ) G(p)F" -(p q k)G(V)

G(vt)J'""' "-(P v k)), (&2)

ql

FIG. 3. Mufller scattering.

(b)

III. DIAGRAMS FOR TRANSITION
PROBABILITIES

We shall now extend the method of Feynman dia-

grams, which was originally developed for the un-

renormalized transition amplitudes, to the renormalized
transition probabilities. Let us consider a pair of the
Feynman diagrams, one representing a contribution to
3E and the other a contribution to 3f*.It is natural to

(b) (c)

q

(g)

FIG. 2. Electron scattering in an external field.

' We shall return to this problem in Sec. IV.
z Actually formula (12) for P is invariant under the renormali-

zation of the propagators. It retains its form if the normalization of
the propagators is changed in the following way: G(p) ~ s2G(p),
g(k) -+ zqQ(k), and F(P;g;k) -+ z& "z& ~'zP(P;q;k). Therefore,
we can also use this formula with all propagators having their
finite renormalized values.

where we have used the gauge invariance' to replace the
transverse parts of the photon propagators by complete
propagators. In spite of the fact that all the propa-
gators appearing in the expression for I' are the un-

renormalized propagators, ' there are no renormalization
constants there. This will enable us to give in Sec. IV
a rather simple proof of the gauge invariance. In the
next section we will show that our formula has an
attractive diagrammatic representation.

draw the diagrams representing M* as the mirror
reflections of the corresponding diagrams for M with
an additional reversal of all the arrows on the electron
lines. Kith every such pair of diagrams we can associate
a single tzo-sided diagram. We will draw a vertical line
separating two sides of every two-sided diagram and
we will adopt the convention that the part to the right
(left) of the separating line corresponds to cV (M*).
Our two-sided diagrams have no external lines; the old
external lines have now become the coeeect&zg /ives.
Each of these lines connects two vertices lying on the
opposite sides of the separating line. The connecting
lines carry the initial and final particle momenta.

The general diagrammatic structure of E(p; q; k)
drawn in accordance with the above rules is shown in

Fig. 1. The two boxes represent the truncated parts of
the propagators and the circles on the solid and wavy
lines represent all one-electron and one-photon propa-
gator corrections. Thus every particular two-sided
diagram has two truncated parts lying on the opposite
sides of the separating line which are linked together
by the connecting lines carrying possibly some self-
energy corrections.

As examples of such diagrams we have shown in
Figs. 2 and 3 all the fourth-order diagrams representing,
respectively, the elastic electron scattering in a weak
electromagnetic 6eld and the elastic scattering of two
electrons.

The symmetry between the two sides of the diagrams,
which appears to be broken in Figs. 1—3, can be easily
restored if we observe" that below the threshold all
self-energy functions are self-adjoint, i.e.,

~(p) =&(P) P'& (~+A)' (~3')

II„,(k) = II~,*(k), k'( (3p)'. (13b)

Therefore, the self-energy parts on any two-sided
diagram can be freely shifted across the separating line
without any change in the corresponding contribution
to the P(p; q; k). For example, instead of diagrams
(b) and (c) in Fig. 2, we could have taken the two
diagrams in Fig. 4.

To make this symmetry even more explicit, it is
convenient to introduce the notion of the equivalence

~-' This is explained in more detail in Appendix 8.
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where A(x) is a given function of x. In quantum electro-
dynamics this classical transformation can be applied
to the external potential. The requirement of the gauge
invariance for any quantity C which depends on the
external potential 0', can be written in the form

(a) (b)

FIG. 4. Diagrams equivalent to (2b) and (2c).
B„CtGj=0.

80',„

of two-sided diagrams. Two diagrams are equivalent if
one can be obtained from the other by shifting some
self-energy corrections to the connecting lines across
the separating line. On account of Eqs. (13) all equiv-
alent diagrams give equal contributions to the transi-
tion probability. The renormalized transition proba-
bility contains, therefore, contributions from all
inequivalent two-sided diagrams.

The rules for writing the transition probability
directly from the two-sided diagrams can be obtained
from the well-known rules for the Feynman diagrams
and from formula (12) for the I' (p; q; k). We give these
rules below for completeness.

(1) The solid and wavy lines represent the electron
and the photon propagators. Depending on whether
these lines lie to the right or to the left of the separating
lines, we use the propagators —i5(p) and —iD„„(k)
or the adjoint propagators i8(p) and iD„„(k),

~(P) = (~+A) (~'—P' —~') ' (14a)

8(p) = (m+p) (m' —p'+ie) ', (14b)

D,.(&) = —g"(~' —&'—&e)
' (14c)

D„„(k)= —g„„(y'—k'+i~) '. (14d)

(2) The vertices to the right (left) of the separating
line represent icy" (iey"). —

(3) To every connecting electron or photon line there
corresponds the factor m' —p' or p,

' —k'.
(4) There is an over-all factor (—1)~+", where I, is

the total number of closed electron loops and m is half
of the total number of connecting electron lines.

Our new rules incorporate u/t' the effects of the wave-
function renormalization, so that the renormalization
constants do not have to be inserted by hand as was
the case in the usual approach. The mass renormali-
zation and the charge renormalization must, however,
still be carried out.

e„(x)—+ o',„(x)+8+(x), (15)

IV. GAUGE INVARIANCE

To define precisely the notion of the gauge invariance,
we must specify the class of gauge transformations
which will leave all the observable quantities invariant.
There are several types of gauge transformations and
they lead to different requirements for gauge invariance.

First there is the gauge transformation of the classical
vector potential 0,„:

Next there is the gauge transformation of the free
(initial or final) photon wave functions,

4.(~) ~ 4, (~)+~,~(~), (17)

which is the simplest quantum generalization of the
classical potential transformation (15). Owing to the
universality of the electromagnetic interactions, " the
requirement of the gauge invariance under transforma-
tions (17) leads again to condition (16). This is best
seen if we use the following relation between the photon
absorption" amplitude T~ and the photonless transition
amplitude To.

~'x 4„(x) ToL e$
sa,„(x)

(1s)

"Charges are coupled to the photons in the same manner as
they couple to the external electromagnetic Qeld.

~The same argument can be applied to the photon emission
amplitude.

where TOLO', ] denotes the amplitude in the presence of
an external electromagnetic field.

The invariance under the gauge transformations (15)
and (17) is not enough, however, to prove the equiva-
lence of various formulations of quantum electro-
dynamics. We also need the invariance under the so-
called operator gauge transformations, i.e., the gauge
transformations which change the wave functions of
virtual photons. We do not see any point in discussing
such transformations in their utmost generality,
especially in view of the difficulties in defining the
exponential functions of the gauge operator A(x). We
shall restrict ourselves to only those operator gauge
transformations which can be described as the gauge
transformations of the free photon propagator. A
transformation of this type bridges two most important
formulations of quantum electrodynamics: the Coulomb
gauge and the Feynman gauge formulation. The
formulation in the Coulomb gauge is physically accept-
able because of the use of the Hilbert space of the state
vectors. The formulation in the Feynman gauge
requires the introduction of the indefinite metric with
its unclear physical interpretation, but it offers also
significant calculational advantages. The problem of
the equivalence of these two formulations is clearly
one of great importance in quantum electrodynamics.

Thus, we are led to consider the class of gauge trans-
formations under which the free photon propagator
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D„„(x)=
D„„~+~(x), x') 0

D„„& &(x), x'&0 (20)

where D„„(+) contain, respectively, only positive or
negative frequencies and

D„„&+&(x) = —[D„„~+'(—x)]*, (21a)

D„„~+'(x)= —(D„.~ & (x)]*. (21b)

It follows from properties (20) and (21) that the
Fourier transform D„.(k) of the photon propagator
is an even function of k,

D„,(k) =D„,( k), — (22)

and has its poles in the ko variable displaced off the
real axis by the Feynman ie prescription. The gauge
transformation leading from the Feynman gauge to
the Coulomb gauge clearly belongs to this class. The
free photon propagators in these two gauges have
the form

D„„~(k) = (k'+is) 'g . (23a)

D o(k) = (k'+i~) '{g„—LlP —(e k)') '
yLk„k„—(k e) (k„m„je„k„)7), (23b)

where rI,„ is the unit vector in the time direction. The
Fourier transforms of the corresponding g„ functions
have the form

undergoes the following change:

D„„(x y)— D„„(x y)—+i8„g„(x y)—
+iB„g„(x y) .—(19)

Four functions g„(x—y) will be restricted by the require-
ment that the photon propa, ga, tor after the trans-
formation will have a,gain the basic properties of the
Feynman propaga, tor, i.e.,

(i) The wave-function renormalization wa, s not
included in Feynman's discussion, though it con-
tributes gauge-dependent terms to the observed
transition amplitudes.

(ii) The radiative corrections to the external electron
lines bring in the factors (m —P) ', which become
singular in the limit p' —+ m'. Gauge-dependent contri-
butions resulting from such terms were also not included
in Feynman's proof.

The combined gauge-dependent terms arising from
these two sources fortunately cancel out in every order
of perturbation theory, so that the final conclusion
reached by Feynman, that the Coulomb gauge and the
Feynman gauge are equivalent, is still valid. This
equivalence has been studied in detail in a recent paper
by Tatur. "

In the present paper we bypass many complications
in the proof of the gauge invariance of transition
amplitudes by working directly with renormalized
transition probabilities. Formula (12) for P(p; q; k)
does not contain explicitly the electron wave-function
renormalization constants which were the source of
most of the complications encountered by Tatur in his
proof of gauge invariance.

The proof of the gauge invariance given below
consists of showing the invariance of P(p; q; k) under
the infinitesimal change of the photon propagator,

D„„(k)~ D„„(k)+k„bg.(k)+Sg„(k)k„. (25)

The invariance under (25) will guarantee the invariance
under the finite gauge transformations, since these
transformations clearly form a group.

The gauge transformation (25) causes the following
change (to the lowest order in bg) in any propagator G:

g (k) = (k'+ie) 'Lk' —(m k)'7 'Lm (I k) —-', k ]. (24)
&G= 2 (dk)k„rg„(k) —G,

8D„„(k)
(26)

The requirement of the gauge invariance under the
general gauge transformation (19) of the photon
propagator will be stated in the following form: The
renormalized transition amplitudes are invariant under
the gauge transformations of the photon propagator
in every order of perturbation theory.

The key word in this statement is remormalized,
because the unrenormalized transition amplitudes,
which are calculated directly from Feynman diagrams,
are rot gauge invariant.

The first attempt to prove the invariance of the
transition amplitudes under the gauge transformation
(19) was made by Feynrnan in his classic paper" on
quantum electrodynamics. However, as was pointed
out in Ref. 3, his proof is incorrect, because he (i) did
not include the effects of the renormalization and (ii)
disregarded the singularities of the propagators on the
mass shell. '4

'3 R. P. Feynman, Phys. Rev. 'V6, 769 (1949).
~4 Many others have fallen into the same trap (see Ref. 4).

In several monographs on quantum electrodynamics and in many

where (dk) = (27r) 4d4k.

The functional differentiation with respect to D„„(k)
has a simple description in terms of the diagrams. When
acting on any diagram which represents a contribution
to G, 6(8D„„produces a set of diagrams with two
additional external photon lines. " Every diagram of
this set is obtained from the original diagram for 6 by
opening one internal photon line and symmetrizing the
two new external photon lines.

The action of 5/5D„„on any complete propagator
containing all insertions can be expressed also in a
di6erent form. Every such propagator contains, in
addition to the contribution from any internal photon
line, all the self-energy corrections to this line. In other
original papers where the problem of equivalence of various gauges
was discussed, we find references to Feynman's paper or direct
"proofs" of the gauge invariance of the Nnrenormalised transition
amplitudes."S.Tatur, Acta Phys. Polon. A3'7, 71 (1970).

6 For simplicity we shall assume that the external photon lines
are nor, represented by the free photon propagators in G but that
these lines are attached directly to the corresponding vertices.
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words, D„„never appears alone in the propagator but
always in the combination

D„„+D„gII"'D,.+D„)II" D „II'D,„+. =g„,. (27)

Thus P/8D, „, when acting on any complete propagator
truncated in all external photon lines, can be expressed
in terms of 8/8g„„,

k 11&"(k) =0 (35)

pendix A. In the simplest case of no external electron
lines, we have

k H»t"'-( ——. kkt . k )=0 (34)

The reasoning of Appendix A can also be applied to
II~", so that we also have

3g„(k')
(dk')

8D„„(k) 8D„„(k) Rgb, (k')
(2g) This last equation when used together with

k„iI"~ (k —k k' —k') =0 (36)

(31)

and the higher terms involve products of 2, 3,
functions II~""1'.

We shall use now the generalired Ward identity"
(GWI) to learn more about the structure of 5G. For
the propagator Hl"' &"(p; g; k), which is obtained
from G». ..„„(p;q; k) by truncating only the external
photon lines,

Ggt ~ p~(pl' ' ' pn j gn' ' 'pl ) kl' 'km)

=( &) 8"—,(kt)" B...(k. -)
XH"t'''" (pt p; g„gt,' kt 'k ),

this identity reads

k H»~"'-(pt. p„& tJ„qt, k k, k„)

(32)

The differentiation with respect to g„„removes an
internal photon line together with all the self-energy
corrections to this line. Using formula, (27), we obta, in

Sg&,(k')

SD„„(k)

= (2~) '~(4)(k —k') 2LP "~(k)P".(k)+P".(k)P"x(k)j
+P& (k)P"p(k)gg. (k')II &"(k —k k' —k')g (k')

+(higher terms), (29)
where

P~, (k) =-D-' »(k) g &(k)

=3&~+II»(k)D,&(k)+, (30)

Lwhich is a special case of (34)] gives

where

k„bg„(k) —=k„bg„——,
&D„,(k) Sg„,(k)

(37)

bg„„(k)=k„bg„+8g„(k)k„. (39)

Thus the change in g„„is essentially of the same type
as the initial change in D„„,only the in6nitesimal gauge
function bg„has gotten renormalized. With the help of
the last formula, Eq. (37) can be written in the more
transparent form

8D„.(k) —= KJ„„(k)—.
SD„.(k) Sg„„(k)

The change in the complete one-electron propagator
G(p) can also be explicitly evaluated:

6G(p)
3G(p) = (ok) ~B"(k)-

Sg„„(k)

(dk)k„bg„(k)H&"(p; p; k, —k) . (41)

With the help of the GWI this can be expressed in
the form

Sg„(k)—=Rgb (k)P'„(k) . (38)

With the help of Eqs. (27)—(31), (35), and (36) the
change in the complete photon propagator under the
gauge transformation (25) can be shown to have
the form

=e Z LH"' ""(Pt. P' »P»—
g '''gt, 'kt'''k )

where
~G(p) =~&(p)G(p)+G(p)~&(p), (42)

H"' "-(pt p-;—C- ., V~+k

gt, k, k„)j. (33)

8X(p) = t'e' (dk) 8—g„(k)G(p k) I'"(p k; p; —k—), (43a)—

X I'"(P; P+k; k)G(P+k) . (43b)—

In our proof of the gauge invariance we shall need
the property of 8N(p) that it is equal below the thresh-

We give a new detailed proof of this identity in Ap- 8E(p)=— ie' (dk)—pg„(k)

"This identity is often referred to as the Ward-Takahashi
identity, but the name Nard-Green-Fradkin-Takahashi identity
would be more appropriate }see H. S. Green, Proc. Phys. Soc.
{London) A06, 873 {1953);K. S. Fradkin, Zh. Eksperim. i Teor.
Fiz. 29, 258 (1955) } Soviet Phys. JETP 2, 361 (1956)]; Y,
Takahashi, Nuovo Cimento 6, 371 i1957) }.
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old to the bispinor conjugate of 8N(p),

bN(p) =6N(p) . (44)

The proof of Eq. (44) is given in Appendix B.Here we
would like to point out that, if this relation holds, then
the property of the electron propagator of being self-
adjoint under the bispinor conjuga, tion,

G(p) =g(p) below threshold,

Pv & ye (.P ). . .
p

~

q
. . .

q ) ~ k ). . .k )
I2nG-1(p ). . .G—1(p )

XII»"'-(p, p„;q. q&, k& k )
XG-'(q )" G-'(q.). (46)

Since H contains the contributions from all the dia-
grams, with the only exception of the self-energy
corrections to the external photon lines, the derivative
of H with respect to g„„is given by the formula

is not changed by the gauge transformation.
It is only in the proof of Eq. (44) that we need to

impose some restrictions on the gauge functions
hg„(k). We could relax the restrictions imposed on these
functions at the beginning of this section and still ha, ve
Eq. (44) satisfied, but such generalizations do not seem
to be very interesting.

Unlike Z and II&", the propagators H and F are in
general only weakly connected" and this causes a minor
complication in the calcula, tion of 8II or 8F. It is easier
to evalua, te 88 a,nd then to obta, in 6F from the formula

2L'-—H» " (py' ' 'p q
' qy'ky k )

Sg„,(k)
=H"""'"" (px p;q qx, k, —k kg k )

r
~~

7

ZTu ~ ~ ~ P ~ ~ ~P ~ ~ ~ ~ ~ ~ + ~ ~ 0 g . —k )
(47)

In the last sum containing the contributions from these
diagrams, which have become disconnected whee. the
photon line was removed, we have shown only the
dependence on the relevant variables. Using the GKI,
we obta, in

8H» "~-(p, p„; q„q&, k& k„)

M(dk)Sg„(k)—p LH"»"'-(p& p —k p q q, —k k k )
i=1

l—H"»'"&" (pg p q q;+k) . qg, —k, kg k~)7 ie (dk)bg—„(k)g Q [II "( . , p, —k, .
)

. ~ )" )
D i=1

II (. .—q+"k . . )7H"" ( .' —k ) (48)

It may appear a,t a, first glance tha, t the gauge change of
H is less singular on the mass shell of the electron
momenta than H a,nd that it will not contribute,
therefore, to the transition probability. A closer exami-
nation of the first integral in Eq. (48) reveals, however,
a loophole in this argument. The propa, ga, tor

H""': "-(P P kP q "-q~ -k k

contains always the (weakly connected) terms which
have a pole in p on the mass shell,

H"»'' ~~(p&, p, —k, ~ p„; q„~ q&,
' —k, kz k~)

= —eG(p, —k)F"(p, —k; p; —k)
XH"' ' '""(P P

'
q qi' ki k )

+(terms regular in p 2). (49)

An analogous contribution singular in q is also found
in the propagator

H"»' "~-(p, p„q„,q, +k, q~, —k k& k„) .

No such terms are found, however, in the second

' The removal of one internal photon (or electron) line may
lead to a disconnected diagram consisting of two separate con-
nected pieces.

integral in Eq. (48). Therefore, the gauge change in H
can be written in the form

pm(p q k)

n

=P [8.V(p;)H»" ~™(p;q; k)

+H»'''"~(p' q' k)8N(q )7

+(terms less singular on mass shell) . (50)

We can now use Eqs. (46), (42), and (50) to obtain
the formulas for the gauge changes in the truncated
propagators F and E. After simple manipulations with
the use of Eqs. (44) and (45) and the relation

8G-'(p) = G '(p)8N(p) bN—(p)-G '(p), —(51)-
we 6nally obta, in

8F&'""m(p q k)

n
= —2 L~N(p')I'"'"""(p; q k)

i=1
+I'» I' (p; q; k)biV(q;)7"

+(terms vanishing on mass shell), (52a)
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)Pu& ~

um(p ~

q k)

n
= —P $SE(q~)Ful '™(p;q; k)

i=1
+F»"'-(p; q; k) RV(p, )7

+(terms vanishing on mass shell). (52b)

To complete the proof of the gauge invariance of the
transition probability P(p; q; k), we must now only
collect all the gauge terms resulting from the change
in the photon propagators (tu„(kI), in the electron
propagators G(p, ) and G(q, ), and in the truncated
propagators Ii and II, and show that their sum is equal
to zero.

First we observe that, owing to the GWI for Ii and F
(cf. Appendix 3),

k FuuI"'-(pI p„q„q,; k, k, .k„)
n

=eQ [G '(p)G(p k)F"'"""(pI''' p

pu) q~' ' q)i kl' ' 'km)

~"'"""(p'"p-;q-." q'+k " ql

kl . k„)G(q,+k)G '(q, )7, (53)

and the conjugate formula for I", the gauge terms
resulting from 6gu„'s do not contribute to I' on the mass
shell.

Next we collect all the contributions resulting from
the gauge changes in the remaining propagators, and
we 6nd that the gauge changes in the one-electron
propagators cancel exactly the gauge changes in the
truncated propagators F and F.

This completes the proof of the gauge invariance of
the transition probabilities in quantum electrody-
namics under the gauge transformations of the photon
propagator.

The Coulomb and Feynman gauges are completely"
equivalent in all calculations of observable transition
probabilities in quantum electrodynamics.
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APPENDIX A

The first step in the proof of the GWI (33) for the
complete truncated propagators will be the derivation
of a rudimentary form of the generalized Ward identity

"One can easily extend our proof to the case when an external
electromagnetic 6eld 8 is present, since the GWI has the same
form also in the presence of 0', (Appendix A).

for the Feynnlan propagator Eu [x,y l 87 II1 an exterIlal
electromagnetic field. This propagator obeys the
inhomogeneous Dirac equation

(m ipu8—u+epu8u)K)p[x, y l
87=i)(4) (x—y) (A1)

and satisfies the Feynman boundary conditions.
Differentiating Eq. (A1) with respect to 8„(s) and
solving the resulting equa. tion for [(1/88u(s)7EF, we
obtain

Eu[x,yl 87= eE—u[x,sl 8/y Eu[s,yl 87. (A2)
() 8„(s)

Differentiating the propagator E~ I times and using
systematically Eq. (A2) after every differentiation, we
obtain a sum of m! terms corresponding to all the
diagrams having one open electron line and m photon
vertices distributed in all possible ways. We will
denote the sum of all contributions from these diagrams
by Eu' ' 'um[x; y; sl sm

l 87,

E) [x,yl 87
&8„,(sI). &8„„(s )

=ZEu~' ' '"m[x' P; SI 'sm
l 87 . (A3)

Taking the divergence of both sides in Eq. (A2), we
obtain, with the help of Eq. (A1),

i r) (') — E&—[x,y l 87
S8„(s)

=el ()(4) (x—s) —()(4) (s —y)7Eu[x, yl 87. (A4)

This relation may be called the Ward identity for the
electron propagator in an external 6eld. From it, by
differentiation and with the use of (A3), we derive an
analogous relation for the E»'

ia (')E—uu'"u-[x y s,sl .sml87
=e[()«)(x s) ()()(s p)7

XEu'''u [x' ymi sl sml 8
The contribution from m.' diagrams having one closed

electron loop and m+1 photon vertices will be denoted
by L"""'u"[s,sI sm

l
87. It can be expressed in

terms of the E»' ' '&" in the following way:

[ss . . .& l87
=ie Tr{quE» "u-[s; s; sI s„l 87} (A6)

where the trace is with respect to bispinor indices and
an appropriate limiting procedure should be used, if
necessary, to de6ne the limit x ~a~ y. The lack of
symmetry between s and s s in this formula is only
apparent. On account of (A5), Luu'''u" is divergence
free,

(&)Luux um[SI. . .&
l 87—p

I.et us denote by

xy uy.uI, sI s
l 87
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the sum of the contributions from all connected dia-
grams having e open electron lines, m external photon
lines, and any number of closed electron loops, but
truncated in all external photon lines Lcf. Eq. (4.6)].
The set of all diagrams contributing to H can be
divided into the subsets, each subset representing a
product. of functions E»'''&~ L"'''" and the free
photon propagators representing the internal photon
lines. For every contribution to H from such a subset
we can use relations (AS) or (A7), and the final relation
for B will be

of its arguments:

D„„(zi,z2) =D„„(z2,zi) . (81)

D„„(zi,zg) =D,„(—zg, —zi).
Thus in a TP-invariant theory

D„„(zi,z2) =D„„(—zi, —z2).

(82)

(83)
In terms of the Fourier transforms (assuming trans-
lational invariance), relations (81) and (83) read

In addition, in every theory which is invariant under
TP, this propagator obeys the relation

ia„& 'H- '-Exi x.; y. yi, z, zi D„„(k)=D„„( k), —

D„„(k)=D„„(—k) .
(84)

(85)

XH»'""-Pxi *., y. yi; zi z
I
S]. (AS)

The Fourier transform H,

H"'"""Ipi p. ; q-

d'"xd4"yd'"z exp(imp, "x,—iraq, 'y, —irk( zi)

XH»"'-(x, x„;y„y„z, z
~ S], (A9)

The gauge transformations of the photon propagator
(25) clearly do not destroy these relations. Since all
the remaining ingredients (free-electron propagators,
vertices, etc.) which enter into the definition of the
complete propagators also have the correct trans-
formation properties under the TP transformation, we
can use the TP invariance to derive some useful
relations for the complete propagators.

For the one-photon propagator g„„(k), the one-
electron propagator G(p), and the vertex function
I'"(p; q; k), TI' invariance leads to the following
relations:

obeys the relations

k 8""'"""Ipi p„;q„qi, k, ki k„~ S]
O..(k) =S..(—k),

G(p) =G'*'(p),

I'~(p; q; k) =I'~ &'& (q; p; —k),

(86)

(87)

(Bg)
=zZ (II"' "-t'Pi . . P' k."P-—

q„qi, ki .k iS]
—H»' ""[pi' ' pn, q"e' ''

q, +k, "q,;k," k„~S]). (A10)

On account of (A7), relations (A8) and (A10) have the
same form no matter whether we include or disregard
the vacuum polarization corrections to the external
photon lines.

In the absence of the external field we can separate
the 8 function, which expresses the conservation of the
total four-momentum,

II"'' ' '" /pi p„' q
.qi, ki .k

I
S]

I rt=o

= (2~)'~(EP' —Eq —Zki)
XH""'""(pi . Pn) q~ qi; ki k„). (A11)

Equations (A10) and (A11) give the GWI (33) for H.
Finally, from (33) and relation (46) between F and H,
we obtain the GWI for F as given by formula (53).

APPENDIX 8
It follows from the definition of the free photon

propagator D„„(zi,zz) that it is a symmetric function

&(P) =G(P),

81V(p) =BN(p) .

(811)

(812)

First let us consider G(p) as represented by the sum
of Feynman diagrams. Every contribution to G(p)
has the form of a multiple integral in momentum space.

Below the threshold in P we can perform the simul-
taneous Wick rotation in all integration variables. For
every vector integration variable l„, it consists in
rotating the integration contour in the complex lp

plane,
lp —+ alp. (813)

It follows from the Feynman i~ prescription that the
rota, ting contours will not encounter any singularities.
After the Wick rotation, the integrand is regular aud
we can take e —+ 0 in all denominators. Thus thy

where the bar denotes bispinor conjugation,

G(p) =v'G'(p)v', (89)

and the symbol (') denotes the complex conjugation of
all the complex numbers but not of the y matrices,

+u(~) —~p (810)

We will use now the relations (86) and (87) to prove
that below the threshold
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G'*'(p) =G(p), (814)

and Eq. (811) follows.

( In the proof of Eq. (812) we follow the same line of
reasoning. We use Eqs. (43a), (87), and (88) to find

imaginary numbers i e disappea. r in all propagators a,nd
we are only left with a product of i's in front of the
integral. From the general structure of diagrams
contributing to G(p), one finds that the total number
of i's coming from the propagators, the vertices, and
the Wick rotation is always even. Hence, below the
threshold

t'e' (dk) bg„(k) I'"(P; P —k; k)G(P —k) (815)

Then we change the integration variable k —+ —k and
use the property that 8g„(k) is an odd function of k.
Finally, we employ the argument involving the Wick
rotation to show that the expression in the bracket
in (815) does not change under (') conjugation below
the threshold. On account of (43b), this gives the slesired
rela, tion (812).
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We demonstrate with two field-theoretic models that the operator droplet model proposed by Chou and
Yang can be understood as due to the contribution from a class of leading Feynman diagrams at s= ~.
&n the first model, we consider a theory which consists of both a strong and an electromagnetic interaction.
The purpose of introducing two types of interactions is to supply a natural division between the produc-
tion of particles and the interaction between the jets, In this model, the sum of pure photon-exchange
diagrams leads automatically to an expression identical to that of the operator droplet model. Limitations
and generalizations of the model are investigated. The second model is derived from pure quantum electro-
dynamics. We find that an operator-droplet-model formulation can reproduce leading amplitudes in quan-
tum electrodynamics, including those which give rise to (lns)~ behavior. This confirms and generalizes an
earlier result of Lee. We demonstrate explicitly how the X-bubble diagrams should be treated in this calcu-
lation. Hy including diagrams related to one another by covariance, a reference-frame-independent result
always emerges. These frame-independent results coincide with earlier calculations based on the usual
Feynman rules,

I. INTRODUCTION

DROPLET model has been proposed bv Chou,

~ ~

~

Yang, ' and their co-workers in order to under-
stand qualitatively high-energy scattering. In particu-
la, r, they conjectured that hadron production processes
can be understood. through an operator version of the
droplet model. In a recent article, ' the operator droplet
model was put into an elegant and useful form by Lee.
I.ee then applied the operator droplet model to qua, ntum
electrodynamics (QED), with the identification of the
matter density p and the charge density. He demon-
strated that this model can reproduce the held-theoretic

*os supported in part by the U. S. Atomic Energy Com-
mission and the National Science Foundation under Contract
No. NSF GP 19433.
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Yen, ibid. 188, 2159 (1969).

.'B. Lee, Phys. Rev. D 1, 2561 (1970).

results of Cheng and Wu' as to impact factors. It is
interesting to know whether or how more complicated
(lns) ~-dependent terms can be obtained in Lee's formu-
lation. It is also important to find out if his conclusion
can be generalized to high-order processes.

The purpose of this paper is to show that the operator-
droplet-model results can indeed be obtained by sum-
ming a proper set of diagrams. By establishing the
connection between a physical model and a category of
Feynman diagrams, one can hope to gain some insights
and understanding of the model, such as its possible
limitations and generalizations. This is one of the im-
portant reasons for carrying out a systematical analysis
of Feynman diagrams.

The first model that we shall study is a combination
of a pseudoscalar-meson theory- and the electromag-
netic (EM) interaction. We first analyze a diagram by

' H. Cheng and T. T. Wu, Phys. Rev. Letters 22, 666 (1969);
Phys. Rev. 182, 1852 (1969); 182, 1868 (1969); 182, 1875 (1969);
182, 1899 (1969),


