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Equivalent Formulations of Massive Vector Field Theories
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Generalizations of the Stuckelberg decomposition of a vector field are developed by means of the Feynman
functional-integral technique. The modified perturbation series which result are of interest because they can
be used to express the nonrenormalizable parts of the interaction of a system of charged massive vector
particles in a form to which recently developed nonpolynomial techniques of computation can be applied.

I. INTRODUCTION

1
~~NE of the troublesome features of vector field

theories —and, in fact, of all higher-spin field
theories —is the appearance in the free-particle propa-
gator of terms more singular than 1/x' as x —+ 0. Such
terms arise from the spin-zero daughter of the spin-one
particle and, as is well known, must necessarily ac-
company any local-field description of the spin-one
particles. When considering the high-energy behavior
of the 5 matrix, or the renormalizability of its series
development, it is advantageous to isolate the contribu-
tions of the more singular part of the propagator and
study them separately. One of the best-known pro-
cedures to accomplish this is by means of the Stuckel-
berg split' of the vector field and a corresponding trans-
formation of those fields which interact with it. In
this paper we wish to review the problems which arise
when such a redefinition is made. While the conventional
Stuckelberg split and the canonical formalism which

employs it may be of doubtful utility for any but the
simplest case of neutral vector fields, we wish to advo-
cate a nonlinear generalization of it, which is better
suited for dealing with charged vector-meson theories.
Our tool is the path-integral formalism' of field theory.
This powerful and flexible formulation has been used to
analyze problems similar to the ones we discuss by
Feynman, ' Faddeev and Popov, ' Boulware, ' and
Fradkin and Tyutin6 in their treatments of Yang-Mills
theory. Our main prupose in this paper is to show that
these techniques can be applied with advantage to
systems more general than the Yang-Mills field, in-

cluding all cases of charged vector mesons. In particular,
we shall show that the 5-matrix elements can be de-

veloped in series which, while not being renormalizable
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in the conventional sense, are of the Efimov-Fradkin
normal type. 7 This opens up the possibility that in-

finities of massive Yang-Mills theories as well as charged
vector meson theories can be absorbed in a renormaliza-
tion of a few constants. Further, we wish to emphasise
as a subsidiary result that with these methods it be-
comes clear that the path-integral formulation of field

theory can with facility provide results which are de-

rived with great labor using the canonical formalism.

II. STUCKELBERG I'ORMALISM

Consider a set of massive vector meson fields U„' in

interaction with themselves and with other fields P.
Provided that the interaction Lagrangian does not
contain second-order derivatives, ' the Lagrangian
describing pure spin-one particles corresponding to the
fields U„' is given by

where the free-meson Lagrangian I.f(U) is given by

l,f(U) = ,'(8 U—j——ci-pU ')'+ ', m(U ')'. -(2.2)

Corresponding to this, the chronological pairing for the
field U„'is given by

U„' (x) U„' (y) = 8''A„„(x—y; m)
= —8'J(g „+ci 8„/m')AF(x y; m),—(2.3)

where the dots denote contraction and 6p denotes the
causal function satisfying the equation

(ri'+m')ap(x y; m) —ib—(x—y)——.

We use the metric g„,= diag(+ ———).
In momentum space the absorptive part of the

propagator is proportional to 8(p' —m')(g„, —p„p./p'),
which evidently describes pure spin-one propagation.

One can split 6„„into two parts,

g„.D r + (8„8„/m') 6-p, (2.4)

7 G. V. Efimov, Zh. Eksperim. i Teor. Fiz. 44, 2107 (1963)
[Saviet Phys. JETP 1/, 1417 i1963lg; E. S. Fradkin, NncL
Phys. 49, 624 (1963);R. Delbourgo, Abdus Salam, and J. Strath-
dee, Phys. Rev. 187, 1999 (1969);Abdus Salam and J. Strathdee,
Phys. Rev. D 1, 3296 (1970);R. Delbourgo, K. Koller, and Abdus
Salam, Ann. Phys. (N. Y.) (to be published).

8 N. Kemmer, Helv. Phys. Acta 33, 829 (1960).
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and formally reQect this separation in a split of the field
V„' into two parts,

II„'=A„'+ (1/m) a„B', (2 5)

where the fields A„' and 8' are assigned the chrono-
logical pairings

couplings of the Geld 8'('x) are in many cases less viru-
lent than one might naively iniagine. A classic ex-
ample —and one in which the range of variables does
not aGect the subsidiary condition —is the interaction
of fermions with a, neutral vector meson:

L=Lr(A, B)+Lrg)+ggy„)P(A„+m '8„8), (2.10)
A„* (x)A„' (y) = 8"g—„,I).p(x y; m—),
A '(*)8'(y) =0
8 (x)8 '(y)=S'S (x y;m)—.

where
(2.6)

Lf()p) = 2~(p'V/ (1A' ()A'VA') /(A'.

Insofar as internal lines are concerned, the split (2.4)
is completely equivalent to substituting expression
(2.5) into L;„&(U,)P) and using the pairings (2.6). For
external lines one continues to use the purely transverse
wave functions (—g„„+p„p,/p') ()(p' —m').

This formal procedure of splitting propagators can be
embedded in a canonical theory if one uses, instead of
(2.1), the following Lagrangian:

L(A,B,Q) =If(A, B)+Lg(p)+L;„„(A+m '88,$), (2.—7)

where

Lr(A 8)= —-'(8 A ')'+ 'm'(A ')'-+ '(8 8')'-
—-',m'(8')', (2.g)

In terms of a modified fermion field

p~(x) —e—i(g/m)B(x))p(x)

the Lagrangian (2.10) takes the form

(2.11)

I-=Lr(A, B)+Lr(~')+g~ ~.~ A. , (2»)
in which the Geld 8(x) is decoupled. This was the formu-
lation first used by Matthews to establish the re-
normalizability of massive electrodynamics. Another
example is the neutra, l pseudovector theory with

L;„),= g)Pip„y;)P(A„+m 'B„B).

Defining the new fermion field

)p'(x) = e
—(g/ )75&(*))p(x)

which can a,iso be expressed in the form one Gnds for the corresponding Lagrangian the expres-
sion

The advantage of starting with (2.7) is that one may use
canonical methods, treating A„and 8 as independent
variables. From (2.8) one obtains the pairings (2.6).The
disadvantage is that for each value of the index i there
are now five fields A„and 8 instead of the original four.
The Pock space generated by A„and 8 is larger than
the space of physical state vectors and it contains zero-
spin particles of negative metric. The physical subspace
consists of those vectors which are annihilated by the
positive-frequency part of the operator (B„A„'—mB').
Since L;„&contains only the combination A „+(1/m) 8„8,
it follows from the equations of motion tha, t

While this Lagrangian yields an unrenormalizable ex-
pansion in powers of g, it can by a suitable summation
technique be shown to yield finite results. '

These are examples of neutral Gelds A„and 8, where
the variable changes do not a6ect A„ itself and the
subsidiary condition remains unchanged. Consider now
the case of isovector Stuckelberg fields A„' and 8'
with, for example, the interaction

L;„t=g)Py„rjk(A„'+m '(/„8'). (2.'13)

An obvious generalization of the transformation (2.10)
would appear to be(8'+m')(() A '—mB') =0

I f(A 8) =- I ~(A+m —igB) ——(e) A
~' —mB')

r.= r, (A,B)+L, (P )+gP, ,„,„P A„
KPP~( 2g/~—n) ysB '] ]P

so that the prescription for projecting out physical
states is consistent with the equations of motion. The
theory indeed describes only spin-one particles. Up to
this point the Stuckelberg field-theoretic procedure,
though cumbersome, is /mathematically correct, con-
sistent, and fully acceptable.

The weakness of this formulation and particularly of
the subsidiary condition

(B„A„' mB') (+)
t )=0— (2.9)

becomes apparent when one attempts to make changes
of the field variables. Such variable changes are a potent
tool in showing, for example, that the infinities the 5
matrix on the mass shell caused by the derivative

L' i")=gk'v. rV'A. ". (2.16)

This does not constitute the full interaction, however.
Substitution of the transformation into Lf(A,B) yields
further contributions which are very complicated
(although the quadratic terms maintain their form).

9 S. Pkubo, Progr. Theoret. Phys. (Kyoto) 11, 80 (j.954).

)P'(x)=0(8))P(x)=e ""' ' '*)")P(x) (2.14)

which, accompanied by the transformation

A "r'=07'0 '(A '+m 'e) 8') —(ig) '08 0 i (2.15)

and allowing for a, contribution from I. (p)/, )takes the
interaction (2.13) into the form
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The important point about the transformation of the
68ld Ap ls that,

(Age.) =g d4 (x)dh(x), (3.2)

A„"=A„'+O(g)

so that (O~A„"jp)=(0[2 '(p) to zeroth order in g,
where j p) denotes the one-meson state. Thus, from
Borcher's theorem —if this theorem can indeed be
applied to such highly nonlinear transformations —the
on-mass-shell 5 matrix computed using A' must equal
the corresponding 5 matrix computed from A.

So much is true. But consider what happens to the
subsidiary condition (2.9). All statements previously
made about the eGectiveness of the subsidiary condition
in eliminating the unwanted zero-spin components of
the field 3„'may perhaps remain true, but the conven-
tional proofs, which depend on the properties of the
solutions of second-order Cauchy equations, cannot
immediately be seen to apply. One needs di8erent, more
powerful and more reliable, methods of changing
variables. Just such methods are available in the path-
integral formulation as has been shown recently by
Faddeev and Popov. 4 These authors used the method
(to be described in Sec. III) in a treatment of the Yang-
Mills theory of massless vector particles. This work was
extended by Boulware' to cover the massive counter-
part. We shall argue that the method is more generally
applicable —even to the interactions of only two charged
mesons where there is no isospin symmetry. The method
is useful not only in Yang-Mills theories but wherever
nonlinear Geld transformations can be applied with ad-
vantage. Taken in conjunction with the recently de-
veloped techniques for computing with nonpolynomial
I agrangians, v such nonlinear transformations should
find increasing scope for application.

III. PATH-INTEGRAL REPRESENTATIONS

If the Green's functions of a theory are represented
by path integrals, it becomes possible to view Geld
transformations as straightforward changes of integra-
tion variables. In passing from one set of variables to
another, one needs at most to compute a Jacobian de-
terminant, but even this is often unnecessary. To see
this, consider the "canonical" representation

and the integration range in (3.1) must include all func-
tions g(x) and n.(x) which vanish asymptotically. The
complex number Z(I,J) then represents the amplitude
for a vacuum-vacuum transition in the presence of
external sources I(x) and J(x). The Green's functions
are deGned as usual by functional derivatives with
respect to I and J taken at I=J=O. No generality is
lost by normalizing the volume element to give

Z(0,0)= 1. (3.3)

One can set up functional differential equations for Z
which take the form of Hamilton's equations:

(3.4)

H Q,V'y, ~) ~H'Q', Vy', ~') (3.5)

is canonical. Then one can contemplate using the
Hamiltonian H in (3.1) to compute a modified ampli-
tude Z', i.e.,

Z'(I, J) = (dyer)

Xexp i dx$vrj H'(Q, V'P,x)+I—Q+Jx] . (3.6)

8H BII
x(x)+ — - —V — —Z(I,J) =I(x)Z(I,J),

ay(x) a Vy(x)

where, on the left-hand side, g(x) and m(x) are repre-
sented by the functional derivatives ib/BI(x) an—d

i8/8 J—(x), respectively.
Since the volume element (3.2) has the form of a

phase-space measure it is clearly invariant under canon-
ical transformations. Hence, for this very large group
of transformations there is no need to compute a
Jacobian determinant. Suppose the transformation

Z(I,J)= (dydee)

Xexp i dxP~p H(p, V'qb, ~)+I/+ J—xj, (3.1)

where P denotes a collection of field variables and x their
associated canonical momenta. The symbol (dPdx) is
meant to indicate the functional volume element, a
simple product of diiYerentialsio

'0 These considerations are purely formal. Ke ma&e no attempt
to specify precisely the nature Af 'the summation. For example,
factors independent of I and J, even infinite factors, are absorbed
in the volume element which will always be adjusted to give
Z(0,0) = 1.

Applying the transformation (3.4) to the integration
variables takes (3.6) into the form

Z'(I,J) = (dyd~) exp i dx$~j H(y, V y,x)—

+If(~, )+Jg(~, )j (37)

which constitutes the basic equivalence theorem for
Green's functions. From this, together with the assump-
tion that f($,7r) and gQ, m) connect the vacuum to the
same set of one-particle states as do p and ir, respec-



2872 A. SALAM AND J. STRATHDEE

tively, it follows that the on-mass-shell 5 matrix com-

puted using H' is equal to that obtained from II, i.e.,
that the 5 matrix is a canonical invariant.

The weakness of the canonical representation (3.1)
is, of course, its lack of manifest covariance. However,
it is a simple matter to recover this property by taking
J=O and carrying out the integration over m(x). The
integral over vr(x) can best be performed by first trans-
lating the variable. Write

~(x) = m. o(y, Vy, j)+u(x), (3.8)

where the function 7l p ls obtained by solving the erst of
Hamilton's equations,

by Isham" in the covariant form

(3.12)

M(&P) = (dau) exp —i~i dx g'& (P)'u, ;u, (3.14)

where P"(x) denotes the pion triplet and g,,(P) plays the
role of a metric tensor. The corresponding Hamiltonian
is given by

H= ,'f"'i(y—)~,~,+ ', g;, (y-) v'y*Vpi, (3.13)

where g"denotes the reciprocal of g;, . The integral (3.10)
for M(p) now takes the forni

aH(y, Vy,~,)

87l O

which can be evaluated explicitly since it is Gaussian.

(3 9) The result is

M((f) = iDetg, , i'"
Substitution of m. o into the canonical form gran

H(P, VP,~)—yields the Lagrangian L(@,VP, g). There-
fore one can write

(d~) exp i dx$~p H(@,VP, ~—)]

=M(P) exp i dxL(&, V'P, g)

where the functional M(p) is defined by the functional
integral

=exp ~6 0 dx l~ detg;, , 3.15

where Detg;; means determinant in the functional sense
while det g,, means determinant in the sense of 3X3
matrices. Because of the presence of the factor b(0),
this expression is highly singular. In fact its purpose is
to cancel off all contributions to the Green's functions
which are proportional to b(0). That such a cancellation
must take place is clear since these contributions never

appear in the canonical representation (3.1). It is
interesting to remark that the functional (3.15) is

precisely the factor needed to make the integration
measure chiral invariant,

BH(y, V'yp. o)—H(y, &y,~o) —u- (3.10)

The generating functional Z(I) =Z(I,O) can therefore
be represented by the Feynman integral

Z(I) = (dy)M(y) exp i dx/L(y)+Iyj, (3.11)

where L(p) =L(p, V@,p) denotes the usual Lagrangian
density. For a large class of variables this will be a
manifestly Lorentz-invariant function. The functional

M(g) which must, in general, be present in representa-
tion (3.11) may be looked upon as a correction factor
which renders the representation unitary. It is clear
from expression (3.10) that this correction factor re-
duces to a constant if the coefficients of x', ~', . . . , in an
expansion of H are independent of @ and V'p or, in other
words, if the interaction Lagrangian contains no more

than one deri eat& e. This class includes most of the usual
Lagrangians of field theory.

To illustrate the computation of M(p) in a nontrivial
case of physical interest, consider the chiral-SU(2)
&&SU(2)-invariant Lagrangian for pions. This is given

(d~)M(~) =H {d4'(x)d4'(x)d~'(x) Ldetg, ,(p)]'I') .

This phenomenon is simply a reAection of the fact that
chiral transformations are canonical and leave the
Hamiltonian (3.13) invariant. "

In general, field transformations g —+P' are ac-
commodated in representation (3.11) by regarding the
Lagrangian as a scalar,

~'(~') =~(~),
and the measure functional M(p) as a scalar density,

M'(y') =M(y) Det(by/by' ) .

The Jacobian determinant Det(b&/bP') can be evaluated
explicitly for local transformations

~( ) =f(~'( )),
in which case it takes the form

bQ Bf
Det =exp 8 0 dx ln

"C. J. Isham, Nuovo Cimento 60A, 188 (1969).
'2 The role of the functional M (p) in the formulation of a group-

invariant integral has been treated in detail by S. S. DeWitt,
J. Math. Phys. 3, 1073 (1962).
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M(A) =Det(1 —X)-'

=exp Tr ln(1 —E)—'
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=exp P —Tr(E"), (4.24)
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where E denotes an integral opera, tor which is character-
ized by the kernel

M, (x—y; 0)
K"(x,y) =i 2ge'"d'A„'(y) (4 25)

and the traces are defined by

The Jacobian factor M i(A), needed for representation
(4.18c), has a much more complica, ted structure and is
also non-gauge-invariant. According to (4.16),

(dQ) exp
Mi(A) 2m2

dx(8 l '+m'B'

+2g p'd "A„'l„'+mcus„A„') '

Tr(K") = dxi dx K""(xixxp)

XE'2'd(x x,). E™(x x,)

however, be developed in the usual way by separating
the bilinear terms in the exponent of (4.26) and ex-
panding the rest in a power series. The individual terms
of this series contain powers of the current l„'(x), which
is itself a nonpolynomial function of (g(m)B(x). One
could employ the Kfimov-Fradkin method to compute
these terms or one could expand l„'(x) in powers to
each of which the usual computing method can be
applied. In the latter case one would, of course, be
dealing with a highly unrenormalizable series.

In conclusion it may be remarked that the transfor-
mations considered in this section, while particularly
suited to systems with a Yang-Mills symmetry,
I-(A ")= I.(A), can be applied to any system containing
charged vector mesons. For example, if the neutral
component U„' is not present, then the above formulas
must be adjusted by making, everywhere, the replace-
ment

(d U) (d U) 8(U„') .

If this is done, then formulas (4.18b) and (4.18c) will
receive the factor

{d{{dC)exp({ dx{ m C '-C' {'d '{—'+m'{d' (d U) ~(~.")~(A. ~p")

+2g(A„Xl„)'+m&„A„'$)
i
. (4.26)

J

The bininear terms give the chronological pairings

C'C'=0, B'C'= A(x —y; m), B B'=m L(x—'y; m),

(4.27)

where the function 4 corresponds to dipole propagation,
i.e.,

g((A {{)0)

(dD) exp i dx D„(A„")'

where D„ is to be looked upon as a I,agrange multiplier
field. The chronological pairings (4.19b) and (4.19c)
must be modified accordingly. Thus, for example, the
neutral components of the set (4.19b) should be re-
placed by

(8'+m')A(x —y; m) =A(x —y; m). A„'A„o =0, A„'8'=0, +0 +0 P

Because of the nonvanishing of 8'8 it is not possible
to neglect the higher-order terms as was done with
M(A). It is therefore not possible to give a compact
expression of the type (4.24) and (4.25) for the func-
tional Mi(A). The perturbation expansion for 1/Mi can,

A „"D„=- (—g„„8'+cj„c7„)'A(x'—y; 0),
B'D„=mcj„d(x—y; 0'),

D„'D, = [m'g„.+(g„„B' B„c7,)jb(x —y), —

while the charged components are unaffected.


