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Generalizations of the Stiickelberg decomposition of a vector field are developed by means of the Feynman
functional-integral technique. The modified perturbation series which result are of interest because they can
be used to express the nonrenormalizable parts of the interaction of a system of charged massive vector
particles in a form to which recently developed nonpolynomial techniques of computation can be applied.

I. INTRODUCTION

NE of the troublesome features of vector field
theories—and, in fact, of all higher-spin field
theories—is the appearance in the free-particle propa-
gator of terms more singular than 1/4? as « — 0. Such
terms arise from the spin-zero daughter of the spin-one
particle and, as is well known, must necessarily ac-
company any local-field description of the spin-one
particles. When considering the high-energy behavior
of the .S matrix, or the renormalizability of its series
development, it is advantageous to isolate the contribu-
tions of the more singular part of the propagator and
study them separately. One of the best-known pro-
cedures to accomplish this is by means of the Stiickel-
berg split! of the vector field and a corresponding trans-
formation of those fields which interact with it. In
this paper we wish to review the problems which arise
when such a redefinition is made. While the conventional
Stiickelberg split and the canonical formalism which
employs it may be of doubtful utility for any but the
simplest case of neutral vector fields, we wish to advo-
cate a nonlinear generalization of it, which is better
suited for dealing with charged vector-meson theories.
Our tool is the path-integral formalism? of field theory.
This powerful and flexible formulation has been used to
analyze problems similar to the ones we discuss by
Feynman,® Faddeev and Popov,* Boulware,® and
Fradkin and Tyutin® in their treatments of Yang-Mills
theory. Our main prupose in this paper is to show that
these techniques can be applied with advantage to
systems more general than the Yang-Mills field, in-
cluding all cases of charged vector mesons. In particular,
we shall show that the S-matrix elements can be de-
veloped in series which, while not being renormalizable
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in the conventional sense, are of the Efimov-Fradkin
normal type.” This opens up the possibility that in-
finities of massive Yang-Mills theories as well as charged
vector meson theories can be absorbed in a renormaliza-
tion of a few constants. Further, we wish to emphasise
as a subsidiary result that with these methods it be-
comes clear that the path-integral formulation of field
theory can with facility provide results which are de-
rived with great labor using the canonical formalism.

II. STUCKELBERG FORMALISM

Consider a set of massive vector meson fields U,* in
interaction with themselves and with other fields .
Provided that the interaction Lagrangian does not
contain second-order derivatives,® the Lagrangian
describing pure spin-one particles corresponding to the
fields U,*is given by

L(UW)=L{(U)+ L)+ Lin(U¥), (2.1)
where the free-meson Lagrangian L;(U) is given by
Ly(U)=—=1(0,U,—8,U,)*+5m* (U, (2.2)

Corresponding to this, the chronological pairing for the
field U,* is given by

U (@) U7 (y) = 6YAu(x—y; m)
= — 8%t 0,0,/ m*) Ap(x—y; m), (2.3)

where the dots denote contraction and Ar denotes the
causal function satisfying the equation

(9*FmA)Ap(x—y; m)=—id(x—y).

We use the metric g,,= diag(+ — — —).

In momentum space the absorptive part of the
propagator is proportional to 8(p2—m?)(gu— pups/ P,
which evidently describes pure spin-one propagation.

One can split A,, into two parts,

A= gulAr+ (9,9,/m*) A, (24)
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Salam, Ann. Phys. (N. Y.) (to be published).
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and formally reflect this separation in a split of the field
UJ,% into two parts,

Uyi=A,+(1/m)d,B", (2.5)
where the fields 4,° and B? are assigned the chrono-
logical pairings

A ()47 (y) = —6YguAp(x—y; m)
A7 (x) B (y)=0,
Bi(x)Bi*(y) = §¥Ap(x—y; m).

(2.6)

Insofar as internal lines are concerned, the split (2.4)
is completely equivalent to substituting expression
(2.5) into Lint(U¥) and using the pairings (2.6). For
external lines one continues to use the purely transverse
wave functions (—gu,+ pupy/p2)o(p2—m?).

This formal procedure of splitting propagators can be
embedded in a canonical theory if one uses, instead of
(2.1), the following Lagrangian:

[‘(A3B)¢) = Lf(A 7B)+Lf(‘//)+Lint<44+m—laB;‘//) ’ (27)
where

Li(4,B)= —3(0,4,")*+3m*(4,7)*+3(3,B9)*

—m*(BY)*, (2.8)
which can also be expressed in the form
Li(A,B)=Ly(A+m™19B)—5(3,4, ' —mB?)?

—mdu(4,BY).

The advantage of starting with (2.7) is that one may use
canonical methods, treating 4, and B as independent
variables. From (2.8) one obtains the pairings (2.6). The
disadvantage is that for each value of the index ¢ there
are now five fields 4, and B instead of the original four.
The Fock space generated by 4, and B is larger than
the space of physical state vectors and it contains zero-
spin particles of negative metric. The physical subspace
consists of those vectors which are annihilated by the
positive-frequency part of the operator (9,4 ,'—mB?).
Since Lint contains only the combination 4,4+ (1/m)d,B,
it follows from the equations of motion that

(0% +m?)(9,4,'—mB¥) =0,

so that the prescription for projecting out physical
states is consistent with the equations of motion. The
theory indeed describes only spin-one particles. Up to
this point the Stiickelberg field-theoretic procedure,
though cumbersome, is mathematically correct, con-
sistent, and fully acceptable.

The weakness of this formulation and particularly of
the subsidiary condition

(9ud i =mB) D[ )=0 (2.9)

becomes apparent when one attempts to make changes
of the field variables. Such variable changes are a potent
tool in showing, for example, that the infinities the S
matrix on the mass shell caused by the derivative
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couplings of the field Bi(x) are in many cases less viru-
lent than one might naively imagine. A classic ex-
ample—and one in which the range of variables does
not affect the subsidiary condition—is the interaction
of fermions with a neutral vector meson:

L=L;(4,B)+ L)+ gbvip(Autm™8,B), (2.10)
where
L) = 3i(vu0up— dbyil) —l .
In terms of a modified fermion field
W/ (1) = mi0Im By () (2.11)
the Lagrangian (2.10) takes the form
L=LiA4,B)+L;{)+gd'v'4du,  (2.12)

in which the field B(x) is decoupled. This was the formu-
lation first used by Matthews to establish the re-
normalizability of massive electrodynamics. Another
example is the neutral pseudovector theory with

Ling= g‘pi')’n')’:ﬂ&(A vt m-laﬂB) .
Defining the new fermion field
¢’(x) = e—(a/m)vsB(x)¢(x) ,

one finds for the corresponding Lagrangian the expres-
sion

L=L;(A,B)+L;{)+gbivivad' A
. _le:e(lr]lm) v5B 1]¢ .

While this Lagrangian yields an unrenormalizable ex-
pansion in powers of g, it can by a suitable summation
technique be shown to yield finite results.?

These are examples of neutral fields 4, and B, where
the variable changes do not affect 4, itself and the
subsidiary condition remains unchanged. Consider now
the case of isovector Stiickelberg fields 4, and B¢
with, for example, the interaction

Lins= gy, 7Y (A4, +m™19,B%). (2.13)

An obvious generalization of the transformation (2.10)
would appear to be

V(@)= QB) () = e 0ImB @Y () (2.14)
which, accompanied by the transformation
A= QrQ (A 4 m19,BY) — (1g) 120,07,  (2.15)

and allowing for a contribution from L), takes the
interaction (2.13) into the form

LingW =gy, m9'4,7 . (2.16)

This does not constitute the full interaction, however.
Substitution of the transformation into Ls(4,B) yields
further contributions which are very complicated
(although the quadratic terms maintain their form).

9 S. Okubo, Progr. Theoret. Phys. (Kyoto) 11, 80 (1954).
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The important point about the transformation of the
field 4,° is that

W= 4,540()

so that (0]A4,”|p)=(0|4,7|p) to zeroth order in g,
where |p) denotes the one-meson state. Thus, from
Borcher’s theorem—if this theorem can indeed be
applied to such highly nonlinear transformations—the
on-mass-shell .S matrix computed using 4’ must equal
the corresponding .S matrix computed from 4.

So much is true. But consider what happens to the
subsidiary condition (2.9). All statements previously
made about the effectiveness of the subsidiary condition
in eliminating the unwanted zero-spin components of
the field 4,° may perhaps remain true, but the conven-
tional proofs, which depend on the properties of the
solutions of second-order Cauchy equations, cannot
immediately be seen to apply. One needs different, more
powerful and more reliable, methods of changing
variables. Just such methods are available in the path-
integral formulation as has been shown recently by
Faddeev and Popov.* These authors used the method
(to be described in Sec. III) in a treatment of the Yang-
Mills theory of massless vector particles. This work was
extended by Boulware’ to cover the massive counter-
part. We shall argue that the method is more generally
applicable—even to the interactions of only two charged
mesons where there is no isospin symmetry. The method
is useful not only in Yang-Mills theories but wherever
nonlinear field transformations can be applied with ad-
vantage. Taken in conjunction with the recently de-
veloped techniques for computing with nonpolynomial
Lagrangians,” such nonlinear transformations should
find increasing scope for application.

III. PATH-INTEGRAL REPRESENTATIONS

If the Green’s functions of a theory are represented
by path integrals, it becomes possible to view field
transformations as straightforward changes of integra-
tion variables. In passing from one set of variables to
another, one needs at most to compute a Jacobian de-
terminant, but even this is often unnecessary. To see
this, consider the “canonical” representation

Z(I,J)= / (ded)

XeXP{i/dx[mﬁ-H(¢,V¢,1r)+1¢+]7r]} NCRY

where ¢ denotes a collection of field variables and 7 their
associated canonical momenta. The symbol (d¢dw) is
meant to indicate the functional volume element, a
simple product of differentials!®

10 These considerations are purely formal. We make no attempt
to specify precisely the nature of the summation. For example,
factors independent of I and J, even infinite factors, are absorbed
in the volume element which will always be adjusted to give

Z(0,0)=1.
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(dpdm) =11 dg(w)dm(x) , 3.2)

and the integration range in (3.1) must include all func-
tions ¢(x) and w(x) which vanish asymptotically. The
complex number Z(Z,J) then represents the amplitude
for a vacuum-vacuum transition in the presence of
external sources 7(x) and J(x). The Green’s functions
are defined as usual by functional derivatives with
respect to 7 and J taken at /=J=0. No generality is

lost by normalizing the volume element to give
Z(0,0)=1. (3.3)

One can set up functional differential equations for Z
which take the form of Hamilton’s equations:

oH
[¢s<x> - ]Z(I,n — Wz,
Im(x)
0H oH
i - Z(1,7)=I(x)Z(I,]),
[ Ot v(a%(x))] (1,7)=I()Z(1,7)

where, on the left-hand side, ¢(x) and w(x) are repre-
sented by the functional derivatives —i§/8/(x) and
—168/8J (x), respectively.

Since the volume element (3.2) has the form of a
phase-space measure it is clearly invariant under canon-
ical transformations. Hence, for this very large group
of transformations there is no need to compute a
Jacobian determinant. Suppose the transformation

¢ —¢'= flo,m),
T 7'=g(¢m),
H(¢,Yo,m) — H'(¢',V¢',1) (3.5)

is canonical. Then one can contemplate using the
Hamiltonian A’ in (3.1) to compute a modified ampli-
tude Z, i.e., -

(3.4)

2(1,7)= / (dadn)

Xexp{i/dx[rqS—H’(qS,Vda,r)+I¢+]1r]} . (3.6)

Applying the transformation (3.4) to the integration
variables takes (3.6) into the form

Z'(I,J) =/(d¢d1r) cxp{i/dx[wd}——ﬂ(@%&,w)

+If(¢,vr)+Jg(¢,vr>]}~, 3.7)

which constitutes the basic equivalence theorem for
Green’s functions. From this, together with the assump-
tion that f(¢,m) and g(¢,m) connect the vacuum to the
same set of one-particle states as do ¢ and , respec-
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tively, it follows that the on-mass-shell S matrix com-
puted using H' is equal to that obtained from H, i.e.,
that the .S matrix is a canonical invariant.

The weakness of the canonical representation (3.1)
is, of course, its lack of manifest covariance. However,
it is a simple matter to recover this property by taking
J=0 and carrying out the integration over =(x). The
integral over 7(x) can best be performed by first trans-
lating the variable. Write

m(x)=mo(¢,Veb,6) F-u(x) , 3.8)

where the function m is obtained by solving the first of
Hamilton’s equations,

(f:, oH (d); Vd),ﬂ' 0)

admo

(3.9)

Substitution of m, into the canonical form m¢
—H(¢,V¢,m) yields the Lagrangian L(¢,Ve,$). There-
fore one can write

[ exp [ tatxi— 170

=M (¢) exp{i / da L(¢>,V¢,<i>)} )

where the functional M (¢) is defined by the functional
integral .

M(¢)= / (du) EXP{ —i [ dx[H (¢, Vo,mo+u)

oH £
—H (¢,V¢,1ro)—u———(j;—’zu]} . (3.10)

o

The generating functional Z(/)=Z(Z,0) can therefore
be represented by the Feynman integral

2= / ()M (#) exp{z‘ f dx[L(¢>+z¢]] RNERT)

where L(¢)=L(¢,V¢,$) denotes the usual Lagrangian
density. For a large class of variables this will be a
manifestly Lorentz-invariant function. The functional
M (¢) which must, in general, be present in representa-
tion (3.11) may be looked upon as a correction factor
which renders the representation wmitary. It is clear
from expression (3.10) that this correction factor re-
duces to a constant if the coefficients of 2, =%, ..., inan
expansion of H are independent of ¢ and V¢ or, in other
words, if the interaction Lagrangian contains no more
than one derivative. This class includes most of the usual
Lagrangians of field theory.

To illustrate the computation of M (¢) in a nontrivial
case of physical interest, consider the chiral-SU(2)
X SU(2)-invariant Lagrangian for pions. This is given
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by Isham!! in the covariant form
L=138:($)0.9°9,87, (3.12)

where ¢i(x) denotes the pion triplet and g;;(¢) plays the
role of a metric tensor. The corresponding Hamiltonian
is given by

H = 5g(¢)mim;+38::(6) Vo'V, (3.13)

where g/ denotes the reciprocal of g;;. The integral (3.10)
for M(¢) now takes the form

W)= [ (@ exp| <3 [ s gomas |, (.19

which can be evaluated explicitly since it is Gaussian.
The result is

M ()= Detgi;| '
=exp(%6(0)/dx In detgij((i))), (3.15)

where Detg;; means determinant in the functional sense
while det g;; means determinant in the sense of 3X3
matrices. Because of the presence of the factor §(0),
this expression is highly singular. In fact its purpose is
to cancel off all contributions to the Green’s functions
which are proportional to §(0). That such a cancellation
must take place is clear since these contributions never
appear in the canonical representation (3.1). It is
interesting to remark that the functional (3.15) is
precisely the factor needed to make the integration
measure chiral invariant,

(de)M (¢) =11 {do*(x)d*(x)dep*(x) [ detgii(p) ]!/} .

This phenomenon is simply a reflection of the fact that
chiral transformations are canonical and leave the
Hamiltonian (3.13) invariant.'?

In general, field transformations ¢ — ¢’ are ac-
commodated in representation (3.11) by regarding the
Lagrangian as a scalar,

L'(¢")=L(s),
and the measure functional M (¢) as a scalar density,
M'(¢")=M(¢) Det(5¢/5¢’) .

The Jacobian determinant Det(8¢/d¢’) can be evaluated
explicitly for local transformations

o(x)= f(¢'(x)),

in which case it takes the form

Det%):exp[a@ Jas 1(%)] .

11 C, J. Isham, Nuovo Cimento 60A, 188 (1969).

12 The role of the functional M (¢) in the formulation of a group-
invariant integral has been treated in detail by B. S. DeWitt,
J. Math. Phys. 3, 1073 (1962).
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It can be represented diagrammatically by graphs in
which the ¢’ lines emerge from structureless (point)
vertices. Since all of these vertices are accompanied by
the factor 6(0), they must be canceled by corresponding
terms generated by derivatives in the interaction
Lagrangian.

Transformations which involve derivatives of the
fields, i.e., which are not canonical, can yield a Jacobian
factor whose structure is nontrivial. For example, cor-
responding to the transformation

¢’ (x) = g(¢(x),0,0(x)) ,

we can write, formally,

o ag dg 9
Det(——>=exp/dxl:ln<—— + —>B(x—y)] .

o’ 9 0%, 0%, y=z
The presence of the derivative makes this an essentially
nonlocal functional. It will be represented diagram-
matically by a set of vertices which are not structureless
and not negligible. In Sec. IV we shall consider an ex-
ample where such a structured Jacobian factor can be
evaluated. It will be found there that the structure
takes the form of closed loops of a fictitious massless
particle to which the other particles of the theory are
coupled.

IV. VECTOR-MESON THEORIES

The formalism described in Sec. IIT can be applied
with advantage to the computation of vector-meson
Green’s functions. Let us first illustrate the method by
reformulating the Stiickelberg technique of Sec. II in
functional notation. The generating functional which
corresponds to the Lagrangian (2.1) is given by

2L = f (Udp) p{ / dx[L(U,t//)-l-IuUu-l-mﬂ}

0 [
=exp[:1/dx Lint<_i~ ) _1—>]Z0(I:7’) b) (41)
o/ on

where Z, corresponds to the free Lagrangian L/(U)
+L;() and can be evaluated explicitly since it is
represented by a Gaussian integral:

ZO(I,T))=CXP{J§ [dxdy[h(x)Auv(x*%m)fv(y)

0" (@)SE—y)n(y) ], (4.2)

where A,, denotes the free-meson propagator (2.3) and
S(x—y), similarly, the free propagator of the fields .
The functional differential operator in (4.1) is inter-
preted by expanding the exponential in powers of Liy.
The terms of this series, which operate upon the ex-
plicitly given functional (4.2), yield the usual perturba-
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tion series for Z(Z,n). If Lins(U W) is not a polynomial in
U, and ¢, but rather some rational or algebraic function,
then it will be necessary to interpret the expression
Lini(—18/81, —16/8n) as a functional-integral operator
employing, for example, the methods of Efimov and
Fradkin.

Into representation (4.1) it is possible to introduce a
new variable B by taking advantage of the identity

1 2
/(dB) exp{—%i/dxl:é,‘U“—i— ——(82+m2)3:| }
m

=const,

(4.3)

which can be proved by making a simple translation of
the integration variable B — B+ By(U), where Bo(U)
denotes a solution of the equation (824 m?)By= —98,U,.
The translated integrand no longer depends on U, and,
if it is required in addition that the limits of integras
tion be invariant under translations result (4.3) then
follows. The constant on the right-hand side can be set
equal to unity without loss of generality since the
integration measure (dB) is itself defined only up to a
constant factor.® Now insert expression (4.3) into (4.1)

and make the change of integration variable
Uy— Ay=Uu+m19,B. (4.4)

One obtains the form

1
2= [@aasip) ol [ i 14~ ~omy)
m

1
—%(0A+WB)2+I;4<AM_ —-—0,,B>+'ml/:|l>
m
=/(dAdBd¢)

Xexp{i/dxl:Lf(glx)—{—%A,.(az-{—mz)A,,

—3B(0?+m*) B+ Lins

+I<A—— —:;63>+m//] , (4.5)

the perturbation development of which proceeds
analogously to (4.1) and (4.2) except that 4, and B
lines are now represented by the propagators (2.6) and
the interaction involves the combination 4 ,— (1/m)9,B.
The integral representation (4.5) exactly parallels the
Stiickelberg development of Sec. II.

An equivalent, although different, formulation results
if, instead of (4.3), one uses the identity

1
/((ZB)(S(&)“U#—I— —62B> =1, (4.6)
m
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where the integrand is meant to signify a “8 functional”
which might be represented by the Fourier-type integral

/(dC) expl:i/dx C(x)(c')U-i— i(’ﬁB)]
| =6(6U+ %32B> . @)

Substitution of (4.6) into (4.1) followed by the change
of integration variable (4.4) yields (after suppressing
the nonessential ¢ and 7) the expression

Z()= f (d4dB)5(d,A,)
Xexp {1 / dx[L(A - %aB)—}—I(A - %aB)}}
= / (d4dBdC) exp{i / dx[L(A - iaB)

+CaA+I(A— iaBﬂ} . (4.8)

m

It is clear from the latter form that C plays the role of a
Lagrange multiplier. The free part of L(4 —(1/m)dB),
together with the term C94, yields the chronological
pairings

0,0

Au'(x)Av'(y)=_<guv_ >AF(x"y§m)7

Au'(x)B'(y) =0,
B (x)B(y)=Ar(x—y;0),

which are to be used in developing the perturbation
series. Note that

1 . 1 .
(A#— —a“B> (A,— —a,B>~
m m

1 1 1
=A, A, ——98,B'A,— —A4,9,B+ —93,.B9,B°
m m m?

= —(gpv+ay.av/m2)AF(x_y; m) )

which shows that representation (4.8) is trivially
equivalent to the original one.

So far we have only transcribed into functional nota-
tion the well-known Stiickelberg representation and one
of its modifications. A nontrivial generalization can be
developed for systems of charged vector mesons. To
illustrate this consider an isotriplet U,? of vector fields.
(The presence of isosymmetry is not an essential re-
quirement for the method but leads to great simplifi-
cations. We shall indicate below what modifications
would be needed if, for example, the neutral component

62
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U % were not present.) The analog of the representation
(4.8) in which the transverse and longitudinal com-
ponents of U, appear as 4, and (1/m)38,B, respectively,
would involve an equivalence of the type

/ dU) = / (dAdQ)8(3,A)M(A),  (4.10)

where 4, and Q represent the transverse and longi-
tudinal parts of U, as defined by the formulas

U iri= A,Qr Q01— (ig)100,Q! (4.11)

and
(4.12)

where Q(x) is expressed in the form of a 2)X2 unitary
matrix. Formula (4.11) constitutes a non-Abelian
generalization of (4.4) looked upon as a gauge transfor-
mation. It is a nonlinear and, in fact, a noncanonical
transformation. The Jacobian determinant M (4) will
be found to have a nonlocal structure.

The change of variables (4.10) assumes its simplest
form if the integration measure (dQ) is required to be
the invariant group measure. A good way to represent
this integration is in terms of a set of constrained
variables. Write

Qx)= (g/m)Lo(x) —ix-B(x) ].
This 2X2 matrix will be unitary provided
o2+ B2=m? /g:z

and the group-invariant functional integral over all
unitary matrices Q(x) can be given in the form

0,4,i=0,

(4.13)

f Q) = f (dodB)s(a2+B2—m?/g?)  (4.14)

using the § functional defined above. By (dB) is meant
the ordinary product measure.

An integral representation for the Jacobian factor
M (A) is given by

1
e / (09)3(0,4,9),

where 4? stands for the right-hand side of (4.11). The
invariance of (d) implies the gauge invariance of M (4),

M(A%)=M(A).

To verify (4.10) one can follow closely the steps which
led up to (4.8), i.e.,

(4.15)

/(dU)=/(dUdQ)M(U)6(6,‘U,,9)

= / (dUAQLAYM (U)8(3,U,)6(A—U?)

= f (dAdM(A)6(8,A,) / (@U)S(A—U?),
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from which (4.10) follows since (dU) is invariant under
the transformation U — U'=QUQ.

An alternative scheme, one which is a closer analog
of the Stiickelberg representation (4.5), is obtained by
defining

1
My4)

f(dﬂ) exp(—-%i/dx(&,,Aﬂ-{—mBV) , (4.16)

a functional which is #ot gauge invariant. Following the
same steps as before we find

/ (dU)= / (dUd)M (V)
XexP[—%i / dx(aUﬂ—l—mB)Z]
= / (dAdQ)M (A%

Xexp[:—%i / dx(aA+mB)2] (4.17)

(after the replacement Q7! — Q).

At this stage we have three equivalent integral
representations for the Green’s functions of a charged
meson theory:

Z(I) = / @u) exp{i- / dx[L(U)+IU]} (4.18a)

= / (dAdR)8(3,A4,)M (A)
Xexp{i f dx[L(A“)-{—IA“]} (4.18b)
= / (dAdQ)M+(A%) exp[i / dx[L(4%)
—-%(6A+m3)2+1/1“]}’ (4.18¢)

where A% denotes the combination of 4 and @ given
on the right-hand side of (4.11) and Q is expressed in
terms of B through (4.13). The chronological pairings
which must be used in the perturbation developments of
these functionals are, respectively,

U U = —(gut0u0y/m?) A —y; m)d%, (4.19a)
AJ‘A»’"=*(gW— (;;)A(x—y;M)ﬁ“,
A,"Bi =0, B"Bi=A(x—y,0)6", (4.19b)
A A7 = —guA(x—y; m)s¥, A,"BI =0,
B*Bi=A(x—y, m)é¥. (4.19¢)
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The Jacobian factors M (4) and M1(4) as defined by
the functional integrals (4.15) and (4.16) can also be
developed in perturbation series, the terms of which can
be interpreted graphically. To this end it is convenient
to define the currents /,° by

Liri= —(m/ig)210,.0. (4.20)

The factor m/g is chosen to normalize the leading term
in a series expansion in powers of B(x), the three-
component field which parametrizes Q. That is,

Li=3,Bi4 . @.21)

Since the Jacobian factor M (4) is needed only on the
subspace 9,4 ,=0 according to (4.18), it is sufficient to
evaluate the integral (4.15) on that surface where it
takes the form

1
= | (d9)8(3,l, 286 A, E
I /( )0(0ulu*+2ge )

- / (d9dC) expl:—i / dw Ci(a“l,j+2geikaufl,,k)]
=/(dBdC) expl:ifdx 3,C¥(0,B

+2get* A iBE A - - -)] (4.22)

where, in the last step, only the terms linear in B are
shown explicitly. The bilinear term 8B-dC can be
looked upon as a ‘““free Lagrangian” which yields the
chronological pairings

B'B'=0, BC=A(x—y;0), CC=0. (4.23)
The integral over B and C is to be evaluated by expand-
ing everything except the bilinear term in a power series
and substituting the pairings (4.23) in all possible com-
binations in the usual way. This procedure will yield the
perturbation development of 1/M(4). Because of the
peculiar structure of the pairings (4.23) it is necessary
to retain only those terms in the expansion where the
number of B fields is equal to the number of C fields.
Since the exponent in (4.22) is linear in C it is therefore
necessary to keep only the term which is linear in B,
i.e., the one shown explicitly. The terms of the perturba-
tion series must form themselves into closed loops of a
massless scalar particle with 4 lines emerging from the
vertices. A compact expression for the functional M (4)
is in the form of a determinant,

M(4)=Det(1—K)!
=exp Trln(1—K)"!

o 1
=exp 2 — Tr(K™),

a=19

(4.24)
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where K denotes an integral operator which is character-
ized by the kernel

A(x—y;0)

Kii(x,y) =1 2g€itid k(y)  (4.25)

Xp

and the traces are defined by

Tr(K™) =/dx1' -~ da, K9%2(201,%9)
X K2(x9,25) - - - Kni1(2,,21) .

The Jacobian factor M1(4), needed for representation
(4.18c), has a much more complicated structure and is
also non-gauge-invariant. According to (4.16),

1 1
—— = | (d2 — — [ dw(0,li4m2B
iy~ el = [

—I—de“’“A,,jl,,"—I—ma,,A,ﬁ)Z}

=/(deC) exp(i/dx{%m%f“’—Ci[:ﬂ,,l,ﬁ—{-sz“‘

+2g<Au><zu>i+mauAuf]}>. (4.26)

The bininear terms give the chronological pairings
CC=0, BC=A(x—y; m), BB =m?A(x—y; m),
(4.27)

where the function A corresponds to dipole propagation,
ie.,
(0°+m?) A(x—y; m)=Alx—y; m).

Because of the nonvanishing of B'B- it is not possible
to neglect the higher-order terms as was done with
M(A). 1t is therefore not possible to give a compact
expression of the type (4.24) and (4.25) for the func-
tional M 1(4). The perturbation expansion for 1/M can,
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however, be developed in the usual way by separating
the bilinear terms in the exponent of (4.26) and ex-
panding the rest in a power series. The individual terms
of this series contain powers of the current 7,%(x), which
is itself a nonpolynomial function of (g/m)B(x). One
could employ the Efimov-Fradkin method to compute
these terms or one could expand I,(x) in powers to
each of which the usual computing method can be
applied. In the latter case one would, of course, be
dealing with a highly unrenormalizable series.

In conclusion it may be remarked that the transfor-
mations considered in this section, while particularly
suited to systems with a Yang-Mills symmetry,
L(A%)=L(A4), can be applied to any system containing
charged vector mesons. For example, if the neutral
component U, is not present, then the above formulas
must be adjusted by making, everywhere, the replace-
ment

@U) — [@U)s(UY).

If this is done, then formulas (4.18b) and (4.18c) will
receive the factor

/ @U)S(U,08(A,— )

=5((4,%)°)

= / (dD) epr:i / dx D,‘(A,L")"J,

where D, is to be looked upon as a Lagrange multiplier
field. The chronological pairings (4.19b) and (4.19¢)
must be modified accordingly. Thus, for example, the
neutral components of the set (4.19b) should be re-
placed by

A0A49=0, A, B"=0, BY“B*»=0,
A, Dy = (—gu0°49,9,)A(x—y; 0),

B D, =md,A(x—7y;0),

D, D, =[m*ut (802 —9,9,) 16(x—7)

while the charged components are unaffected.



