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A method is suggested (and applied to the Yang-Mills and gravitational fields) for the construction of
the generating functional (S matrix) for fields possessing an invariance group. The unitarity and gauge
independence of the S matrix on the mass shell are seen explicitly.

I. INTRODUCTION

HERE has lately been considerable intensification
in the study of theories partially or completely

invariant under non-Abelian groups of transformations.
This is in connection with the discovery of vector
mesons and their classification into multiplets, with the
use of vector mesons to account for the form factors of
particles, and with the current-algebra approach. Inter-
mediate vector bosons are introduced in many schemes
of weak interaction. An important example of a theory
with a non-Abelian group of invariance is that of the
gravitational field.

In the present paper a procedure for constructing the
Feynman rules is proposed for theories possessing a
gauge group, such as the theories of the massless Yang-
Mills and gravitation 6elds. It is known that some
additional (gauge) condition must be imposed on the
dynamical variables in order that a consistent quantum
field theory may be formulated on the ba,sis of a
Lagrangian density invariant under a, local transforma-
tion group. In covariant gauges this can conveniently
be done by the use of Lagrange multipliers. The basic
idea of the method proposed is to choose the Lagrange
multiplier in such a way that one is led to free equations
of motion for the additional field. This fact guarantees
the unitarity of the 5 matrix in physical space. The
Feynman rules obtained coincide with those proposed
in Refs. 1—5. The difference of the method under con-
sideration from that of Refs. 2—5 is that we have
succeeded in obtaining a set of consistent dynamical
equations completely describing the theory. On the one
hand, these equations make it possible to elucidate the
reason for the additional diagrams to appear, and, on
the other hand, guarantee the unitarity of the physical
5 ma, trix. Section II is devoted to the construction of
the 5 ma, trix for the massless Yang-Mills field in arbi-
trary gauge and to the proof of the gauge invariance of
the 5 matrix. In Sec. III constructing the Feynman
rules in the Coulomb and axial gauges is considered on
the basis of the canonical quantiza, tion procedure. The
5 matrix obtained coincides with that found in Sec. II,

' R. P. Feynman, Acta Phys. Polon. 24, 697 (1963).' B. S. DeWitt, Phys. Rev. 162, 1195 (1967); 162, 1239 (1967).' L. D. Faddeev and V. N. Popov, Phys. Letters 258, 30 (1967);
V. N. Popov and L. D. Faddeev, ITP report, Kiev, 1967
(unpublished).' S. Mandelstam, Phys. Rev. 175, 1580 (1968).' S. Mandelstam, Phys. Rev. 175, 1604 (1968).

which fact reaffirms its unitarity. It is shown, further-
more, that taking the additional conditions consistently
into account makes it possible to obtain self-consistent
equations for the massless Yang-Mills field in the pres-
ence of an external source.

In Sec. IV the Feynman rules for the gravitational
field are constructed in covariant gauges. These rules
coincide with those suggested in Refs. 2, 3, and 5. In the
framework of our approach we also obtain the 5 matrix
for a noncovariant (Dirac) gauge, for which the Feyn-
man rules have been obtained by Popov and Faddeev'
using a method closely connected with the canonical
formulation of the gravitational field. In addition, by
our method, the equivalence of the 5 matrix in co-
variant and noncovariant gauges is proved.

YVe use the following notation. Greek p, p, A, , . . . and
the Latin i, j, k indices take the values 0, 1, 2, 3 and
1, 2, 3, respectively. In Secs. II and III, g„„means the
Minkowski tensor (+, ———) and b, b means the unit
tensor. By the summation over repeated indices is every-
where meant a„b,=aobo —&bbb; f),—= f)/r)x; 0= i)„r)„;
7'=—Bg,B~. In Sec. IV, g„„means the metric tensor, and the
Minkowski tensor is designated as 8„.. The usualtsum-
mation over repeated indices means a„b"=g„o' a„b"
We use the system of units A= c= 1 in Secs. II and III
and cs/16rrk= 1 in Sec. IV (where k is the gravitational
constant).

Io(x) = ——,'G„, (x)G„. (x). (2.1)

Here G„„ is the field-strength tensor,

G„, (x)= f)„A„(x)—f)„A„'(x)+)iA„'(x)A.b(x), (2.2)

ab(X) —facbg c(X) (2 3)

The fc' are the structure constants of the arbitrary
finite-dimensional compact simple Lie group G. The f '

' V. N. Popov and L. D. Faddeev (to be published).' C. N. Yang and R. L. Mills, Phys. Rev. 96, 191 (1954).

II. GENERAL THEORY. OF CONSTRUCTION OF
FEYNMAN RULES FOR MASSLESS YANG-

MILLS FIELD. GAUGE INVARIANCE OF
S MATRIX

In this section the general theory for construction of
a, unitary 5 matrix for massless Yang-Mills fields is
considered.

The classical Lagrangian for a Yang-Mills7 field has
the form
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are real and totally antisymmetric, and satisfy the
Jacobi identity

is connected with the following. Let us find the canonical
momenta:

fabcfcdf+ faf cfcfd+ fade fcf b 0— (2 4)
mp'(x)=0 nb (x)= —Gpb (x). (2.14)

5'(x) = b„b+i6 b(x),

the gauge transformations have the form

(2.7)

A „(x)-+ A „'(x)—(1/X) 7„'b(x)ub(x) . (2.5')

V„' is the covariant differentiation

V'„'(x)=8.b8„+'AA—„'(x) . (2.8)

In the case of Abelian groups, formulas (2.5) and (2.6)
are the gauge transformations of the electromagnetic
field:

(2.9)

With the help of the Lagrangian (2.1), the classical
field equations are obtained:

Lp (x)=—7' "(x)G.„(x)=0. (2.10)

According to the invariance of the Lagrangian under
gauge transformations, it follows that the gauge varia-
tion of the action

The Lagrangian (2.1) is invariant under arbitrary
gauge transformations depending on coordinates which
for A„have the form

A„(x) b A„(x)—=5[u(x)]A„(x)5 '[u(x)]
+(i/X) 8„5[u(x)j 5 '[u(x) j, (2.5)

and for G„„are

G„„(x)—+ G„s(x)—=5[u(x)/G„„(x)5 '[u(x)7. (2.6)

The matrices 5(u)=—5'b(u) form the adjoint repre-
sentation of 6, and u are the group parameters. In
(2.5) and (2.6) these parameters are arbitrary functions
of the coordinates.

For infinitesimal transformations,

In the canonical theory the following relations must be
fulfilled (xp= yp):

[A,'(x) A '(y))= [3-$ (x) vr'(y)j = 0

[n-,'(x) A; (y)j=—ibab8;;5&'&(x —y), (2.15)

where[, j is the commutator in the quantum theory
and the Poisson bracket in the classical theory,

In canonical variables the equation I.0,0=0 is as
follows:

Bbvrb +kgb 'p.b'=0, (2.16)

and it is in contradiction with (2.15).
A similar situation takes place when constructing

the 5 matrix in the theory with Lagrangian (2.1).
Usually one writes the 5 matrix as an expansion in the
normal products of the free fields. The corresponding
Lagrangian is equal to the total Lagrangian when the
coupling constants vanish. In the present case, we
obtain

I,(0)— ~ p J"

Ii„;=g„A„—()„3„,
B„Ii„„=0.

(2 1')

(2.2')

(2 9')

However, one can proves that in the framework of the
axioms of modern quantum field theory the Lorentz-
covariant operator F„„is equal to zero when it satisfies
(2.2') and (2.9').

For the correct construction of the theory of the
Yang-Mills field in the framework of quantum theory
or canonical formalism of the classical theory, it is
necessary to impose an additional (gauge) condition.
For example, in electrodynamics one uses the Lorentz
condition

Iiro —= dx L o(x)

must be equal to zero:

B„A„=0
(2.11)

or the Coulomb gauge

BPAA. = Oa

1
6Wo—= — dx ua(x) V ab(x)L, ob (x) =0. (2.12)

As the functions u'(x) are arbitrary, an important
identity follows from (2.12):

V' "(x)L, ' (x)—= V' "(x)V' "(x)G '(x) = 0. (2.13)

It. is necessary to note tha, t the identity (2.13) is valid
for arbitrary functions A„(x). Equation (2.13) ma&. be
obtained with the help of covariant diBerentiation
(2.10).

It is known tha, t the theory with Lagrangian (2.1)
permits no direct transition to a canonical formalism
(both in the classical and in the quantum theories). This

Now the gauge invariance of the theory consists of
the fact that physical observables —in particular, the
5 matrix —are independent of the choice of gauge
conditions.

It is convenient to introduce the gauge conditions in
the theory with the help of the Lagrange multiplier
B(x). In quantum theory the Lagrange multiplier 8
must be considered as a new dynamical variable, and
it is necessary that the physical observables should not
depend on the 8 field.

For example, the correct, formulation of quantum'
electrodynamics in the Lorentz gauge is obtained with

A. S. Wightman and L. Garding, Arkiv Physik 28, 129
(1964); F. Strocchi, Phys. Rev. 162, 1429 (1967}; 166, 1302
(1968).
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the help of the Lagrangian

L= 4iF—„„R„,+B„A„8+A„J„. (2.17)

It turns out that the 8 field is free. When calculating
the 5 matrix, we must use the transverse photon
propagator. The 5 matrix is unitary in the physical
subspace, which is determined with the help of the
condition

8&+)(x) j +&=0. (2.18)

Furthermore, it is known that in electrodynamics the
5 matrix is gauge invariant, i.e., it is independent of a
choice of gauge condition. Ke shall use a similar pro-
cedure in the theories with arbitrary gauge group.

The basic idea of the niethod proposed for construc-
tion of the 5 matrix in theories with a gauge group
consists in a choice of the Lagrange multiplier such that
the additional (fictitious) 8 field is free. It means that
the 8 field is not involved in the scattering and the
5 matrix is unitary in the physical subspace.

Let us erst take the Lagrange mult. iplier for the Yang-
Mills theory in the form (2.17):

Ke shall consider the case o.~0 only for the gauge
function f'=c)„A„. We choose the function D~ by
using the condition that the 8' Gelds obey the free-Geld
equation.

The variation of (2.22) over A„and 8 results in the
following field equations:

P'(x; A) = —o,Bp~(x; A),

V„"(x)G„.'(x)+ (R„"8pb)(x) =0.
In (2.26) E„' is the operator

(2.25)

(2.26)

~0'(y A),
(&. "v')(x)=— dy v'(Y).

W„.(x)
(2.27)

With the help of the identity (2.13), one obtains from
(2.26)

(~.'&.'B~') (x)= (Q~-B~') (*)= o (2.28)

We impose the restriction on P' that the operator

(2.29)

I.= Lo+B„A„'8'.

Then the 8 Geld imposes the Lorentz condition

(2.19) should be a nonsingular differential operator.
If we choose a function D~ as

and we must use the transverse propagator of the 3„
field in a perturbative calculation.

However, as was first noted by Feynman, ' if one
takes I.o —I.o") as an interaction Lagrangian, the
5 matrix is nonunitary in the physical subspace. This
arises from the fact that in the case of the Lagrangian
(2.19), the 8 fields satisfy the equa, tion

v -~a B~=o. (2.20)

14'~=W, +W,~=lW,+ dx Li~(x).

The fictitious 8 Geld is not free and does take part in the
scattering. Thus we conclude that the Lagrange multi-

plier must depend on the A„ field.
Now we are in a position to proceed to the concrete

construction of the 5 matrix. Consider a class of gauges
which is described by an arbitrary function

(2.21)

For example, p can be equal to 8„A„or c)bAb'. Later
we shall impose a condition on the function P . Let us

choose the action in the form

D ah —
PQ

—1jacQ (0)cb

then the 8 Geld satisfies the free-field equation

Q (0)e b8 b(x)

(2.32)

(2.33)

Note that the X)p function satisfying (2.31) does exist
and the determinant D~ is not zero, at least in the
framework of perturbation theory.

Since the fictitious 8 Geld satishes the free-field
equation (2.33), in the physical subspace

8&+'(x)
l

4'& = 0, (2.34)

the 5 matrix is unitary, and the classical fieId equations
for the A„Geld are satished:

&@ilLo,,(x) I&2&=(eil4"(x; A) le~&=0 (233)

In order to obtain an expression for the 5 matrix,
we use the connection between tke 5 matrix and the
generating functional of Green's functions, Z(J}'.

De'( y A) = &~-( y; A)Q~'"' (2 30)

Qy"Sp'(x v A)=8 8(x—y) (2.31)

or in a symbolic notation

Li&(x) =P (x; A)Bp (x; ii)

+-'OBy (x A)Bp'(x A) (2.23~

Bp'(x; A) = dy Dp" (x,y; A)8b(y) . (2.24)

The part H~~& is added to specify the gauge of the ~„
6eld: S=:exp i dxa'"(x)U —:Z(—J}l.r &. (2.36)

i~J(x)

Here u'" are the set of free-Geld operators describing the
physical system for t —+—~.

9 E. S. Fradkin, Dokl. Akad. Nauk SSSR 98, 47 (1954); 100,
897 (1955); Trudy Lebedev Phys. Inst. 29, 7 (1965).
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In Sec. II C we shall construct generating functionals
2.53) and (2.57) in the axial and Coulomb gauges by

use of the canonical quantization procedure,

C. General Feynman Gauges

The general Feynman gauge is defined by the gauge
function"

BA„(x) BA„(x)
1n det ——=—Tr ln——--—--

=(B /2 ) TrV„-(x)n"(x,y)B,

+prb2 ac(x) Qcc (x y) f cbd( cQdd B&A &d ) (y ] 2 69

2Pi; (x; A)=—B„A„(x). (2.61) —&(&~/2~) Tr[B.&"(xy)f-'~ "(y

~ u e in the additional La-We obtain the Lorentz gauge in
e and thegrangian (2.23) for a=0 (Landau gauge) an t e

With the help of 2.2
we obtain

X(&""'B!,Ax')(y)] (2 7o)

Remember that Trf(x,t) means

(2.71)Trf(x,y)—= dxdy f(x,y)B(y —x).
D p'(x, y; A) =[ +RA„B„] (2.62)

re

~m b(x,y)=B.,B(x—y) —&A„x „x, —. — — 'b, x B X)" x,y), (2.72)

Xl '(x,y) [& = B, B(x—y)+X[S"(x,y)A, '(y)]B„, 2.73

1
Xcxp 2 Bc Z, —B„A„'B.A. '—+A„T„')

Tr 2c(Ba+ —22„'~B„. (2.BB) cc cb2c;c
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(2.63) '

A„(x) -+ A„(x)=—A„'(x)

——V'„"(x)(X)"B„A„')(x), (2.65)
2Q

S"=[g+XA „B„]-',
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»r{[&"'(x,y)A. (y)]B.(&"B~A~')(y) &

—(Bn/2~) TrB.bB(x—y) . (2.74)

2.7S+3 I +Trln 1+—A„B„)lt P
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aJ a~+ aJ a (2.76)

Finally, we obtain

Using the Jacobi identitysing . ' ' 2.4 we find that the
change of the expression Tr ln in (2.69) compensates
the Jacobian d(A)/d(A). Thus we have

1 —B„A„'B„A„Z = dA exp 'z dx p 22 22 c cCX P
2 n t!n

the terms of first orderbn being infinitesimal. Retaining
in be we have

E— ES.~=Z."~„,, =Z.+b.
'—= .+b. ". (2.77)

1—B„A„B,ll, —+ — -B„A„0„-,,
2a 2(n+ Sn)

QED
xn F . man rules for calculating gin the enerating
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2(n+BBT)

fol I11
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rtices 2.40, there exists the(b) Besides the usual vertices
f A (p) with the fictitious I3 aninteraction I'„' o
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Bcbi/p' (2.go)

J3c(q) fields:

P bc= ', P f'-bc(k —
q ) p+74+q=0. (2.79)

(c) The lines of the 8 field occur only in closed loops,
and the propagator of the 8 held is

A. (x)= —Bs '(8;A;c(x)), i=1, 2. (3.6)

Expression (3.6) should be substituted in (3.1) and
the Lagrangian should be varied only over A p, 3&, and
A. The corresponding field equations are

a,s independent variables. With the help of (3.4) we
obtain the expression for A3 ..

The Feynman rules for the massless Yang-Mills field
were obtained also by DeWitt, ' Faddeev and Popov, '
and Mandelstam4 by other methods.

abG b+J c —
Q (3.7)

V„'bG„+J; 8s—'8;(V„'bG„sb+Js ) =0,
i=1, 2. (3.8)

III. CONSTRUCTION OF THE S MATRIX IN
CANONICAL FORMALISM When quantizing, just as in any essentially nonlinear

theory, the question of the order of noncommutative
variables arises.

Later we shall consider this question and show that, .

with the help of the corresponding symmetrization pro-
cedure of multipliers, quantum expressions can always
be represented in a form coinciding with the correspond-
ing classical expressions.

Therefore, for the time being, we assume that the
multipliers in quantum theory are commutative, as they
are in classical theory.

Let us find the canonical momenta

In this section we construct tke 5 matrix for the
massless Yang-Mills field in the axial and Coulomb
gauges in the framework of the canonical quantization
procedure and the interaction representation. The
corresponding Feynman rules coincide with those found
in Sec. II,

Consider the Lagrangian

(3 1)I-=I-o+A;J;
Here J„ is the external current, on which no restriction
of the type of the conservation laws is imposed.

Besides the difficulty with the canonical formalism. ,
there is also another problem for the Lagrangian (3.1).

Let us write the field equations obtained from (3.1)
by varying over a11 A„:

~' = —Go' +~a '&;Gss, (3.9)

Lvr (x),A; (y)j =.„ = iB,bB~"(x—y) . (3.10)

VabG b+J a —
Q

Using the identity (2.13) lea, ds to

a„J„(x)+RA„"(x)J„'(x)=0. (33) (3.11)Gsb =GobT +&b+, Bg,Gpg, ~ =0,

(3.7) is the constraint equation and it should be used
for excluding As when constructing the Hamiltonian.

3.2 Let us decompose G,bc into transverse and longi-
tudinal components:

A. Coulomb Gauge

The Yang-Mills field in the Coulomb gauge is defined
both by the Lagrangian and by the gauge condition

BbAb (x)=0. (3.4)

The gauge condition (3.4) can be introduced into the
theory with the help of the Lagrange multiplier just as
has been done in Sec. II. It can be proved that the
corresponding field equations are consistent in the pres-
ence of the external source as well. However, the
method of Lagrange multipliers does not permit canoni-
cal quantization of the theory.

For the purpose of canonical quantization, we con-
sider (3.4) as a constraint excluding one of the dy-
namical variables. This exclusion must be made before
finding the field equations.

Thus let us choose

Obviously we cannot satisfy (3.3) since the external
source J„does not depend on 2„.

Below we shall, 'show that the gauge condition gives a
possibility of avoiding this difFiculty as well.

GobT'= —(By„—Db8,/V)s.;, k=1, 2, 3. (3.12)

Then Eq. (3.7) has the form'4

ab(x)B @b(x)— gA ab(x)G Tb(x) J a(x) (3 13)

This can be solved with the help of the X) function:

V' "(x)8bS"(x,y; A) =- B.,B'@(x—y), x"=y'. (3.14)

The S function was considered first by Schwinger. '4

Thus

@a(x)— g(~abA bcG Tc)(x) (cocbJ b)(x) (3 15)

Rewriting (3.7) in the form

—VbcbBbA s'+ RA bcbGsbTb+XA bcb&b%"+J = 0 (3.16)

and using (3.14) and (3.15), we obtain

Vb"abAsb(x) = XV(XPbzb "Gsb ')(x)
+V(X)'bJsb) (x), (3.17)

As (x) = A(S bV50'AbcdGsbT")(x)

+(n"bVa'J, )(x) (3.18)

3(, , Ag", and (3.5) '4 J. Schwinger, Phys. Rev. 125, 1043 (1962); 127, 324 (1962).
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The expression for A~ will also be needed:

Ab (x) =Gpb (x)+BbiI (x)+BbA (x) —XA '(x)A '(x)
G Tax)+A„ab(x)L$2(~bc~cDcdA dfG Tf)(x)

+P (S'V'X)'d Jpd) (x)j
{g2Lc0ab(A bcg ~cdA dfG Ff)j(X)

+pl ~ab(A beg c0cdJ d)$(x) ) (3 19)

Now let us And the expression for V'„bG„,b. Using the
field equations, we obtain

Fpb"= —(4,—&b&;/&)~; = Ub

L ' (*) U"(y)j*'- '
=i8 b6;,'6&'&(x y—) . (3.28)

(3.27)

In (3.25)-(3.28) we use the designation Ub' instead of
for the free Yang-Mills field in the interaction

representation, keeping the designation 3„ for the
Heisenberg fields.

With the help of (3.25)—(3.28) the field equa, tions for
UA, and the propagator can be obtained:

I.p p(x) —= V,'(x)G,pb(x) = -Jp'(x) (3.20) (3.29)

Lp b(x)= Ji—(x)+Bp 'Bb[V' '(x)G p'(x)+Jp (x)j
= —Jb (x)+abc (x)

+ (Bba,/V') Ll~A p'(x) Gp, '(x)+J, (x)g. (3.21)

When deducing (3.21), we expressed Gpb~ with the help
of Eqs. (3.8) and (3.12). Expressing +' in terms of Ab
and Gpb ' using (3.19) for Ab and (3.8) for Gpbr, we
obtain, after some tedious algebra,

Db "(x—y) =—(o
l
Tn U"(x) U '(y)

I o)

dP e '" ' 'D„, (p) (3.30)
(2ir)'

(3.31)

In (3.30), Tz& mea, ns the Dyson T chronological product:

It is not difficult to prove tha, t Eqs. (3.20) and (3.22)
are consistent:

The interaction Hamiltonian is
O g abgbcG c g ebJ

abg (~bc+ cdJ d) —0
K.«=&—&p= 2&&,b U,"Ub'

+—'X'U 'U 'U "U '+ Ub Jb
ondl- ip( cuba/ bcp Fc)g (~abJ b)$
ns ln X&@.($'b'Ub '"&pb r")+(& 'Jp')g (3 33)

Thus we can see that consistent use of the gauge c
tion enables one to obtain consistent field equatio
the presence of an external source as well. The correct
form of the field equations was obtained by Schwinger"
with the help of a different method.

Note that in the case J„'=:0or in the case when J„'
is a current of matter (i.e., when the equation V„bJ„b= 0
is true), the field equations for the Yang-Mills field
written in four-dimensional form have the usual form.

The Hamiltonian in the Coulomb gauge is (to within
a total space derivative)

(V'6 b+XUbabcjb)X)bc(x y U)
= 8 .6'@(x—y), x'= y'. (3.34)

The relations between U; and A, are given by the
usual formulas connecting interaction and Heisenberg
representations. I.et us define

(S—=s'T~Q&' (3.35)

g„b(x)G„„b(x)= —J„(x)—a„(X)"V'„'J„')(x) . (3.22)
Tg)A ti 8 tp = e ti —t2 A (ti B(tp)

+8(tp —ti)B(tp)A (ti) . (3.32)

H(x) = 7r'(x)A—'(x) —I..= -'Gob~a(x)Go+ (x)
+-,'G, b (x)G, b (x)+-', Bb+ (x)Bb+ (x)

+Ab (x)Jb (x). (3.24)

&p= 'I"pb~ ~pb~ +&~ b'I",b-
p. a —gv' a g U'a U a — g —lgv a

(3.25)

(3.26)

"J. Schwinger, Theoretical P/zyszcs (IAEA, Vienna, 1963).

In (3.24) it is assumed that A b is expressed with the
help of (3.6) and Gpb ' is expressed with the help of
(3.12).

I,et us pass to the interaction representation. For this
purpose H should be split into a free Hamiltonian Ho
and an interaction Hamiltonian H; ~. We choose the
total H with P =J„=O for IIO.

S= TD exp i dxH; «—(x) (3.36)

Then we have
Ab (x)=(U"(*)&,

Gpbr (x) = (FpPa(x)) .

(3.37)

(3.38)

When passing from the classical expressions of the
type (3.15) and (3.18), or from the field equations, to
the corresponding quantum expressions, we assume
that all operators are to be expressed in terms of the
canonical variables AI, and Go~, and the product of
operators is to be understood as the TD product, the
exact meaning of which is defined by (3.35). For

where 5 means the 5 matrix in the interaction
representation
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example,

a(x) —
&

(+abV +bc U cdF Td) (x))
+&(n'VS'Jo') (x)) . (3.39)

One can prove, using the commutation relations (3.27)
and the field equa, tions (3.29), that the Heisenberg
operators defined by (3.35)—(3.39) satisfy the field
equations (3.7), (3.8), and (3.22).

One can also show (but we do not dwell on this) that
the symmetrization procedure of the Heisenberg
operators AI, and GpI, ~ can be suggested in such a way
that the expressions of type (3.15) and (3.18) in the
quantum case should formally coincide with the corre-
sponding classical expressions. "

l,et us pass to constructing the Feynman rules. Calcu-
late for this purpose the generating functional"

Z"—= &0 l
Tn exp i dx H—;„(x) l 0)

Perform in (3.40) the functional differentiation 8/6$b'
only in the first factor in (3.47). Then one can substitute

Fob'' —b Ubl —+ Bo6/i 8Jb (3.48)

F —e~~@A g p
—— —F J. (3.49)

Then (3.40) transforms into

Z" =exp i dx I.;„i(U„)+TrlnVbBi„. V ' Zo'. (3.50)

In (3.50) the Uo mea, ns

Uo' —b 8/i8Jo'

a,nd put $b' ——0.
For the functional expression involving A, we use

the relation

=exp —iQ(Ub)+-', i P~—V S-
6A 8A.

Xexp[i(XU,Fo,r+Jo)kjZol~=b=o, (3 40)

Zo =exp( Jo (—i/V) Jo')&0
I T~ exp( —iUb J")

l
0)

=exp( —-'J 'D "J.')== dA ' 8{&bAb (x)}

Q(U„)= dx[-,'7 F,;U,"Ub' Xexp i dx( F„„'F„„'+—A-„'J„'), (3.51)

+'X'U "Ubb-Ui"Ub'j. (3.41)
I &gp av' abU' b Ig&U' abv bP' acU' c (3.52)

In (3.40), the exponent operates on Zo according to the
rules

(3.42)Ub —b 6/i8Jb, Fo,T ~ 8/ibad, .

Zo ——(Ol Tn exp i dx((b'Fob ' Ub Jb ) l0—). (3.43)

Zp is the generating functional of the free Green's
functions:

The Green's function D„„ in (3.51) coincides with the
free propagator in the Coulomb gauge (2.58).

Combining (3.50) and (3.51), we obtain the following
expression for the generating functional:

Zb= dA ' ${gbAb'(x)} exp i dx(I.o+A ~J ')

A

+Trln(k, g+ —2 "8 . (3.53)
V'Let us pass in (3.43) from the TD product to Wick's

T product; i.e., instead of the Dyson propagator, we
sh all use the Kick propagator. Expression (3.53) coincides with expression (2.57) for

the generating functional in the Coulomb gauge
(0l TwUb'U, bl0)=D b' =(0l TiiUb'Ui I0) (3 44) obtained in Sec. II.

&0l TaFo r'Ubbl0)= aoDib b= &0I TDFo~ 'Ub l0) i

(3.45)

&olT~Fo.~F»»lo)= a oD„b=&OlT~F r F„»lo)
—ib, b(8, b

—8,8b/V) . (3.46)

B. Axial Gauge

The axial gauge is de6ned by the conditions

Ao (x)=0. (3.54)
Thus

Zo = exp[-', i&,'(b, b
—8,'Bb/V) $b' j&0 l Tp

Xexp(i&b Fob ' —iUb~Jb~) l0). (3.47)

~6 K. S. Pradkin, Problems of Theoretical Physics (Na»k~
Moscow, 1969).

cbG b+J a,.—0

abG b+Ja —0

(3.55)

(3.56)

Choosing Ap and 2;', i = I, 2, as independent variables,
we obtain the field equations
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and the canonical momenta

Xp =0, Xi = —t"p;,

Lor (2:) A (y)j o=„o=i8, a,, a&a~($ —y). (3.58)
z =(0ITn exp i—d2:H; b(x) lo). (3.70)

(No'te tlla't Vi = 0.) Tile geiielatlilg fllllctloilal is
equal to

(3.57)

Equation (3.55) is the constraint equation from which
we find the expression for Ap'..

I-et us pass from the TD product to the T~ product.

Ao —— a—a 27—',"ar,b+aa 'Jo' (3.59)
Zo=—(ol T exp{i($; Fo,'+ U„'J„))I0)

= exP {-22i($,'$, a J—o aa 'Jo ) )Zos, , (3.71)

After a calculation analogous to that in the Coulomb
gauge, we obtain the field equations in the four-
dimensional form

'lpabG b+J' a a a —lgabJ b 0— (3.60)

Equations (3.60) are self-consistent.
The Hamiltonian in the axial gauge is (to within a

total spa, ce derivative)

FF=-2,arear, + baG, /, 'G,7,'+A,'Jga+-'aaaAo'aaAoa. (3.61)

l,et us pass to the interaction representation:

Ho 'ar; ar,'——-'a, ar,'a—-'a; 7r;"+ 'F b'F b -(3.62)

Larva(x), V; b(y)j 0 „a=i',ba, ,'a&a&(2", —y). (3.63)

With the help of (3.62), we find

Zo=, (OI T exp[i(g, 'Fo +iV„'J„'))IO), (3.72)

exp(-,'iJo aa 'Jo ) exp(il&U;"Fo,'aa 'Jo )
Xexp{iP.Vo U,"Fo,'
+ li2&(U abp b) a 2(U—,ah'p, b') j1 Z

= exp(-', i 'Uoa'V, 'U "V,a

+izpob Uo bV, b)Zo r«. (3.73)

~~o
ibJ; ihip

(3.74)

alld uslllg the ielatlori

In (3.73) the exponents operate on Z, and Zo, s
according to the rules (3.42) and (3.51). Making the
substitution

&i ~oi )

where we use the definition

(3.64)
(ol T&«exp(iU;J„) lo)= dA„' i1{A„' (2))

Uo =—(1/V')a;U, , (3.65)
Xexp i dh( ;'F„„F~'„„a+A—„-J„a)

(0 I T U„(x)V, '(y) I 0)

(azby)+zg og oaa 2((z y) (3 66) we obtain finally the expression for the generating
functional

ab(p)

1 1 „„1 Z = dA„6 A3 x exp i dx I.p A„J„, 3.75

pa pa pa' p'

Expression (3.66') coincides with the free propagator
(2.54), and we will call it the Wick propagator.

«I Tnpo"U. bIO) = (—aors„—a,g»)D,„..
Expression (3.67) coincides with the Wick propagator.

(ol T P„-(*)P„"(y)lo)
= (aors)„+a,g»)( aog. , —a, g.o)»—b'(* y)—

—ia.,a,,'a(x —y) . (3.68)

Expression (3.68) differs from the Wick propagator (the
first term) by the contact term. The interaction
Hamiltonian is

H 2= 'lip U "U +,' X'U-"V 'U" U,"--

ga —2J a(UabP, b) 2J aa —2J a J aU a (3 69)

which coincides with (2.53).
The results of this section can be regarded as addi-

tional proof of the fact that the method for constructing
the Feynman rules developed in Sec. II results in a
unitary 5 matrix.

IV. CONSTRUCTION OF FEYNMAN RULES FOR
GRAVITATIONAL FIELD

In this section we shall obtain the general rules for
construction of the 5 matrix for the gravitation Geld,
prove the gauge invariance of the 5 matrix, and in more
detail consider two covariant gauges (the harmonic
condition and its linearized form) and the Dirac'2
noncovariant gauge. The Feynman rules found by us
coincide with those of Refs. 2, 3, and 5.

~ P. A. M. Dirac, Phys. Rev, 114, 924 (1959).
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The classical gravitational field is described by the In the case ((„.=g(s)&" the first term in (4.8) should be
action" written as

Wp —— dx I.p(x), (4.1) dx P(x)R ""G„«(x). (4 9)

Lo =4(v' —a)a""&" (4.2)

In the general case we shall designate the variables
g&p)&' and g(p)„„as A:„„. The Einstein equations for the
gravitational field can be obtained froni (4.1) by two
methods:

In the first-order formalism the expression (4.1)
should be varied with respect to ~„,and F&„q, considered
as independent variables. From the equations obtained
by varying (4.1) with respect to F&„«, the expression
(4.4) for F&„«can be deduced.

In the second-order formalism the variation should be
made only with respect to ~„„.It is assumed in this case
that (4.1) is expressed only in terms of «„„with the help
of (4.4).

Both methods lead, of course, to the same field
equations.

As is well known, (4.1) and (4.2) are invariant under
the gauge transformations of a„„and F&„~, the in6nites-
imal form of which is

g(())""~ g&)) ""=g(»"" 5'()vC(())—""+f(())"'()vP
+a(w '()~P 2&g((n""—

g(P) ~ g(P)$ =g$1) $)'(l g(P) g(ls) Q P
2Pg(P) g ~ (46)

F".x ~ Fs".«—= F".« f~&~F".«+ F—'.«r7~P
—F~..B&g —F~&.8.$' —8.8&P. (4.7)

p(x) are arbitrary infinitesimal functions of x&. In the
first-order formalism, gauge transformations of both rc„,.

and F&„),should be Inade; in the second-order formalism,
only gauge transformations of ~„„should be made.

The gauge variation of (4.1) has the form

Here g„„is the metric tensor, g=—detg„„, g&"g„),= b&q, and
E„„is the curvature tensor of second rank (Ricci tensor)

Z„„=a„F.„.—a.F.„.+F „.F.„,—F „„F„.. (4.3)

F&„), is the Christoffel symbol

F".«= gg"'(1)) g «+~«g .—() g.&) (44)

A.s we shall show later, the most convenient choice of
the concrete form of the dynamical variables depends
on the gauge condition.

The variables we shall use belong to the following
class:

g (P) —
gPg and g (p)

pv —gPg pv

Note that (4.16) is sat)sfied by arbitrary «„„and F „«.
According to (4.16), four identities exist among the
Einstein equations. As noted in Sec. II, this means that
four additional (gauge) conditions should be imposed
on ~„„and F&„), for consistent construction of the
quantum theory.

As in Sec. II, we shall use the method of Lagrange
multipliers. Consider the class of gauges determined by
the function

P„—=P„(x;«, F) . (4.17)

Three concrete forms of the gauge functions will be
considered later. The Lagrangian is

L = Lo+p„B~~+,'eB~~8„„B~", -(4 18)

where 8„„is the Minkowski tensor. The case nQO will
be considered only for these gauge functions (4.17)
which depend linearly on ~„„and are independent
ofr „.

B~~(x) = dy D&„~(x,y; «, F)B"(y). (4.19)

The second term in (4.8) is absent in the second-order
formalism. Ke use the following designations:

G&'(x) =—G(p) ""(x)=—8IFp/hg (»„„(x),

G„„(x)=G'»„—.(x)= 88'p/bg (())&"(x),

G„""(x)=—TWO/bI". &(x) .

Equation (4.12) exists in the second-order formalism
only. We find the differential operators 8 with the help
of (4.6) and (4.7):

R „«—=R'», ),=—(2P —1)B g(» ),

+2''".x()y+2~ g"'px+2g"', «&, (4.13)

for the case I&„,=—g'P)„„

R.""=R"'.—"'= (» —1)~.f—(8)"'+2' 0)"'~
—24"()vf0))"—24"g(8)'"()7 (4 14)

for the case g„„=g(p)~",.

R„,) = —8„F,),—8 „B~F~„y—8 „F&,)I,8~
+2a,F-„,+2F.„„a,—S-„a,a, . (4.15)

Since the $"(x) are arbitrary, we obtain an important
identity from (4.8):

R„,«G""(x)+R„,«G.""(x)=—0. (4.16)

G„„()+R,G „„()~ (48) Varying (4.18) with respect to «„„, F&„«, and Bi, we
obtain the field equations

' L. D. Landau and E. M. Lifshitz, The Ckssicc/ Theory of
Fields (Pergamon, London, 1962), 2nd ed.

P = —().8 Bp" G""+ B =Q (4.20)
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ormalism, and tothe secoiid-order foind oidei foimalismn -or . . ' . In the first-
h ldb dd dh f llowing equation s ouorder formalism t e o o

ii ii d, „( ) ii dr„(
p u(Xx p(v

(4.29)

G„""+ —B—=O. (4.21)

e o
' '

(4.16), we obtain thehei of the identity . , e
f th field equations:following consequuences o t e e

(4.22)(Q~„,B")(x) =0,

O'"—=Q'"(x,y; ~,r)
11Bg„(y; )d, I') BP„(y, ),, 1

( BI"g, (x)
—+R,).,'—

BKy& g

n that in the limitthe restriction on P„aKe impose e

F"„y=-0,JMV PV y

r differential& „should be a nonsingu arthe operator Q&„„s ou
„. Choose t eopera, tor Q

(4.24)[Qf $ Q)vkv

in e
h

'
his connection h.of "th t '

bl

be
l fho l fo

of the P to be e em
'

p o b

p p

h bl h
malism for e

hall not investigate isHowever, we s a
P

t theg rg
din to the genera

'

fh h
integration belo i to

corresponding Jacobian has in gener

Then the e8 fi ld satisfies the free equation

(0) Pu 0pv

d )d', r)/d(y, r) = Det'&)d(x)8(x —y,
h re is some num er and(4.25) w ere' i

(4.30)

r and the Einsteinthe 5 matrix is unitary, an
' t inTherefore, t

l 1 toThe generating func iona

Z&= d~,( r)dBp exp i dx(Lo+Q„B~p

Then we have
):(x)—= deto. „„(x). (4.31)

d ——5'"P+ „.J
2n

dq ', r) e. p d dv~~ d., „.„")—

+-.,'nB pS„„B"+~„„Jp") +Tr»e~(Q~"') '

i dx Lo P„5'"P„+)d„—„—d(K, I) exp f x o
——

p
p" K X I O

——p8 "vi)+)dpv Jovd()d, r) exp d', dx Lo ——„

+T-~»e(e )-(o) ' . 4.26) +«»Q~( —~)'(Q~"') '

In the gauge

i e., for 0.= 0, we have~ ~

P =0, d(x, r)dBp exp i dx(Lp+tp„ IJ

'&B~"~.J3~"+~-"J 4.26')&(X

Zo& = d(K, r)6{/„(x;)d, r) i
&"B" x) . (4.19')By"(x =-(Q-"(- )- e,.

"') ' (42&)(L +,J")+Tr»ep(epXexp z dx I 0 Kp„

d ~ I' is equal toIn (4.26) and (4.2i), d()d,

4.26') that Z & corre ps onds to the
dB" hi h ob

from (4.20)—(4.22) by the su s i u
'

n n d.,() (4.28) v Gpv+&~pv 0" )

6p
Bp' =0,

6~„„
(4.20')
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o'

Gvx+ g a —0 (4.21')
the corresponding transformation of the metric tensor is

(Q"'&~")(x) =o. (4.22')

Bs (x) Bz&(x)
g„„&&'(x)—+ g„„'&'(x)=J.'& —g.„&»(s), (4.37)

t9$ Bx

s&(x) =x—'&(x), J,(x) =d et''&( x)/8 x" (4.38)It is seen from (4.19') and (4.22') that J3' satisfies the
free equation

Q&io) Jl~= 0

Let us write L
—~(x)7 & in the form Dp

—
d(g (s)') jd(g (P))

=DetJ,'+'Oi'(x) bio(s(x) —y) . (4.39)

and the Iacobian of the transformation of the integra-
(4 25') tion measure d(K) is

L-,(x)7- =1+~(x).

The expression (4.19') then acquires the form

(4.32)
In order to calculate the Dp, we note that the matrix

inverse to the 8(s(x) —y) is

&y4(x) =&y"(x)+(Qp '""&Qyi."'&")(x). (4 33) ~(x—s(y))J.(y) (4.40)

It is clear that in the second term of (4.33), integrating
by parts can change the direction of the Q~io' operation
(a,t least in the perturbation theory) and one can use
(4.25').

Finally we observe that the field equations (4.20')-
(4.22') coincide with (4.20)—(4.22).

Thus the generating functional (4.26') lea, ds to the
same held equations for ~„„, I'„z&, 8&, and consequently
to the same S matrix, as the generating functional
(4.26) does.

Note also that all the Heisenberg operators belonging
to class (4.5) must lead to the same 5 matrix according
to the Borchers theorem. (We ignore the question of the
meaning of ~'„„as an operator function of a„„.See also
the analogous statement for the case of nonlinear
chiral Lagra, ngians in Ref. 19.)

Now we pass to the proof of gauge invariance. We
6rst prove that the S matrix is independent of the type
of gauge condition

If we formally use the rule of the calculation of the
determinant of the product of the matrices, then

D«~(s(x) —y) =D«-"'J,(x)8(x—y) . (4.41)

DetJ,(x)b(x —y) &1,
then the invariant gravitation measure is

x p(v

(442)

(4.43)

This result does not agree with the form of the invariant
measure

p(v

which is proposed by a number of authors. "
Note that the integration measure over the group of

the gauge coordinate transformations has a form"
which is analogous to (4.39):

P„(x;~, I') =0, (4.34) der, ——Det'J;(x) 8(x(x) —y) Q dx&(x), (4.45)

i.e., that the S matrix corresponding to the generating
functional (4.27) is independent of the form of the
function P„.

Define the function 6~(~,I') by the relation

y,(.,n=—~,(,p) d.(5) ~(~.(', ",p')1=1 (435)

Here S is an element of the coordinate gauge trans-
formation group, and dp(S) is the measure of group
integration. (For more details on the coordinate gauge
transformation group see Ref. 12.)

Let us explain some peculiarities of the coordinate

group transformations. Under the transformation

dw& ——Det—'J;(x)b(x —y) Q dx&(x) . (4.46)

DetJ(x)8(x—y) = 1. (4 47)

If (4.42) is true, then the left a,nd the right measures
are different. When proving the gauge independence of
the S matrix, this fact should be taken into account
Lin particular, in (4.35) one should use the der, 7.

The formal proof of the invariance of the S matrix
can be made in the general case DetJ(x)B(x—y) W 1 (then
it is necessary to assume the P-independence of the
5 matrix). However, taking into account that the
arbitrary functions s&(x) are the coordinates themselves,
we can expect that

x~ ~ x~(x),
"C.W. Misner, Rev. Mod. Phys. 29, 497 (1957);J.R. Klauder,

Nuovo Cimento 19, 1059 (1961); B. Laurent, Arkiv Fysik 16,
279 (1959);B. S. DeWitt, J. Math. Phys. 3, 1073 (1962).

~f' S. Coleman, J. Wess, and B. Zumino, Phys. Rev. 1'71, 2239
(1969).

Indeed, the &(s(x) —y) can be considered as the matrix
(4.36)



f the points.p
'

The corresponding
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atrix has determinan 1Th f
1 1 tdb.e — as determinant 1 i i is

1 a roxima, tions. Inf he finite-dimensiona app
'

Inthe use of t e n'

this case ~ .(447) follows from (4.4 )

der, =dviz=dv, =g dx&(x).
X&p,

(4.48)

@(~)=II «"(x) .

ro erty (2.44), and theFul tllei 11101e, &tzd has the prop r y

ate transformations. Below weunder the gauge coordinate trans orm

function Ap(&p, I') only

hborhood of the unit element
transformations have t e orm, andgauge tra, nsfo

(4.49)

Thus we p~~~~ t the g matrix the gra»tatjon fie d
condition (4 34).the t e of gauge cois ln p yp

5 matrix is in epe

fix

bn the auge function is
n

' '
Sec. II. For this purpos b tit tion i ilaly o e.

of (4.6) or 46') should be ma e in e
with

Then
P(x) = —(~nl2n) (LQ~' 'j"" ~ * (4.55)

——P 6""P+&: J "—+Lp0 p
20!

P„~~"P,-+~„,J~", (4.56)
2(n+8n)

n of the term Tr ln in 4.26 is compen-
sated by the resulting Jacobian. e

ome calculations. 'po g
the consideration oLet us pass to

gauges.

As in Sec. II we obtain

dy '(&p, I')
~

z, „=p

A. Harmonic Condition

s of auges determine yb theConsider the class o gau
function

4 50)d " x) ~((Qp"P)(x)) =D«Qz"

ex ression (4.27) can be(4.50) in mind, the expressioKeeping
rewritten in the form

i"(x)= ~. g""( x), g""= (V'-g)g"".

e ai
' ' '

n corresponds toThe harmonic condition

(4.57)

~.~= d(, 1)~{a.(;,I'))~~(,i)
"&" as independent variables. y. 8 means of

.23, d (4.24), fi dthe, ), (

i"
&

= ~"&(g plzpt~+ Ag pl~)+ &.gp, = ~, g & . *" a ""~a,. (4.59)

al toin~ functional is equaex ',
&; J&" . (4.51) The genera, ting&exp i dx(Lp+&:,„J&")

r au e condition:Consider another ga g

(4.5P '(&p, I') = 0.

&(~,1') and perform the gaugeMultiply (4.51) by &t&p& «, I' an
ationtransform

8 &p
Kpv + Kpv

~ ~

all d 6 ~ are invariant. FFurther-
tion can be made on themore, t e o oh f llowing substitution can

mass shell:

-"J,dx Lp — 4i"~,Ai"+—g"d(g) exp z x

Tr 1nQiCI ' . (4.60)

e n=0), we haveIn transverse gauge n=

Zp' —— d(g) exp i dx(Lp+g""J„„)

K pv
S ~ Jpv ~ K Jpvpv

as discussed in Sec.. II.
Then we obtain

(4.53)

8 ""(x)) (4 61)+4 Ti liig&'"B„B„Q t&

(~) ~(~.(', ,n» (,n~(~. &Zp&~ „,.= d(.,r) dz

4.54K J~") =Zpexp z dx(Lp+K&gp

or calculation of the generatingThe Feynman rules for calcu a ion
functional (4.60) in powers of

A""—=g&'"—&»"' (4.62)

l. V. y
'

CNR Laboratorio c i )her-l. V. Tyutin,
&&pt&ca report( Napollq 1969 (llllpU &8 e
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are

(a) L';„,=L0—(1/2n) a„h""b„),a+" —L 0
'

i—Tr ln(a„r+L(h" aga.
+ a),h) .a.)b„~+a),h"~a,5c] ) . (4.63)

These are taken as the interaction Lagrangian.
(b) L(0)' is the Lagrangian of the linearized theory

L(())' ,'arh——"'—a„hvt, t'(n+—1)/2nja hr "a"h),

—;a„ha~h, h—=b„„k~". (4.64)

The lowering and raising of indices in (4.64) are done

by the Minkowski tensors b„„and b&".

(c) The free propagator of h"" is calculated from
(4.64) to be

D rrv, 1a(p) — 3' (2yn) brrvbXa brr) bva brrabv1

2(n+1)
+ (brrvp1pa+b1aprrpv)

2

0', 1
+ (brr)pvpa+brrapvp)

2

+br) prrpa+bvaprrp1) (4 65)

B. Linearized Form of Harmonic Condition

Consider the class of gauges described by the function

)/rrr =b' (aag) /r 3 a/rg) a) ~ (4.66)

We choose g„„asindependent variables. We then obtain
with the help of (4.13) (with )a=O), (4.32), and (4.24)

Q/rv g/ra++(arrg/rp 2a/rgorp)

&&(b' a,b.P+b'Pa b. bPa.). —(4.67)

The Feynman rules for the gravitational field in the

gauge B„j&'=0 were also obtained by Fadeev and
Popov.

0! I
I. ' —-Bh Bh" —— — Bh Bh

2Q

n+1 2n+1
+ a„ha„ho"— a„—ha~h, h= b~"h„„. (4.71)

2n So.

The raising of indices in (4.71) is accomplished by the
Minkowski tensor B~".

(c) The free propagator of h„„ is calculated from
(4.71) to be

D„v, ), '(p) = 3'„„b—)„a„),b„,—b„,b„),—
+Dn+ 1)/p'j(a"p. p.+a.-p pi

-+a..P.P.+b,.P.P1)jP '. (4.72)-

The Feynman rules for n= —f were also given by
Mandelstam. '

C. Dirac Gauge

We give the arguments which show that the S matrix
obtained by Popov and Faddeev' in the Dirac gauge"
coincides with the S matrix in the covariant gauges.
Consider the following set of gauge conditions:

Here

P 0—(Q g) pPj/r. „OO

p, /r —a $( g(3))1/3erl j—
O (4.73)

' =—d tg,„=(1/ ");', .",= b '. (4.74)

In gauge (4.73) it is natural to use the first-order
formalism. We choose g&" and F&„q as independent
variables. With the help of (4.14) (with P=O), (4.15),
and (4.23) one 6nds

Q'30= p —2a;p'"I'030 —2a;(g'"/g") p"I' 3'

+a;e"I',„' a;a,e"gv—'
g, (4.7—5)

are

(a) L(r & L0 (1/2n)0'rr b V~ L(o)
—i Tr ln(b„„+Lh„.H+(a hp„——,'a„hp )

x(b-a.b.P+b Pa.b: b-P—a.)7a). (4.7o)

These should be taken as the interaction Lagrangian.
(b) L(0)' is the Lagrangian of the linearized theory

The generating functional is" 8 j0,—0 (4.76)

Q' = —2a &"—"(—g'")'"(-'g "'a —b'a ) (477)

Tdj (1/g00)g0mpd(( g(3))1/3—

&((3g/,„e"ag, ', a ai —,'t)/ a„), —(4—.78)—3 '= d(d) exp r dv J. — ('O'O" d '+d„d" )—'„."

20!

+Tr lnQ3~-' . (4.68)
Qd, — 1 a,( g (3))1/3pl(a

+a i( g(3))1/3.puma a (4 79)

The Feynman rules for the perturbation calculation of
(4.68) in powers of

(4.69)

From (4.75)—(4.79), we obtain

().(') '=V' Q (" '= —b'V ——'b"a a.

O, «),,o= 0,«)„'=-O. (4.8O)
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The generating functional is

Z'= d(g~", I')c)($3~) exp i dx(Lo+g'"J„„)

g&" and F„),& and consequently to the same 5 matrix as
(4.81) does.

Now let us integra, te in (4.89) over all the I'"„),except
F';~. One can show' that I.p takes the form

+Tr lnQao'V '+Tr lnB,''(Q3"' ')k', (4.81) Lo ~ vr'"j;k H(7r,—g) . (4.90)

B'—= Q '=(—g&")')'(g'e' c) c) +—', e'clic),).
According to the general arguments given in this

section, the generating functional (4.81) on the mass
shell is equivalent to (4.60), (4.61), and (4.68).

Now we transform expression (4.75). Using (4.25)
and (4.80) the field equations for B can be obtained:

Here H(7r, g) is the Hamiltonian of the gravitation
field, the explicit form of which we do not need. vr'~ are
the canonical momenta for g;~'.

~~k —LQ( gi8))/Qgo0j(eikelm eilekm)PO (4 91)

%'ith the help of (4.91) the gauge condition (4.73)
can be rewritten exactly in the form given by Dirac'~:

V'Bp= 0, (h 'V'+-'1')'c)ic) )B,= 0. - (4.82) 0—
g

~ik —0 P i= g L( gi3))1/3eik7 —0 (4 92)

The only physical solution of (4.82) is B„=O.Thus p""

and I'„),& satisfy (4.20) and (4.21) with B„"'==0;i.e.,
relations (4.4) for I'.)," are va, lid, and g"" satisfies the
usual Einstein equations.

Substituting (4.4) into (4.75), one obtains

Q o'=(+—a"))e'"~'~ (v )
—(V' )(&—a"))e'"~'~. , (483)

Let us pass from the integration over Fp;A, and g&" in
(4.89) to the integra, tion over 7r'k and g„„.The resulting
Jacobian can be omitted. The proof of this fact is
analogous to that of the possibility of arbitrary choice
of the functional integration variables belonging to
class (4.5).

The final expression for the generating functional in
gauge (4.73) or (4.92) is

~'~1 = ~'~a —P;a~& (4.84)

Here y,q' is the three-dimensional ChristoIIfel symbol,
and n.= (g") '. Let us find the expression for I";k with

the help of the Einstein equations for g&", and substitute
it into the relation

Z" = d(g, x)6(P,~)

Xexp i dx(~""g,k H(7r, g)+—g, kJ'k)

eikl~o +eikPO —P 0 —0 (4.85) +Tr lnA V' '+Tr lnB (Q, ' —
)k&' . (4 93)

which must be true according to (4.73). From (4.85) one
obtains

&& )),' q.g„(V' )+(Q )(V' —g '))E =-0. (4.86)

Qgp'= —(Qcc)A, (4.87)

A =- (Q—g&' )8)&' +)(Q g"))e"c—7,c)k. (4.88)

Thus we can see that the expression

Z'= d(g", I') S(P;) exp i dx(L, +f,~"J„„)

+Tr lnA+n+Tr lnB '—Tr lnQ3&o) (4.89)

for the generating functional with gauge condition
(4.73) can be used instead of (4.81). The genera, ting
functional (4.89) leads to the same field equations for

Here g&» = g'~g('), ~, and E(3);I, is the three-dimensional
curvature tensor of second rank.

Finally, the expression for Q&o' takes the form

Expression (4.93) has been obtained by Popov and
Faddeev' with the help of another method closely
connected with the canonical quantization procedure.

Note once more that the 5 matrix corresponding to
(4.93) is equal to that in covariant gauges.

V. CONCLUSION

The present paper has been devoted to constructing
the 5 matrix in theories invariant under gauge groups.
Though the only cases considered were those of the
Yang-Mills field and gravitation, the method developed
can in principle be applied to arbitrary theories (the
theories of the Yang-Mills and the gravitational fields
are apparently the only gauge theories of physical
interest"), particularly in the cases where no connection
with the canonical scheme can be traced. Furthermore,
the method suggested proves to be convenient for con-
structing the perturbation expansion of the 5 matrix in
theories partially invariant under a gauge group, the
power of divergence in the 5 matrix being considerably
reduced.



S MATRIX FOR YANG —M I LLS AND GRAVITATIONAL FI EI. DS 2857

In this paper no attention was paid to possible inter-
actions with other particles. The latter would not affect
our considerations, however.

%e would like to discuss briefly the problems which
have not yet been solved.

(I) Owing to divergences, there is an important
problem of introducing a regularization which will not
affect the group properties of the theory. Recall that
non-gauge-invariant regularization in electrodynamics
creates the photon mass. From the more recent view, the
resulting photon mass is due to Schwinger terms or, in
the end, to the singular character of products of field
operators at coincident points. In nonlinear theories
this problem becomes even more complicated. The
Schwinger terms affect even the renormalization con-
stant, as for instance in the case of the Yang-Mills
field.

(2) There is an interesting question whether the
gravitation field is renormalizable in the framework of
perturbation theory. (We mean here the usual perturba-
tion expansion with respect to a coupling constant and

not the method of Fra, dkin and Efimov. ") It is con-
venient to treat this problem using the variables h&" and
I'&,q in the first-order formalism where there are two
vertices: a vertex I'FA and the vertex responsible for the
interaction of h&' with the fictitious 8 field. The formal
estimate of degrees of growth leads to the conclusion
that the theory is of unrenormalizable type.
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Formulation of Dual Theory in Terms of Functional Integrations*
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A formulation of dual-symmetric theory is given in terms of functional integrations. Known formulas of
the theory, such as the N-particle Veneziano amplitude and both planar and nonplanar one-loop amplitudes,
are explicitly given in terms of the new formulation. The new formulation is also shown to be equivalent to
the other formulations such as the harmonic-oscillator formulation.

I. INTRODUCTION

ITH the invention of the harmonic-oscillator
formalism' of the dual-symmetric model, con-

siderable advances have been made in the calculational
technique of dual scattering amplitudes' and in their
renormalization. ' As shown by Nambu, 4 a hadron in
this model may be described in terms of a master wave
function which depends on an infinite number of space-
time coordinates (we may simply call it a wave func-

* Supported in part by the University of Wisconsin Research
Committee with funds granted by the Wisconsin Alumni Re-
search Foundation, and in part by the U. S. Atomic Energy
Commission under Contract No. AT(11-1)-881,COO-881-277.
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Burnett, David J. Gross, A. Neveu, J. Scherk, and John H.
Schwarz, Princeton report {unpublished).' See Ref. 1.

tional). In order to incorporate unitarity into the theory,
one must face the problem of second quantization of
this master wave functional. Since the master wave
functional is super-nonlocal, the standard canonical
quantization method, 'meets considerable difficulties It
would be much easier„to follow the space-time approach,
such as the one Nielsen' has proposed for the E-particle
Veneziano amplitudes.

As a 6rst step in this direction, we try to formulate
some of the known formulas of the theory, such as
S-particle Veneziano amplitudes and one-loop ampli-
tudes' (both planar and nonplanar) in terms of Feyn-
rnan's path (functional) integrals. There are several
advantages in this formulation. (i) The 1V-particle
Veneziano amplitude is manifestly symmetric with

' H. B. Nielsen, Nordita report, 1969 (unpublished) . We
gratefully acknowledge the access of this paper from which many
of the ideas of the present paper were gotten. See also L. Susskind,
Yeshiva report (unpublished).' K. Kikkawa, B. Sakita, and M. A. Virasoro, Phys. Rev.
184, 1701 (1969);K. Kikkawa, ibid. 187', 2249 (1969).


