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A method is suggested (and applied to the Yang-Mills and gravitational fields) for the construction of
the generating functional (S matrix) for fields possessing an invariance group. The unitarity and gauge
independence of the S matrix on the mass shell are seen explicitly.

I. INTRODUCTION

HERE has lately been considerable intensification
in the study of theories partially or completely
invariant under non-Abelian groups of transformations.
This is in connection with the discovery of vector
mesons and their classification into multiplets, with the
use of vector mesons to account for the form factors of
particles, and with the current-algebra approach. Inter-
mediate vector bosons are introduced in many schemes
of weak interaction. An important example of a theory
with a non-Abelian group of invariance is that of the
gravitational field.

In the present paper a procedure for constructing the
Feynman rules is proposed for theories possessing a
gauge group, such as the theories of the massless Yang-
Mills and gravitation fields. It is known that some
additional (gauge) condition must be imposed on the
dynamical variables in order that a consistent quantum
field theory may be formulated on the basis of a
Lagrangian density invariant under a local transforma-
tion group. In covariant gauges this can conveniently
be done by the use of Lagrange multipliers. The basic
idea of the method proposed is to choose the Lagrange
multiplier in such a way that one is led to free equations
of motion for the additional field. This fact guarantees
the unitarity of the .S matrix in physical space. The
Feynman rules obtained coincide with those proposed
in Refs. 1-5. The difference of the method under con-
sideration from that of Refs. 2-5 is that we have
succeeded in obtaining a set of consistent dynamical
equations completely describing the theory. On the one
hand, these equations make it possible to elucidate the
reason for the additional diagrams to appear, and, on
the other hand, guarantee the unitarity of the physical
S matrix. Section II is devoted to the construction of
the S matrix for the massless Yang-Mills field in arbi-
trary gauge and to the proof of the gauge invariance of
the .S matrix. In Sec. III constructing the Feynman
rules in the Coulomb and axial gauges is considered on
the basis of the canonical quantization procedure. The
S matrix obtained coincides with that found in Sec. II,

1R. P. Feynman, Acta Phys. Polon. 24, 697 (1963).

2 B. S. DeWitt, Phys. Rev. 162, 1195 (1967); 162, 1239 (1967).

8 L. D. Faddeev and V. N. Popov, Phys. Letters 25B, 30 (1967);
V. N. Popov and L. D. Faddeev, ITP report, Kiev, 1967
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48S. Mandelstam, Phys. Rev. 175, 1580 (1968).
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which fact reaffirms its unitarity. It is shown, further-
more, that taking the additional conditions consistently
into account makes it possible to obtain self-consistent
equations for the massless Yang-Mills field in the pres-
ence of an external source.

In Sec. IV the Feynman rules for the gravitational
field are constructed in covariant gauges. These rules
coincide with those suggested in Refs. 2, 3, and 5. In the
framework of our approach we also obtain the .S matrix
for a noncovariant (Dirac) gauge, for which the Feyn-
man rules have been obtained by Popov and Faddeev®
using a method closely connected with the canonical
formulation of the gravitational field. In addition, by
our method, the equivalence of the .S matrix in co-
variant and noncovariant gauges is proved.

We use the following notation. Greek u, », A, . ..and
the Latin 4, 7, k indices take the values 0, 1, 2, 3 and
1, 2, 3, respectively. In Secs. IT and III, g,, means the
Minkowski tensor (+, —— —) and §;; means the unit
tensor. By the summation over repeated indices is every-
where meant @,b,=acbo—arbr; 9,=09/9x*; [0=0,0,;
V= 9;0%. In Sec. IV, g,, means the metric tensor, and the
Minkowski tensor is designated as 8,,. The usualsum-
mation over repeated indices means ab*=3,—¢* a,b".
We use the system of units Z=c¢=1 in Secs. IT and III
and ¢3/16wk=1 in Sec. IV (where % is the gravitational
constant).

II. GENERAL THEORY.OF CONSTRUCTION OF
FEYNMAN RULES FOR MASSLESS YANG-
MILLS FIELD. GAUGE INVARIANCE OF
S MATRIX

In this section the general theory for construction of
a unitary S matrix for massless Yang-Mills fields is
considered.

The classical Lagrangian for a Yang-Mills” field has
the form

Lo(x) = —1Gu*(*)Gw"(x) . 21

Here G,.” is the field-strength tensor,
Gu®(%) = 3,4,(x) — 3,4,°(x) Ny (2) 4, (x),  (2.2)
A,2%(x)= foord,o(x) . (2.3)

The fe*¢ are the structure constants of the arbitrary
finite-dimensional compact simple Lie group G. The fe?e

6 V. N. Popov and L. D. Faddeev (to be published).
7 C. N. Yang and R. L. Mills, Phys. Rev. 96, 191 (1954).
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2842 E. S. FRADKIN
are real and totally antisymmetric, and satisfy the
Jacobi identity

fave fedf - fafefefdL fode fefb=(), (2.4)

The Lagrangian (2.1) is invariant under arbitrary
gauge transformations depending on coordinates which
for 4, have the form

() = A,5(0)=STu(*) 14 (%) S [u(x)]
+ (/N 3uS[u(x) ]- S u(x)], (2.5)

and for G,,* are
Gu(x) = GuS3(%) = S[(x) ]G () S~ [u(x)]. (2.6)

The matrices S(#)=S5%(») form the adjoint repre-
sentation of G, and #* are the group parameters. In
(2.5) and (2.6) these parameters are arbitrary functions
of the coordinates.

For infinitesimal transformations,

Sad(x) = dupt-14°%(x) , (2.7)
the gauge transformations have the form
A4 (x) = 4,4 (2) = (/N V2 (2)ub(x) . (2.5)
V.2 is the covariant differentiation
V,23() = 8ap 9N 10 (). (2.8)

In the case of Abelian groups, formulas (2.5) and (2.6)
are the gauge transformations of the electromagnetic
field:

Ay,— Au,—0uu,

Foy—F,,. (2.9)

With the help of the Lagrangian (2.1), the classical
field equations are obtained:

Lo® u(2)=V,2(x)G,,*(x) =0. (2.10)

According to the invariance of the Lagrangian under
gauge transformations, it follows that the gauge varia-
tion of the action

must be equal to zero:
1 :
Wo= — /dx u?(x)V,2(x) Lo? () =0. (2.12)
A

As the functions #%(x) are arbitrary, an important
identity follows from (2.12):

Vo (x) Lo® () = V,25(x) V,2¢(2) Gpo(x) = 0. (2.13)

It is necessary to note that the identity (2.13) is valid
for arbitrary functions 4,%(x). Equation (2.13) may be
obtained with the help of covariant differentiation
(2.10).

It is known that the theory with Lagrangian (2.1)
permits no direct transition to a canonical formalism
(both in the classical and in the quantum theories). This
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is connected with the following. Let us find the canonical
momenta:
Woa(x) =0 )

wk“(x) = '—Gmc“(x) . (214)

In the canonical theory the following relations must be
fulfilled (xo=1y):

[4:2(x),4,°(y) J=[m:(x),7,*(») ]=0,

[mie(x),4;°(¥) 1= 16a684,6 (x =) ,
where[ , ] is the commutator in the quantum theory
and the Poisson bracket in the classical theory.

In canonical variables the equation L¢%,=0 is as
follows:

(2.15)

it N ot =0, (2.16)

and it is in contradiction with (2.15).

A similar situation takes place when constructing
the .S matrix in the theory with Lagrangian (2.1).
Usually one writes the S matrix as an expansion in the
normal products of the free fields. The corresponding
Lagrangian is equal to the total Lagrangian when the
coupling constants vanish. In the present case, we
obtain

Lo®= —31F,*F,°, (2.1%)
Fut=0,4,°—0,4,%, (2.2)
3. u,2=0. (2.9

However, one can prove® that in the framework of the
axioms of modern quantum field theory the Lorentz-
covariant operator F,, is equal to zero when it satisfies
(2.2") and (2.9").

For the correct construction of the theory of the
Yang-Mills field in the framework of quantum theory
or canonical formalism of the classical theory, it is
necessary to impose an additional (gauge) condition.
For example, in electrodynamics one uses the Lorentz
condition

0,4,=0

or the Coulomb gauge
3kA r= O .

Now the gauge invariance of the theory consists of
the fact that physical observables—in particular, the
S matrix—are independent of the choice of gauge
conditions.

It is convenient to introduce the gauge conditions in
the theory with the help of the Lagrange multiplier
B(x). In quantum theory the Lagrange multiplier B
must be considered as a new dynamical variable, and
it is necessary that the physical observables should not
depend on the B field.

For example, the correct formulation of quantum
electrodynamics in the Lorentz gauge is obtained with

8A. S. Wightman and L. G&rding, Arkiv Physik 28, 129
(1964); F. Strocchi, Phys. Rev. 162, 1429 (1967); 166, 1302
(1968).
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the help of the Lagrangian
L= —3FuFut0,4B+ AT . (2.17)

It turns out that the B field is free. When calculating
the .S matrix, we must use the transverse photon
propagator. The .S matrix is unitary in the physical
subspace, which is determined with the help of the

condition B ()| ¥)=0. (2.18)

Furthermore, it is known that in electrodynamics the
S matrix Is gauge invariant, i.e., it is independent of a
choice of gauge condition. We shall use a similar pro-
cedure in the theories with arbitrary gauge group.

The basic idea of the method proposed for construc-
tion of the .S matrix in theories with a gauge group
consists in a choice of the Lagrange multiplier such that
the additional (fictitious) B field is free. It means that
the B field is not involved in the scattering and the
S matrix is unitary in the physical subspace.

Let us first take the Lagrange multiplier for the Yang-
Mills theory in the form (2.17):

L= Lo+ ,4,4B. (2.19)

Then the B field imposes the Lorentz condition
9,4,4=0,

and we must use the transverse propagator of the 4,
field in a perturbative calculation.

However, as was first noted by Feynman,! if one
takes Lo—Lo® as an interaction Lagrangian, the
S matrix is nonunitary in the physical subspace. This
arises from the fact that in the case of the Lagrangian
(2.19), the B fields satisfy the equation

V,29,B°=0 (2.20)

The fictitious B field is not free and does take part in the
scattering. Thus we conclude that the Lagrange multi-
plier must depend on the 4, field.

Now we are in a position to proceed to the concrete
construction of the .S matrix. Consider a class of gauges
which is described by an arbitrary function

yo=yo(x; 4). (2.21)

For example, ¥ can be equal to 8,4, or 9z4x° Later
we shall impose a condition on the function . Let us
choose the action in the form

WV'=W0+W1"=WU+'/dx Li¥(x).  (2.22)

The part ¥ is added to specify the gauge of the 4,
field:
La¥ () =y (; A)By(; A)
+3aBy(x; A)By(x; 4),
Byo(w; A)= / dy Dy=(x,y; A)BY(y).

(2.23)
(2.24)
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We shall consider the case a0 only for the gauge
function ¢*=9,4,% We choose the function D, by
using the condltlon that the B¢ fields obey the free-field
equation.

The variation of (2.22) over A, and B results in the
following field equations:

Yo(a; A)= —aBye(x; 4), (2.25)
V,95(x) Gy b () + (R,2B ¥ (x) = 0. (2.26)
In (2.26) R,* is the operator
Wi (y; 4
(PP d b(y). 2.27
") (x)= /y v (x) e*(y) (2.27)

With the help of the identity (2.13), one obtains from
(2.26) ) )
(Vu®Ru>By°) (x) = (Qy*By*) (x)=0.  (2.28)

We impose the restriction on ¢° that the operator

Qy 4= 3R, 244 =0) (2.29)
should be a nonsingular differential operator.
If we choose a function Dy as
Dyet(,y; 4)=Dyeo(x,y; )0y, (2.30)
Qu*DyPe(x,y; A)=dacd(x—) (2.31)
or in a symbolic notation
Dyob=[Qy7]%Qy @, (2.32)
then the B field satisfies the free-field equation
Qp™e®By(x)=0. (2.33)

Note that the ©y function satisfying (2.31) does exist
and the determinant Dy is not zero, at least in the
framework of perturbation theory.

Since the fictitious B field satisfies the free-field
equation (2.33), in the physical subspace

BWa(z)|$)=0, (2.34)

the S matrix is unitary, and the classical field equations
for the 4, field are satisfied:

(1] Lo® u(x) | o) = (@1]¥2(x; 4) | p2)=0.

In order to obtain an expression for the .S matrix,
we use the connection between tke .S matrix and the
generating functional of Green’s functions, Z{J}°:

(2.35)

S=:exp|:——i/dx a*“(x)ﬁiaj(xg]:Z{]} [ 7m0 (2.36)

Here a™® are the set of free-field operators describing the
physical system for #~——o0.

9 E. S. Fradkin, Dokl. Akad. Nauk SSSR 98, 47 (1954); 100,
897 (1955); Trudy Lebedev Phys. Inst. 29, 7 (1965
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For the generating functional we use the representa-
tion in the form of a functional integral over the com-
plete set of fields.? 1

Thus in the model under consideration we obtain for
the generating functional the following expression:

Zot= / dA4,dB® exp<iW¢+i / do A,2T M‘)

1
=/dA‘,“ exp{i/dx(Lo— ~—z[/“z//“+A,L“J,ﬂ)
2a
+Tr anﬂbEQ\p(O)‘l]b”} . (2.37)

When calculating (2.37), we passed from the integration
over B¢ to the integration over B¢ and for the resulting
Jacobian we used the expression

detM =exp(TrInM). (2.38)

In the gauge a=0 (which is an analog of the Lorentz
gauge 9,4,=0 or the Coulomb gauge 9;4,=0), the
expression for the generating functional has the form

2= / 04,2 595 A))

Xexp[i / da(Lo+A,27 %)+ Tr 1nQ¢Q¢(°>—1]. (2.39)

The expressions (2.37) and (2.39) for the generating
functional indicate that the correct Feynman rules for
the perturbative calculation of the Green functions are
the following:

(a) There exist two usual vertices of the interaction
of vector mesons:

—N\3,4,%(x) A ,90(x) A,5(x)
and (2.40)

— N, () 4,0 (2)) (A oo (1) 4,5(2))

(b) There exist additional vertices of the interaction
of vector mesons with the fictitious B field; its form is
determined by Qy.

(c) The fictitious B fields always occur in closed loops,
every loop possessing an additional factor (—) and the
propagator of the B field being

DBa,b: [Q‘b(o)—l]ab.

Let us pass to the proof of the gauge invariance of the
S matrix [i.e., to the proof that the .S matrix is inde-
pendent of the o’s in (2.37) and independent of the type
of gauge condition ¥ in (2.39)].

First we prove that the .S matrix is independent of
¢* when a=0, i.e., independent of the choice of the

gauge yo(a; A)=0. (2.42)

10 R. P. Feynman, Phys. Rev. 84, 108 (1951).

(2.41)

FRADKIN AND 1.
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In this proof we use the method of Ref. 3. Define the
function Ay(4) by the relation

dy(A)=Ay(4) / 0u(S) (s A9} =1.  (2.43)

In (2.43), S is an element of the gauge group, 4,5 is
defined by (2.5), and du(S) is the measure of group
integration.!™!2 For compact simple groups (which we
consider), du(S) is defined uniquely and has the prop-
erty (for more details of the gauge group resulting
from a given simple Lie group, see Ref. 12):

/ au(S) 1(5) = / du(S) F(SS1) = / du(S) F(57). (2.44)

Property (2.44) makes it possible to prove the gauge
invariance of Ay. Indeed,

AgI(AS) = f 0u(S) B{pe(x; A5
- / 0u(S) 39 (x; A5)) =Ag3(A).

It is sufficient to know the function Ay(4) only for an
A,e field satisfying condition (2.42). In this case the
group integral is concentrated in the neighborhood of
the unit element of the group. By use of (2.7) and (2.5),

we obtain
du(S) zH du(x)=d(u),

A4 | yoo= / d(w) a{%(@ﬂabubxx)}

=Det 10y =exp(—Tr InQy?). (2.45)

In (2.45) we omit the inessential infinite determinant
of \.

One can see from (2.45) that the expression (2.39) for
the generating functional can be rewritten in the form

Zy= / A5} Ag(A)] g p[ / dx<L0+AW>]

=/d/1n“ s{yeyay(4)
Xexpil: / dx(L0+AM“],L“)j|. (2.46)

Consider now another gauge:

Yio(x; A)=0. (2.42")

U M. A. Naimark, Normirovannie koltza (Nauka, Moscow,
1968).

2 B. S. DeWitt, Relativity, Groups and Topology (Gordon and
Breach, New York, 1964).
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Multiply expression (2.46) by the function ¢y,(4) and
perform the gauge transformation

A,— A5

Taking into account the gauge invariance of Ay, Ay,,
and Lo, and the property (2.44), we obtain [ the Jacobian
d(A%)/d(A) is equal to 1]

Zo= / dA e / du(S) o{y (x; A5)}Ay(4)

Xexp[fi / dx<L0+A#Safm]aww}AMA). (2.47)

Consider the term 4,5/ ,% in more detail. After passing
to the mass shell [i.e., after passing from the generating
functional to the .S matrix according to (2.36)] this
term has the form

/dx a, ()T A4,54x). (2.48)

In terms of diagrams, [J operating on 4, means
operating on an external line of the diagram. The
external line has a pole of the form 1/, which cancels
out . T operating on the product of the fields in the
same point means that [J operates directly on the
vertex. In the framework of perturbation theory the
vertex has no pole of the form 1/J. Therefore, we can
perform the integration in expressions of the type (2.48)
by parts, and (2.48) vanishes.

Thus expression (2.48) can be rewritten on the mass
shell (m.s.) as

f dra,(x)OA4,%x) = / dw 4,27, ms..  (2.49)

Now, according to (2.43), the group integral is equal
to 1 and we obtain
S'}Ezo‘blm.s.:ZO‘“[m.s.ES‘h' (250)

Relation (2.50) means that the .S matrix is independent
of the type of the gauge condition (2.42).

Below we shall consider three particular gauges and
give the proof of the independence of the § matrix on
the o’s.

A. Axial Gauge
This gauge is defined by the condition
Yao(x; A)=A3%(x)=0. (2.51)
With the help of (2.27), (2.28), and (2.32), we obtain
Dot (x,y; A)=[35+7\A;]15;. (2.52)

Because expression (2.39) for the generating functional
contains §{A:%(x)}, D4 is effectively equal to 1. Thus

2845
in the axial gauge the generating functional is
ZA= /dA,[‘ 8{A4s%(x)}

xexp[i / dx(L0+A“aJ“a)]. (2.53)

The Feynman rules have no additional diagrams. The
free propagator of the 4,° field is

Dy *(p)
ol Dupr L
=5ab[—¢gﬂ+ —(guspF Gapi) i :I—. (2.54)
P3 pg? ]t)2
B. Coulomb Gauge
This gauge is defined by the condition!?
ie(a; A)=0pdx%(x)=0. (2.55)

With the help of (2.27), (2.28), and (2.32), we obtain

Dk“”(x,y; A)ZEV"F)\A‘]C@]C]MI*V‘. (256)
By the use of (2.39) the expression for the generating
functional may be calculated to give

Zlc:/dA”d 5{drpde(x)} exp[i/(Lo+Au“Ju“)

N
+Tr ln<5ab+ —A4 kabak)]. (2.57)
\Y

The Feynman rules in the Coulomb gauge are the
following:

(a) The free propagator of 4,% is equal to the well-
known propagator of the electromagnetic field in the
Coulomb gauge:

i/p*, p=r=0
Do (p) =640, u=0,v%0 or u=0,r=0
1 —pipr/PIP2, w=i,v=~k.
(b) Besides the usual vertices (2.40) the vertex F,b¢

of the interaction of A,%(p) with the fictitious B*(k)
and Be¢(g) fields exists:

(2.58)

Fabe=Noyikifee, p+hktg=0.  (2.59)

(c) The lines of the B field occur only in closed loops,
every loop possessing an additional factor (—), and the
propagator of the B field is

8avi/P. (2.60)

BE. S. Fradkin and I. V. Tyutin, Phys. Letters 30B, 562
(1969).
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In Sec. IT C we shall construct generating functionals
(2.53) and (2.57) in the axial and Coulomb gauges by
use of the canonical quantization procedure.

C. General Feynman Gauges

The general Feynman gauge is defined by the gauge
function!?

Yr*(x; A)=09,4,%x). (2.61)

We obtain the Lorentz gauge in the additional La-
grangian (2.23) for a=0 (Landau gauge) and the
Feynman gauge for a=1.

With the help of (2.27), (2.28), (2.32), and (2.39),
we obtain

DFab(x;y; A) :[D +>\A‘uauj_1ﬁ- )

ZoF = / A,

1
Xexp[i/dx(Lg—- ;6,‘/1 w20, 4,5+ A f‘];‘)
«

(2.62)

A
+Tr 1n<5,,,,+ —A ,L“ba,,)]. (2.63)
a

In the transverse gauge we have

ZoF = / dA,@ 5{0,4,4(x)} exp[i / da(LotA,47 )

A
+Tr 111<6ab—|— ’Au“bé,‘):l. (2.64)
|

Now let us prove that the S matrix (2.63) is independent

of the o’s. Replace the variables in functional integrals
(2.63)2

Ao (x) — Aua(x) =4,%x)

o
— —V,2b(x)(DP9,4,) (x), (2.65)

a

Dre=[O4+NA 0,11, (2.66)
s being infinitesimal. Retaining the terms of first order
in da we have

1 1
0, 4,00,4,0— 3, A 0, A, (2.67)
2a 2(a+da)
1
Lo— ;a,;A F“G,A ya+A ,ﬂ]ua — Lo
167

—————08,4,99,A,0+A T, (2.68)
2(a+da)

FRADKIN AND 1. V.
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In deta/i“a(i) =Tr ln?-A s
aA4,%(y) A, (y)
= (50/20) T V,0() D (x,9)3,
AV (@) D (0,9) fPHUDWNAN) (1) ], (2.69)
Tr In® {01 — Tr InH {7
—N\(b/20) Tr[0,D(x,y) f*' V' 4(y)
XD ) (y)]. (2.70)
Remember that Trf(x,t) means
Tr f(x,y)= / dxdy f(x,y)8(y—x). (2.71)

Let us integrate by parts in (2.69) and (2.70) so that no
derivative operates on the expression (D% 9hAr?)(y).
Taking into account the antisymmetry of f*®¢ and the
relations

O D(x,y) = 8apd(x—y) —AA ,*%(x) 9,0 (x,y),  (2.72)
Db (x,y) 0 = 8406 (x—3) + N[ D% (2,0 A ,,(3) 10, (2.73)
we obtain

(2 69)+ (2‘70) =2A2 (601/20:) (fabcfcdf+ fafcfc bd fadcfcfb)
XTr{[D% (x,9) 4,%(3) JOu(D* HNAr") ()}
—(8a/2a) Tréad(x—y). (2.74)

Using the Jacobi identity (2.4), we find that the
change of the expression Trln in (2.69) compensates
the Jacobian d(4)/d(A4). Thus we have

Z,,f'———/d/l,ﬂ exp[i/dx(L

_ A
—}-A““J,.“)—{—Tr ln<1+ ~Aﬂa“>]. (2.75)
O

0— —

—9,A4,40,4,°
2(a—+da)

We can prove again that the following replacement is
true on the mass shell:

AT — A,00,0.
Finally, we obtain

SQFEZQFI m.s.zZa( 50:FE Szx—l»&aF .

(2.76)

(2.77)
Q.E.D.

The Feynman rules for calculating the generating
functional (2.63) in the framework of perturbation
theory are the following:

(a) The free propagator of the vector mesons has the
form

D#V“(P) = aab[“iguv_‘i(a_ I)P#Pv/pﬂP—Z . (2-78)

(b) Besides the usual vertices (2.40), there exists the
interaction F,e% of 4,%(p) with the fictitious B>(k) and
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Be(g) fields:
Fyete=3feve(ky—q,), p+k+g=0. (2.79)

(c) The lines of the B field occur only in closed loops,
and the propagator of the B field is

debi/p2.
The Feynman rules for the massless Yang-Mills field

were obtained also by DeWitt,? Faddeev and Popov,?
and Mandelstam* by other methods.

(2.80)

III. CONSTRUCTION OF THE S MATRIX IN
CANONICAL FORMALISM

In this section we construct tke .S matrix for the
massless Yang-Mills field in the axial and Coulomb
gauges in the framework of the canonical quantization
procedure and the interaction representation. The
corresponding Feynman rules coincide with those found
in Sec. II.

Consider the Lagrangian

L=LotA,T,°. 3.1)

Here J,%1s the external current, on which no restriction
of the type of the conservation laws is imposed.
Besides the difficulty with the canonical formalism,
there is also another problem for the Lagrangian (3.1).
Let us write the field equations obtained from (3.1)
by varying over all 4,%:

V,00G,, b4 T4 =0. (3.2)
Using the identity (2.13) leads to
aﬂ]ﬂa(x)_‘_)\jl‘#ab(x)]“b(x) =0. 33)

Obviously we cannot satisfy (3.3) since the external
source J,* does not depend on 4 ,°.

Below we shall’show that the gauge condition gives a
possibility of avoiding this difficulty as well.

A. Coulomb Gauge

The Yang-Mills field in the Coulomb gauge is defined
both by the Lagrangian and by the gauge condition

14 ;J‘(x) =0. (34)

The gauge condition (3.4) can be introduced into the
theory with the help of the Lagrange multiplier just as
has been done in Sec. II. It can be proved that the
corresponding field equations are consistent in the pres-
ence of the external source as well. However, the
method of Lagrange multipliers does not permit canoni-
cal quantization of the theory.

For the purpose of canonical quantization, we con-
sider (3.4) as a constraint excluding one of the dy-
namical variables. This exclusion must he made before
finding the field equations.

Thus let us choose

Age, Ay, Aye (3.5)

and
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as independent variables. With the help of (3.4) we
obtain the expression for 4;%:
Aa"(x) = —(93—1((9,'/1 i“(x)) , 1= 1, 2. (36)

Expression (3.6) should be substituted in (3.1) and
the Lagrangian should be varied only over 4%, 4,% and
4. The corresponding field equations are

Vi?Gor4-J =0,

v“ame,b_f_]ia._ as“lai(V,‘“”G,‘gb—}—Ja“) = O’
i=1,2.

(3.7)

(3.8)

When quantizing, just as in any essentially nonlinear
theory, the question of the order of noncommutative
variables arises.

Later we shall consider this question and show that,
with the help of the corresponding symmetrization pro-
cedure of multipliers, quantum expressions can always
be represented in a form coinciding with the correspond-
ing classical expressions.

Therefore, for the time being, we assume that the
multipliers in quantum theory are commutative, as they
are in classical theory.

Let us find the canonical momenta

m%= —Go:®+ 95719,Gos?, (3.9)
Lre(x),44°(y) Joroyo = 18206 @ (x—y) . (3.10)

(3.7) is the constraint equation and it should be used
for excluding A4,* when constructing the Hamiltonian.

Let us decompose Gg:* into transverse and longi-
tudinal components:

GOkaE GOkTu—*- ak\I/a, R
Gor"*= —(8ri— 010s/ V)m:®,

Then Eq. (3.7) has the form!*
Viob(x) 9,08 (x) = —AA 125(0) Gop 7o () — Joo(x) . (3.13)
This can be solved with the help of the D function:
Ve (%) 0x D (x,y; A) = 84,0 (x—7y), (3.14)

7I'0a=0,

G Te=0,

k=1,2,3.

(3.11)
(3.12)

al=90,

The D function was considered first by Schwinger.
Thus

Vo(x) = — (DA 1 5G . Te) (x) — (DT ¥) (). (3.15)
Rewriting (3.7) in the form
— V90, 4 PN 190G i T H-NA 1900, W4T ¢ =0 (3.16)
and using (3.14) and (3.15), we obtain
Vk“bakA ob(x) = )\V(S)“b.zl\kchoch) (x)
+ V(DT ) (x), (3.17)
Ag¥(x) = MDVDHVA 4G, T4 (x)
+ (DVDLeS ) (x).  (3.18)

1 7. Schwinger, Phys. Rev. 125, 1043 (1962); 127, 324 (1962).
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The expression for Az will also be needed:

Ae(x) = GorT*(x) 4 0, T (x) 4 9 A () —NA 0% () 415 ()
= Go () + A 12(0) N(DP VDA 197Gy 1) ()
FAN(DPVDAT ) (x) ]
— 0N D(4 5¢8; D44 191G o T7) ] ()
FA[De8(A;5¢0;D0T ) ] (%)} . (3.19)

Now let us find the expression for V,2%G,,°. Using the
field equations, we obtain

L% o(%)=V,2%(x)Gyo(x) = —Jo*(x),  (3.20)
Lo® 1(2) = — T 12()+ 957 0k V.22 () Grus® () + T 3%(w) ]
= — J(x)+ 9 0(x)
+(810;/ V)N 2 (%) Go,* () + 7 (). (3.21)

When deducing (3.21), we expressed Go,7¢ with the help
of Egs. (3.8) and (3.12). Expressing ¥ in terms of 4,
and Go,7* using (3.19) for A;* and (3.8) for GoiTe, we
obtain, after some tedious algebra,

V(@) Gurb(%) = — (%) — 0(D*PV, T ,0) () . (3.22)
It is not difficult to prove that Egs. (3.20) and (3.22)
are consistent:

0= V,9V,5G,,c = — V28] b

+ V229, (D4V, 4, H=0. (3.23)
Thus we can see that consistent use of the gauge condi-
tion enables one to obtain consistent field equations in
the presence of an external source as well. The correct
form of the field equations was obtained by Schwinger!®
with the help of a different method. _

Note that in the case J,2=0 or in the case when J,*
is a current of matter (i.e., when the equation V,%%J,*=0
is true), the field equations for the Yang-Mills field
written in four-dimensional form have the usual form.

The Hamiltonian in the Coulomb gauge is (to within
a total space derivative)

H(x)= —m(x) A#(x) — L= 3GoxT(x) Gor7*(x)
+1G (%) G (%) + 505 ¥ () ¥ ()
+ A ()T () -

In (3.24) it is assumed that 43¢ is expressed with the
help of (3.6) and Go7® is expressed with the help of
(3.12).

Let us pass to the interaction representation. For this
purpose H should be split into a free Hamiltonian H,
and an interaction Hamiltonian Hiy. We choose the
total H with A=7,*=0 for H,:

(3.24)

(3.25)
(3.26)

Ho=3F o FoiT*+1F p3F e
ij“= a]-Uk“—akU,»“, Ujze= —63—'1(91[]5“,

15 J. Schwinger, Theoreiical Physics (IAEA, Vienna, 1963).
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Fole= —(Bki—akéi/V)m-“= Ukay (327)
o= —U 0~ 83*231'01"(71"“, [ri(2), U s ¥(y) Joomyo
=10ap0;00F (x—y). (3.28)

In (3.25)-(3.28) we use the designation U* instead of
A@e for the free Yang-Mills field in the interaction
representation, keeping the designation A, for the
Heisenberg fields.

With the help of (3.25)-(3.28) the field equations for
Ux® and the propagator can be obtained:

OUz=0, 8,Ur=0,
Dy**(x—y)= (0| TpUs(x) U;*(v)|0)
1

@

(3.29)

/ dp e DD,p),  (3.30)

Dy*%(p) =i5ab(5kj— ﬁ?)ﬁz- (3.31)
p

In (3.30), Tp means the Dyson 7 chronological product:

TDA (t1)B(t2) = 0(t1 —[2)A (ll)B(tz)
+0(t2——t1)B(t2>A (tl) .

The interaction Hamiltonian is

(3.32)

Hine=H—H=3\F;U;* U
—l—%)\zljj“bUkbﬁj“Ukc-f— Ured @
_%[)\(ﬁ)abﬁkchOch) X (@ab]0b>]
X VIN D Uy ¥ F o)+ (DT o) ], (3.33)

(Véart AT 229,) D¥(x,y; U)

=082.0P(x—y), a0=9°. (3.34)
The relations between U;* and 4, are given by the
usual formulas connecting interaction and Heisenberg

representations. Let us define
(@)=S"Tp0S,

where .S means the S matrix in the interaction
representation

(3.35)

S=Tp expli—i/dxﬂm(x)] . (3.36)

Then we have
Are(x)=(Us*(x)), (3.37)
GorT4(x) = (ForT(x)). (3.38)

When passing from the classical expressions of the
type (3.15) and (3.18), or from the field equations, to
the corresponding quantum expressions, we assume
that all operators are to be expressed in terms of the
canonical variables 4;* and G;7% and the product of
operators is to be understood as the 7' product, the
exact meaning of which is defined by (3.35). For
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example,

A Oa(x) - <>\ (gDa by ) be Ukchwch) (x))

FH{(DPVD*T ) (x)).  (3.39)

One can prove, using the commutation relations (3.27)
and the field equations (3.29), that the Heisenberg
operators defined by (3.35)-(3.39) satisfy the field
equations (3.7), (3.8), and (3.22).

One can also show (but we do not dwell on this) that
the symmetrization procedure of the Heisenberg
operators A;* and Go,7* can be suggested in such a way
that the expressions of type (3.15) and (3.18) in the
quantum case should formally coincide with the corre-
sponding classical expressions.*

Let us pass to constructing the Feynman rules. Calcu-
late for this purpose the generating functionall®

2+=(0| T» expl:—i / i Hmm} 10)

=expl:—iQ(Uk)+%i<®5iA>v(s}5iA>:l

X exp[i(NUF o;"+J )AJZo| acimo,  (3.40)

Q(U’G)E/dx[%Xij“ﬁj“bUkb
+%>\20jabUkijacUkc]. (341)
In (3.40), the exponent operates on Z, according to the

rules

Ui — 5/1'6.]13“ , FojT“ — 5/1:5&“ . (342)

Z, is the generating functional of the free Green’s
functions:

Zo= <0| To exp ‘i/dx(fk“FOk“— Lfka]k"’)} | 0> . (343)

Let us pass in (3.43) from the T'p product to Wick’s
T product; i.e., instead of the Dyson propagator, we
shall use the Wick propagator.

O] TwUU,?| 0)= Dyab= (0| TpUsU;*|0),  (3.44)

(01 TwFo7eUx?| 0)= 8oDj2>= (0| TpFo;7*U*|0),
(3.45)

<O, TWFOjTaFQka( 0>= _602D],kab= <OI TDngT”‘FOkaI O>

iban(85—3;94/V).  (3.46)
Thus
Zo=exp[3i£;*(8;6—;01/ V) x> 10| T'wr

X eXp(iEk“FOkTG —iUk“Jk“) , O> . (347)

16 E. S. Fradkin, Problems of Theoretical Physics (Nauka
Moscow, 1969).
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Perform in (3.40) the functional differentiation §/8&,2
only in the first factor in (3.47). Then one can substitute

FoTe— Uy®— 968/i8 3 (3.48)
and put £2=0.

For the functional expression involving A , we use
the relation

F(fA)e%(A) 1A=o=¢<£>F<J> .

Then (3.40) transforms into

(3.49)

Zk=exp{i/dx Liny(U,)+Tr ank(*);ﬁ*l]Zo’. (3.50)

In (3.50) the Uy® means

Uy — 5/26]0“
and

Zo/ =exp(—%]o"(—i/V)Jg“)(0| Tw exp(~iU/C“Jk“) | 0>

=eXP(—%]MaDlwavab)E/dAua 6{0rAx(x)}

Xexp[i / dx(—%}f‘u,ab‘,,ﬂ—{—A,,“]u“)], (3.51)

Liny= —I\F 20,2 U, —2\20, 90U U,0eU,c.  (3.52)

The Green’s function D,,*" in (3.51) coincides with the
free propagator in the Coulomb gauge (2.58).

Combining (3.50) and (3.51), we obtain the following
expression for the generating functional:

Zk= / dA,® 6{0: (%)} expl:i / da(Lo+A,°7 %)

N
—!—Tr 1n<6ab—|— ;A kab6k>:| . (353)

Expression (3.53) coincides with expression (2.57) for
the generating functional in the Coulomb gauge
obtained in Sec. II.
B. Axial Gauge
The axial gauge is defined by the conditions

Aso(x)=0. (3.54)

Choosing 4% and 4% ¢= 1, 2, as independent variables,
we obtain the field equations
Vi®®Gor®+J =0, (3.55)

V”abGuib“}—Jia: 0, (356)
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and the canonical momenta

(3.57)
(3.58)

m?=0, o= —Go°,

I:Wia(x);A @’ b(y)]x“=y“ =10450::0 ® (x —-y) .

Equation (3.55) is the constraint equation from which
we find the expression for 4¢*:

A= — 8572V b b+ 0572 2. (3.59)

After a calculation analogous to that in the Coulomb
gauge, we obtain the field equations in the four-
dimensional form

V,90G 04 T 0 — 8,505 V,927,5=0.  (3.60)

Equations (3.60) are self-consistent.
The Hamiltonian in the axial gauge is (to within a
total space derivative)

H=34r0104-1G G4 AT 124505400344 (3.61)
Let us pass to the interaction representation:
Ho=3}mom0—30;m #0520y “+1F pF e, (3.62)
(%), U (9) Teomyo=18apdsc: 8 P (x—7) . (3.63)
With the help of (3.62), we find
mi¢= —Fy, (3.64)
where we use the definition
Uge=(1/V)9:U;, (3.65)
O|ToU,(x) U, (y)|0)
=D, (x—y) +iguogods 26(x—y), (3.66)
Dyw*(p)
= —isab<g,,y— —1—g,.spy~ —l—gvspu— zj5&>i (3.60)
s bs 2 /p°

Expression (3.66") coincides with the free propagator
(2.54), and we will call it the Wick propagator.

(0] TpFo;2U 2| 0)= (— dogri— 9igno) Dru®®.  (3.67)

Expression (3.67) coincides with the Wick propagator.

(0] TpFo*(x) Foir*(y) | 0)
= (dognit 9igr0) (— Oogosr — 0:78a0) Do P (X —y)

—18450:0(x—y). (3.68)

Expression (3.68) differs from the Wick propagator (the
first term) by the contact term. The interaction
Hamiltonian is

Hiny=3\F iU U 302U 20 U ¢
—\U o2 U #%F 02— 3N U 9F %) 857U #¥ Fosr¥')
— N5 (U #F %) — 2742052 o* — T ,2U % . (3.69)

FRADKIN AND I.
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(Note that U;*=0.) The generating functional is
equal to

Z4=(0|T» exp[—i / dx Hm(x>:||o>. (3.70)

Let us pass from the 7'p product to the T product.

Zo=(0|Tp exp{i(£:Foi*+ U,T %)} | 0)
=exp{§i(£:%6:°—J 005 o)} Zo,w, (3.71)

Zow={0| Tw exp[i(£:°Fo;*+1iU,2T,%)]|0),

exp(%iJ0%95727 4%) exp(i\U ;92F ;29572 %)
X exp{i[\U*U #%F ;®
+%>\2(ﬁiabF0ib) 53_2([71"“’1701" 1 Zo
= exp(3iN U@ U Uy Uy
FiNFoeUg U Zow.  (3.73)

(3.72)

In (3.73) the exponents operate on Z, and Zgw
according to the rules (3.42) and (3.51). Making the
substitution

b b
— Jg—— — Ji—
168" 16J 18Jo

(3.74)
and using the relation

O] Tw expl(il,7,)|0)= / 4, (A5 ())

Xexp[i / do(—5F o+ AT J

we obtain finally the expression for the generating
functional

Z4= / dA e 6{As%(x)} exp[i / dx(Lo—I—A,ﬂJ,ﬂ):I, (3.75)

which coincides with (2.53).

The results of this section can be regarded as addi-
tional proof of the fact that the method for constructing
the Feynman rules developed in Sec. II results in a
unitary S matrix.

IV. CONSTRUCTION OF FEYNMAN RULES FOR
GRAVITATIONAL FIELD

In this section we shall obtain the general rules for
construction of the .S matrix for the gravitation field,
prove the gauge invariance of the .S matrix, and in more
detail consider two covariant gauges (the harmonic
condition and its linearized form) and the Dirac!”
noncovariant gauge. The Feynman rules found by us
coincide with those of Refs. 2, 3, and 3.

17 P. A. M. Dirac, Phys. Rev. 114, 924 (1959).
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The classical gravitational field is described by the
action'®

Lo=5(—8)g"Ry.

Here g,, is the metric tensor, g=detg,,, g”g.n= 6%\, and
R,, is the curvature tensor of second rank (Ricci tensor)

4.2)

Ruy=09,174— 09,09, 41",, %, —T?,,T,,. (4.3)
I'#) is the Christoffel symbol
P“v)\= %‘g’w(avga)\“_ 6)\gw_ aagv)\) . (44)

As we shall show later, the most convenient choice of
the concrete form of the dynamical variables depends
on the gauge condition.

The variables we shall use belong to the following
class:

(4.5)

gP =g, and g rr=gPgm.

In the general case we shall designate the variables
2™ and g®,, as k,,. The Einstein equations for the
gravitational field can be obtained from (4.1) by two
methods:

In the first-order formalism the expression (4.1)
should be varied with respect to ., and I'4,, considered
as independent variables. From the equations obtained
by varying (4.1) with respect to T'4,, the expression
(4.4) for T'#,, can be deduced.

In the second-order formalism the variation should be
made only with respect to ,,. It is assumed in this case
that (4.1) is expressed only in terms of «,, with the help
of (4.4).

Both methods lead, of course, to the same field
equations.

As is well known, (4.1) and (4.2) are invariant under
the gauge transformations of «,, and I'4,, the infinites-
imal form of which is

£" = £@) =g —E1048@) " T g®) 04 E

80,8 —2Bg()* 0487, (4.6)
2B, — g B8, = ® 79 o®), _o®, 3y
—g®,,0,E7—2Bg®,,0,£7, (4.6')
THy — TS\ =TH\—£79, DhA+ T, £
— T4, & —TH\,0,£7— 9,08+,  (4.7)

£4(x) are arbitrary infinitesimal functions of x#. In the

first-order formalism, gauge transformations of both

and T'#,) should be made; in the second-order formalism,

only gauge transformations of «,, should be made.
The gauge variation of (4.1) has the form

Wo= / dx £4(%)[RunGMNx) +Run?GoNx)].  (4.8)

18L. D. Landau and E. M. Lifshitz, The Classical Theory of
Fields (Pergamon, London, 1962), 2nd ed.
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In the case ., = g the first term in (4.8) should be

written as

/ dz e (x)RAGa(x) . 4.9)

The second term in (4.8) is absent in the second-order
formalism. We use the following designations:

GP(x)=Ggy»(w)=6Wo/6g® (),  (4.10)
Gu(@)=G®,()=0W,/bgs"(x), (411)
G Mx)=0Wo/oTH\(x). (4.12)

Equation (4.12) exists in the second-order formalism
only. We find the differential operators R with the help
of (4.6) and (4.7):

R,\=R <ﬁ)ﬁ“’)\5 (26'— 1) 0,8 Y

+2Bg®,29, 4209, B 2\ +28® 00,  (4.13)
for the case ku,=g®,,;
RA=R® = (28—1)0,86)*+ 268 )" s
—26,0,8)"™ =260, (4.14)
for the case k., =g@*;
Run'=—0,T% =69, 7\ —87,'7,29,
+20\T%,,+ 217,00 —87,0,05.  (4.15)

Since the £#(x) are arbitrary, we obtain an important
identity from (4.8):

RunG™Ma)+Run"G, M (x)=0. (4.16)

Note that (4.16) is satisfied by arbitrary «,, and IT'*,,.
According to (4.16), four identities exist among the
Einstein equations. As noted in Sec. 11, this means that
four additional (gauge) conditions should be imposed
on ku and I'®, for consistent construction of the
quantum theory.

As in Sec. II, we shall use the method of Lagrange
multipliers. Consider the class of gauges determined by
the function

Yu=vu(x; ). (4.17)

Three concrete forms of the gauge functions will be
considered later. The Lagrangian is

L= Lo+, By#+3aBy#5,,By7, (4.18)

where §,, is the Minkowski tensor. The case a0 will
be considered only for these gauge functions (4.17)
which depend linearly on «,, and are independent
of T,

Byr(x) = / dy Dyt(a,y; 6, 1) B (y) . (4.19)

Varying (4.18) with respect to k,,, I'%, and B* we
obtain the field equations

_ o _
Yu=—abduBy, G4+ —B7=0,

OKuy

(4.20)
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in the case of the second-order formalism. In the first-
order formalism the following equation should be added:

WMo
G —Bo=0.
Brﬂv)\

(4.21)

With the help of the identity (4.16), we obtain the
following consequences of the field equations:

(Q*B") (%) =0, (4.22)
QWWE Q'puv(xyy; K,F)
W ( 5 ,T) W(y; k1)
=Ry ) — g ” ) —. (4.23)
a’(M(x) (91"")\7(06)

We impose the restriction on ¥, that in the limit
I‘”,,)\:O,

Kup=Opy ,

the operator (¥,, should be a nonsingular differential
operator Q®,,,. Choose the Dy function in the form

Dy4= [0y 1*Qunn®. (4.24)
Then the B field satisfies the free equation
Q0 ®,,B"=0. (4.25)

Therefore, the .S matrix is unitary, and the Einstein
equations are valid in the physical subspace.
The generating functional is equal to

Zb= / d(k,T)dB* expl:i / (Lot By

-]L-%OIB“BWB”—*-KM]””):I

1
=/d(K,F) exp\:t/dx(Lo— 2’1#;15“”‘!/1'-{—’{”1)]“”)
o

+Tr an,p(@,("))*‘:' . (4.26)

In the gauge

i.e., for a=0, we have

2= / Ak, T3 1, 1))

Xexp{i/dx(Lo—}—KW]“”)—{—Tr InQy(Qy @)1}, (4.27)
In (4.26) and (4.27), d(x,T) is equal to
II IT drw(=) (4.28)
X ,uSv

AND 1. V.
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in the second-order formalism, and to

II H d"w(x) H)\ dl\*(x)

z p<y AN

(4.29)

in the first-order formalism.

Note that the generating functionals (4.26), written
in terms of different variables g®¥v,, or g, do not
coincide in general. In this connection there arises the
question of a choice of “the true variables” (“the true
measure’) in terms of which the generating functional
can be written as the functional integral of exp(iL) over
“the true variables.” The proposed method does not
permit the value of the 8 to be determined. It could be
found in principle with the help of the correctly formu-
lated canonical formalism for the gravitational field.
However, we shall not investigate this problem in the
present work.

We now give some arguments which show that the
S matrix corresponding to the generating functional
(4.26) and (4.27) is independent of the choice of the
variables of the functional integration belonging to
class (4.5). Suppose we integrate over k', in (4.26). The
corresponding Jacobian has in general the form

d(x,1)/d(k,T) = Det*7x(x)8(x—7v) , (4.30)
where v is some number and
k(x)=detk,,(x) . (4.31)

Then we have

1
Z4 E/(l(xl,F) exp[i/dx(Lo— E—l//uts“"i//v’*‘Kw]"”)
«

+Tr 1HQ¢@¢(°))“1]

1
=/d(’C7P) exp[i/dx<[’0— ;‘Pnaw‘l/fi"‘uv 'W)

T 1nQ¢(—K>*@<°))*‘J

<

=/d(:<,F)dB” expl:i/dx(Lo—{—xp“Ep“
+%aB¢u5WB¢+K,,,Jw)} (4.26")

Byr(x) = (0 (=10 @B (). (4.19')

We can see from (4.26") that Z,¥ corresponds to the
field equations for s, I'%», and B* which are obtained
from (4.20)-(4.22) by the substitution By* — By~

- o
Y= _aBMVB\PV , G+ —B\lf‘r =Y, (420,)

Ky
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o _
G By =0, (4.21)
5F#y)\
(Quw*By)(x)=0. (4.22)

It is seen from (4.19’) and (4.22") that B satisfies the
free equation

0,®,,B'=0. (4.25")
Let us write [ —«(x) ]~ in the form
[—k@®) T r=1+a(x). (4.32)

The expression (4.19’) then acquires the form
Byu(a) = Byr(2)+ (QyaQyn O B) (x) . (4.33)

It is clear that in the second term of (4.33), integrating
by parts can change the direction of the Qy® operation
(at least in the perturbation theory) and one can use
(4.25).

Finally we observe that the field equations (4.20")-
(4.22") coincide with (4.20)-(4.22).

Thus the generating functional (4.26") leads to the
same field equations for k,,, I'\*, B#, and consequently
to the same .S matrix, as the generating functional
(4.26) does.

Note also that all the Heisenberg operators belonging
to class (4.5) must lead to the same .S matrix according
to the Borchers theorem. (We ignore the question of the
meaning of «',, as an operator function of «,,. See also
the analogous statement for the case of nonlinear
chiral Lagrangians in Ref. 19.)

Now we pass to the proof of gauge invariance. We
first prove that the .S matrix is independent of the type
of gauge condition

Yulr; 6,1)=0, (4.34)
i.e., that the .S matrix corresponding to the generating
functional (4.27) is independent of the form of the
function ¥,.

Define the function Ay(x,I") by the relation

wmmzmmm/@@nwmw&wn=L (4.35)

Here .S is an element of the coordinate gauge trans-
formation group, and du(S) is the measure of group
integration. (For more details on the coordinate gauge
transformation group see Ref. 12.)

Let us explain some peculiarities of the coordinate
group transformations. Under the transformation

(4.36)

198, Coleman, J. Wess, and B. Zumino, Phys. Rev. 177, 2239
(1969). .

ak— TH(x) ,
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the corresponding transformation of the metric tensor is

9z%(x) 9z°(x)
—8ap P (2), (4.37)
dx* O

gh(x) =2 #(x), J.(x)=detdz*(x)/0x",

B ® () = gu® () =T 22

(4.38)

and the Jacobian of the transformation of the integra-
tion measure d(k) is

DﬂE d(gﬂv(ﬂ)')/d(gw (ﬂ)>

=DetJ > 208(x)6'%(z(x) —y). (4.39)

In order to calculate the Dg, we note that the matrix
inverse to the 6(z(x) —y) is

8(x—2(y))7-(y).

If we formally use the rule of the calculation of the
determinant of the product of the matrices, then

(4.40)

Detd(z(x) —y)=Det=V2J (x)6(x—y). (4.41)
If
DetJ.(x)o(x—y)#1, (4.42)
then the invariant gravitation measure is
IT 11 dg..(x). (4.43)
x MSV

This result does not agree with the form of the invariant
measure

ITIT g=" (@)dgu(@) =TT II dgw =" (),

x }LSV z vy

(4.44)

which is proposed by a number of authors.20

Note that the integration measure over the group of
the gauge coordinate transformations has a form!2
which is analogous to (4.39):

dur=Det*J z(x)6(z(x) —y) T dz*(x), (4.45)

dur=Det 1 z(x)6(x—y) [ di*(x). (4.46)

If (4.42) is true, then the left and the right measures
are different. When proving the gauge independence of
the § matrix, this fact should be taken into account
[in particular, in (4.35) one should use the duy,].

The formal proof of the invariance of the .S matrix
can be made in the general case DetJ(x)d(x—vy)>1 (then
it is necessary to assume the B-independence of the
S matrix). However, taking into account that the
arbitrary functions z#(x) are the coordinates themselves,
we can expect that

DetJ(x)6(x—y)=1. (4.47)
Indeed, the 6(z(x) —v) can be considered as the matrix
% C. W. Misner, Rev. Mod. Phys. 29,497 (1957); J. R. Klauder,

Nuovo Cimento 19, 1059 (1961); B. Laurent, Arkiv Fysik 16,
279 (1959); B. S. DeWitt, J. Math. Phys. 3, 1073 (1962).
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of the permutation of the points. The corresponding
finite-dimensional matrix has determinant 1. Therefore,
the 8(z(x) —y) has determinant 1 if it is calculated by
the use of the finite-dimensional approximations. In
this case (4.47) follows from (4.41) and

dur=dug =d,u=H df”(.&‘) . (448)
T,p

Furthermore, du has the property (2.44), and the

measures d(x) and d(x,I") for arbitrary 8’s are invariant

under the gauge coordinate transformations. Below we

assume that (4.47) is true.

As in Sec. II the property (2.44) enables one to prove
the gauge invariance of Ay(k,I'). We must know the
function Ay(x,I") only for «,, and T'%, satisfying the
condition (4.34). In this case the group integral is con-
centrated in the neighborhood of the unit element. The
gauge transformations have the form (4.6), (4.7), and

du(S) =11 d&#(x). (4.49)

As in Sec. II we obtain

Ay (#,T) | pu—o
= / de(w) 6{(0u¥7e) (x)} =Det™1Qy. (4.50)

Keeping (4.50) in mind, the expression (4.27) can be
rewritten in the form

ZO\#=</d(’<)r)5{‘xl/ﬂ(x;K’F)}A\”(K’Iw>

Xexp[i/cix(Lo—i—xp,]“”)]. (4.51)

Consider another gauge condition:
Yl (,T)=0. (4.52)
Multiply (4.51) by ¢éy1(k,T') and perform the gauge
transformation

-1 -1
Kup = K5, Ty — T8,

The quantities Lo, Ay, and Ay: are invariant. Further-
more, the following substitution can be made on the
mass shell:

KT TR — ke, TR

(4.53)

as discussed in Sec. II.
Then we obtain

Zo‘l/lm.s.‘:/d(":r)/dﬂ(s) B{IP#(OC’,K,F)}A¢(K,F)5{lp“1}

KAy ,eXp[i / dx(lzo+ww):|=znw‘l ms . (4.54)

AND [. V.
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Thus we prove that the S matrix of the gravitation field
is independent of the type of gauge condition (4.34).

The proof that the .S matrix is independent of the
a’s for the case when the gauge function is fixed can be
made similarly to Sec. IT. For this purpose substitution
of (4.6) or (4.6’) should be made in expression (4.26)

with
gr(a) = —(6/20) ([Qy" " ]¥¢¥) (). (4.55)
Then
1
Lo— —¢,.6"Y,~+kuJ ™ — L
2a .
— "tk (4.56)

2(a+dcr)

and the variation of the term Tr In in (4.26) is compen-
sated by the resulting Jacobian. We omit the corre-
sponding cumbersome calculations.?

Let us pass to the consideration of some particular
gauges.

A. Harmonic Condition

Consider the class of gauges determined by the

function
Yr@)=04v ), =K —gg. (457
The harmonic condition corresponds to
Yi#=0. (4.58)

We shall use g* as independent variables. By means of
(4.14) (with B=3%), (4.23), and (4.24), we find

Q1#,=8%(82 00, + hgr?d,)+ 0\gr+d,.  (4.59)

The generating functional is equal to*!

1
Z;:/d(g) exp[ifdx(l.o— z-zpl#awapﬁ—g#d,‘,)

a

+Tr 1nQ1‘|j—1]. (4.60)

In transverse gauge (a=0), we have

Zii= / i(@) exp[i / dx(Lot27,)

+4Tr lng"”a,,ayﬁ“‘:lé{ 0,87 (x)}. (4.61)

The Feynman rules for calculation of the generating
functional (4.60) in powers of

e (4.62)

# E. S. Fradkin and I. V. Tyutin, CNR Laboratorio di Ciber-
netica report, Napoli, 1969 (unpublished).

;L"”'E gr— o
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are

(2) Llne=Lo—(1/20)8,h*8,,0,h** — L (o)
—i Tr In{8,*+[ (A 99,
+0\h299,)8,44+ 0k, 100} . (4.63)

These are taken as the interaction Lagrangian.
(b) L' is the Lagrangian of the linearized theory
Lyt=10"h73,hn—[(a+1)/2a]0,h* o,
—19,horh, h=s,h». (4.64)
The lowering and raising of indices in (4.64) are done
by the Minkowski tensors §,, and 6*".

(c) The free propagator of A# is calculated from
(4.64) to be

Dlnv,)\f(p) - "‘1.|:(2+a)5“y5)\a_5“)\6'“7—6'“”6’))‘

2(a+1)

2

(3w p po+-8>prp)

a-+

1
+ (6;1)\?1;?:7_{_5”:71)1!?)\
P2

_{_BlleuPa_{__awpﬂp)\)} (465)

1
52
The Feynman rules for the gravitational field in the

gauge 9,*=0 were also obtained by Fadeev and
Popov.?

B. Linearized Form of Harmonic Condition

Consider the class of gauges described by the function

Y= B”X(aag)‘“—%a,‘g)‘,) . (4.60)

We choose g,, as independent variables. We then obtain
with the help of (4.13) (with 3=0), (4.32), and (4.24)

Qu*= guw0+ (0a8us—39,uga8)

X (870 ,8,0+ 6780,6,°—283,) . (4.67)

The generating functional is?

1
Zt= / d(g) epr:i / dx<Lo— 2—%25"%2"}‘&»] . ”)
Q
+Tr 1nQ25-1]. (4.68)

The Feynman rules for the perturbation calculation of
(4.68) in powers of

(4.69)

/IMVE Bur— 6#»

AND GRAVITATIONAL FIELDS 2855
are
(a) Lins®= Lo—(1/2a)¢,20"¢.2— L (0)*
—1 Tr In{8u+ [ A0+ (0abign—%0ukt54)
X (729,884 8789,6,2—8°03,) JO1} . (4.70)

These should be taken as the interaction Lagrangian.
(b) L(? is the Lagrangian of the linearized theory

a+1
L= %a,,h,,)\a“/’ly)‘ — ——8,.# M,
20
a+1 2041
+ ——0,h0,h — ——08,hd*h, h=0"h,,. (4.71)
20 8a

The raising of indices in (4.71) is accomplished by the
Minkowski tensor #.

(c) The free propagator of %, is calculated from
(4.71) to be

Dnv,)\v2(P) = -i[(suv‘s)\a - 6#)\51«7 - 6#06;')\
+ [:(a+ 1)/P2](5#)\Pvpv+ OuoDrPr
+ 5»)\ﬁ,¢P¢+ 6;'0'?;4?)\)]?—2 . (4 72)

The Feynman rules for a= —1 were also given by
Mandelstam.®

C. Dirac Gauge

We give the arguments which show that the .S matrix
obtained by Popov and Faddeev® in the Dirac gauge”
coincides with the .S matrix in the covariant gauges.
Consider the following set of gauge conditions:

V= (V=T =0,
Yik= 9, (—g®) V3 ]=0. (4.73)
Here

g@=detga, g=(1/g")3?, *74)

In gauge (4.73) it is natural to use the first-order
formalism. We choose g# and TI'%4, as independent
variables. With the help of (4.14) (with 8=0), (4.15),
and (4.23) one finds

Q“30= [—25,-6“"‘1"'0;;0—25i(g°"’/g°°)e“l‘lk“

e““gkj= 3]" .

+ 9. i — e W —g, (4.75)
s%=0, (4.76)
Qlgg= —29; T — 6 —g®)3(4g,€499,—8:9,),  (4.77)
Ti=(1/g")g" e (—g @)
X (3gime*70r—50m?01—%6,70,) , (4.78)
Qlsi= —%0:(—g®) %e"d,

+-87(—g®)13em3,0,,. (4.79)

From (4.75)-(4.79), we obtain

Qs 0=y , Qs(ﬂ)ji= _5jiv_%5¢tal(')i ,

3@ 0= (M i=0). (4.80)
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The generating functional is

ASS / d(g#,I)s{¥s} exp[i / dx(Lotg*J )
+Tr InQs"V—14Tr lnBji(Q3<°>*1)kf} , (4.81)

Bji=Qy"i = (—g®)3(5;%¢"™0:10.n+5€0:9;) .

According to the general arguments given in this
section, the generating functional (4.81) on the mass
shell is equivalent to (4.60), (4.61), and (4.68).

Now we transform expression (4.75). Using (4.25)
and (4.80) the field equations for B can be obtained:

VBo=0, (5;V+1679,0,)B;=0.  (4.82)
The only physical solution of (4.82) is B,=0. Thus g~
and T,\* satisfy (4.20) and (4.21) with B,®=0; i.e.,
relations (4.4) for T,\* are valid, and g* satisfies the
usual Einstein equations.

Substituting (4.4) into (4.75), one obtains

Q30°= (v/—g®)e*V;35(v/a)
—(Va) (v —g®)eV,0y,

Vi0r=0;0r—v%%x0;.

(4.83)
(4.84)

Here 7' is the three-dimensional Christoffel symbol,
and a= (g%)~L. Let us find the expression for I'%; with
the help of the Einstein equations for g*, and substitute
it into the relation

6“".13‘0%—,—6.%110% = ¢30___ 0 5 (485)

which must be true according to (4.73). From (4.85) one
obtains

(/=g )erTid(v/a)+ (va) (v —g )R =0.

Here R®=¢*R® ;. and R® is the three-dimensional
curvature tensor of second rank.
Finally, the expression for Q3° takes the form

Q3"= —(Va)4,
A=(/—g®)R®4(/—g®)e*V,0;.

(4.86)

(4.87)
(4.88)

Thus we can see that the expression
7= f (g, D)o} exp[i / da(Lotg#7 )
+Tr IndA+/a+Tr InBj#—Tr 1nQ3(°>:| (4.89)

for the generating functional with gauge condition
(4.73) can be used instead of (4.81). The generating
functional (4.89) leads to the same field equations for

FRADKIN AND TI.
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g# and T',\* and consequently to the same .S matrix as
(4.81) does.

Now let us integrate in (4.89) over all the I'%,, except
T'%;. One can show® that L, takes the form

Lo— n¥%G;—H(m,g). (4.90)
Here H(w,g) is the Hamiltonian of the gravitation

field, the explicit form of which we do not need. =% are
the canonical momenta for g;:

b= [\/( _g(s))/\/goﬂ:}(eikelm _eilekm) Folm .

With the help of (4.91) the gauge condition (4.73)
can be rewritten exactly in the form given by Dirac!”:

(4.91)

= gar=0, Yi=0L(—g®) ek]=0. (4.92)

Let us pass from the integration over I'%;;, and g* in
(4.89) to the integration over 7** and g,,. The resulting
Jacobian can be omitted. The proof of this fact is
analogous to that of the possibility of arbitrary choice
of the functional integration variables belonging to
class (4.5).

The final expression for the generating functional in
gauge (4.73) or (4.92) is

2'= [ gty
X explii/dac(w”“g’ik —H (m,g)+gaJ *)
+TrInAV-14Tr lan(Qa(")—l)kf]. (4.93)

Expression (4.93) has been obtained by Popov and
Faddeev® with the help of another method closely
connected with the canonical quantization procedure.

Note once more that the .S matrix corresponding to
(4.93) is equal to that in covariant gauges.

V. CONCLUSION

The present paper has been devoted to constructing
the .S matrix in theories invariant under gauge groups.
Though the only cases considered were those of the
Yang-Mills field and gravitation, the method developed
can in principle be applied to arbitrary theories (the
theories of the Yang-Mills and the gravitational fields
are apparently the only gauge theories of physical
interest!?), particularly in the cases where no connection
with the canonical scheme can be traced. Furthermore,
the method suggested proves to be convenient for con-
structing the perturbation expansion of the .S matrix in
theories partially invariant under a gauge group, the
power of divergence in the .S matrix being considerably
reduced.
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In this paper no attention was paid to possible inter-
actions with other particles. The latter would not affect
our considerations, however.

We would like to discuss briefly the problems which
have not yet been solved.

(1) Owing to divergences, there is an important
problem of introducing a regularization which will not
affect the group properties of the theory. Recall that
non-gauge-invariant regularization in electrodynamics
creates the photon mass. From the more recent view, the
resulting photon mass is due to Schwinger terms or, in
the end, to the singular character of products of field
operators at coincident points. In nonlinear theories
this problem becomes even more complicated. The
Schwinger terms affect even the renormalization con-
stant, as for instance in the case of the Yang-Mills
field.

(2) There is an interesting question whether the
gravitation field is renormalizable in the framework of
perturbation theory. (We mean here the usual perturba-
tion expansion with respect to a coupling constant and

PHYSICAL REVIEW D

VOLUME 2,

2857

not the method of Fradkin and Efimov.2?) It is con-
venient to treat this problem using the variables A* and
I in the first-order formalism where there are two
vertices: a vertex I'T'h and the vertex responsible for the
interaction of 4# with the fictitious B field. The formal
estimate of degrees of growth leads to the conclusion
that the theory is of unrenormalizable type.
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Formulation of Dual Theory in Terms of Functional Integrations*
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A formulation of dual-symmetric theory is given in terms of functional integrations. Known formulas of
the theory, such as the N-particle Veneziano amplitude and both planar and nonplanar one-loop amplitudes,
are explicitly given in terms of the new formulation. The new formulation is also shown to be equivalent to
the other formulations such as the harmonic-oscillator formulation.

I. INTRODUCTION

ITH the invention of the harmonic-oscillator
formalism' of the dual-symmetric model, con-
siderable advances have been made in the calculational
technique of dual scattering amplitudes? and in their
renormalization.? - As shown by Nambu,* a hadron in
this model may be described in terms of a master wave
function which depends on an infinite number of space-
time coordinates (we may simply call it a wave func-
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tional). In order to incorporate unitarity into the theory,
one must face the problem of second quantization of
this master wave functional. Since the master wave
functional is super-nonlocal, the standard canonical
quantization method meets considerable difficulties. It
would be much easier, to follow the space-time approach,
such as the one Nielsen® has proposed for the N-particle
Veneziano amplitudes.

As a first step in this direction, we try to formulate
some of the known formulas of the theory, such as
N-particle Veneziano amplitudes and one-loop ampli-
tudes® (both planar and nonplanar) in terms of Feyn-
man’s path (functional) integrals. There are several
advantages in this formulation. (i) The N-particle
Veneziano amplitude is manifestly symmetric with

5H. B. Nielsen, Nordita report, 1969 (unpublished). We
gratefully acknowledge the access of this paper from which many
of the ideas of the present paper were gotten. See also L. Susskind,
Yeshiva report (unpublished).
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