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root singularities at m; cos o.= k . The simple pole,
treated as a principal value, is not necessarily fatal to
the Gaussian sum if the discrete o.'s are arranged sym-
metrically about the pole, as they are. However, the
square-root singularities, which appear at the edges of
the integration interval at k=0, and move into the
interior of the interval for k) 0, cause the convergence

difhculty for bound states near threshold to which we
have referred, and are fatal for scattering. What this
means is that regardless of the auxiliary functions or
methods used in the differential approach, the boundary
conditions at x== ~ inherent in that method do not
approximate or converge to the true asymptotic bound-

ary conditions. One may expect—and this was the case
in a test calculation we performed —that the calculated

scattering phase shift oscillates about the correct result
without convergence as E —+~, being either too large
or too small depending on how the discrete n's for the
relevant 1V (whether or not the calculation explicitly
uses them) lie in the interval (0,7r) with respect to the
singular points. A modi6cation of the differential ap-
proach which circumvents this difhculty is given in the
following paper.
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A systematic study of the Bethe-Salpeter relativistic two-body equation is continued. The equation is
treated in Wick-rotated coordinate space. A bilinear combination of functions, called a bracket, is defined. Its
relation to scattering amplitudes and their residues at poles, and to questions of structure of the equation
and numerical accuracy of solutions, is developed. N and D matrices similar to the Jost function of potential
theory are defined in terms of complete sets of solutions to the equation characterized by appropriate bound-
ary conditions. Scattering and bound-state properties are defined in terms of them, by formulas analogous
to the N/D methods of S-matrix theory, and properties of symmetry, unitarity, and behavior at poles are
derived. Various methods for computing wave functions and bound-state and scattering data are presented,
A generalization of the variable-phase method of potential theory, which substitutes for the Bethe-Salpeter
equation a coupled set of ordinary linear first-order differential equations, is given,

I. INTRODUCTION

HIS paper is the second in a series entitled
"Methods for the Bethe-Salpeter Equation. "We

shall assume familiarity with the principal parts of the
first paper, ' hereafter referred to as MBS I, and use its
notation without redefinition.

The general objective is to "make friends with the
Bethe-Salpeter equation (BSE)," ultimately to exploit
it as a familiar and benign tool in a meaningful study of
strong interactions. In MBS I, the special functions
relevant to a scalar BSK were assembled and the
truncation of spherical harmonic expansions was
analyzed in terms of various representations of Green's

* Work supported in part by the U. S. Atomic Energy Com-
mission, and by the Air Force Ofhce of Scientific Research, Con-
tract No. F44620-70-C-0028.

~ D. Kershaw, H. Snodgrass, and C. Zemach, preceding paper,
Phys. Rev. D 2, 2806 (j.970).

functions. Here, we build a structure for the BSEwhich
parallels both formal and physical aspects of the non-
relativistic problem. Because of the presence of the
relative time variable, which is an essential feature of 3
relativistic theory with retarded interactions, andwhich
signals the coupling of two-body systems to systems of
many particles, the parallel is to a multichannel system
even though the BSE, outwardly at least, refers only to
a one-channel two-body problem.

We treat sets of solutions at a given energy and
angular momentum, characterized by regular and
singular boundary conditions. In terms of them, LV

ancl D matrices similar to the tost functions of potential
theory' are defIned and dynamical problems are posed
in a manner amenable to calculation. The basic prop-
perties of symmetry, unitarity, and separability of
residues at poles are derived. Several calculational pro-

2 R. Jost, Helv. Phys. Acta 20, 256 (1947).
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cedures for the wave functions and physical parameters
of interacting systems are given. Another paper will

present model calculations.
Our version of the N/D method has a reduction to

potential theory, where it is equivalent to the Jost-
function formalism when the latter is well defined. But
the present method is more general. It applies to a wider
class of potentials, including singular ones. This broader
applicability is necessary for the relativistic case where,
even for the one-variable BSE at E=0 and the scalar-
exchange potential, the usual Jost approach breaks
down. '

In Sec. II, an analytic tool is developed which we call
the bracket $p,fj of two functions p and f. It is a,

generalization of the bilinear form that appears in the
I.agrange identity4 in the theory of ordinary differential
equations. The BSE, after reduction to partial waves,
is still a partial differential equation in two variables;
the applicability of this tool depends on the fact that
boundary conditions can be expressed in terms of only
one variable. A preliminary discussion is given on
brackets for the Schrodinger equation, as an orienta-
tion, and here the bracket appears as a matrix element
of the Aux operator, integrated over the surface of a
sphere centered at the origin.

In Sec. III, the structure of complete sets of functions
and their boundary conditions, brackets, and connect-
ing relations are developed.

Section IV contains the development of the LV and D
matrices, their connection to bound-state and scattering
problems, and a comparison with the formalism of Jost
functions.

In Sec. V, certain complete families of functions which

solve the free BSE, called channel functions, are defined

and their numerical computation through summation of
power series is outlined. The channel functions are
analogs for the BSE of the spherical Bessel and Hankel
functions of potential theory, and, for computation
purposes, are more useful than the vector Bessel func-
tions constructed in MBS I. They enter into the con-
struction of Green's functions, and the X and D
matrices, and into the explicit formulation of dynamical
problems.

The next three sections present methods for doing
dynamics, i.e., for obtaining bound states and scattering
once the interaction is specified. Section VI details the
Ã/D method and includes a discussion of bound-state
normalizations. Because of the correspondence to the
E/D method of S-matrix theory, comparisons between
BSE and 5-matrix calculations based on the same

physical hypotheses are possible not only for output
quantities, but also for more basic ingredients such as
the D function itself.

'R. Haymaker and R. Blankenbecler, Phys, Rev. 186, 1648
(1.969). However, Haymaker and Blankenbecler surmounted
the difBculty in this case by a technique for subtracting out
divergences.

4K. Coddington and N. Levinson, Theory of OrChncry Differ-
enthal Eqgathons {McGraw-Hill, New York, 1955).

Section VII describes the use of truncated spherical
harmonic expansions. Section VIII shows how to ob-
tain the E and D matrices and the wave function for
the dynamical system from a set of coupled first-order
differential equations. This procedure can be regarded
both as generalization of the variable phase method of
potential theory, as developed by Calogero and others,
and also as an adaptation of the Inethod of variation of
constants of ordinary differential equation theory.

Ke are not ready to treat all sources of complexity
at once; as in MBS I, the particles are scalar and the
energy is either in the bound-state region

~
mi' —m~'~ '"

&L«mi+m2, or the scattering region below inelastic
threshold. Then the condition of elastic unitarity applies
and the Kick rotation is valid for both the differential
and integral BSE.We use the BSE in coordinate space
in the Wick-rotated form.

The discussion frequently draws the distinction be-
tween regular and singular boundary conditions. This
follows the extraction of total momentum and angular
momentum; i.e., 4'(xi, x~) = e' ~ ~Pi(03,@)P'(x,9), and
P(x, g) is the subject of study.

The regular conditions arise from the causality re-
quirement which is incorporated into the Green's
functions through the m —+m —ie rule, and then into
the wave functions via the integral version of the BSE:

where
or (1.3)

,= +(u, cosn+(cu,' cos'n —k')"' i,= 1 2. (1.4)

The spectrum of the X,; is limited to a finite range of
values, including some in the scattering case with nega-
tive imaginary part, as is discussed fully in MRS I.
Singular behavior at infinity, acceptable to the dif-
ferential equation, but not to causality, would encom-

P= GUQ (bound state) (1.1a,)
=j &(kr)+GUf (scattering). (1.1b)

One might avoid Green's functions altogether, and con-
nect up the properties of the differential equation with
the notion of particle Aux, but the above approach is
standard and perhaps, for this reason, easier. The
bounding behavior of P can be read off from one of the
representations of the Green's function listed in
MBS I.

To obtain a precise statement of regularity in a form
which will prove useful, let 1t be expanded in spherica, l

harmonics:
(1.2)

At the origin of x, (1.1) implies the finiteness of ea,ch
P„(x) and perhaps more, but this is sufficient. Referring
to the harmonic expansion of the Green's function
LtVIBS I, Eq. (5.23)j and (1.1), we find each 1t„(x)
represented as a superposition of terms indexed by an
angular parameter o., 0&o.&x. As x —+~, the term in o.

requires asymptotic behavior of type
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pass terms like

(1.5)

Then Eq. (2.5) provides a formula for the scattering
amplitude in terms of a bracket:

ModiCications of this framework may be required by
ill-behaved interactions, but can be treated as they
come up.

II. BRACKETS

A. Noorelativistic Brackets

In a nonrelativistic context described by

2'
f(k'~k) = dr e '""V(r)It,(r)

4z

or, equivalently,

(2.9)

(E+7'/2m)i/(r) = V(r)g(r),

the "bracket" [$,It j between Q(r) and f(r),

(2.1)

8$ Btt
'dQ ~——/-

Br Br
(2.2)

is a convenient tool for the analysis of scattering and
other properties, particularly if one does not choose to
invoke the integral formulation of the Schrodinger
equation. For Q=P*, it measures the flux of particles
out of a sphere of radius r and so has an immediate
physical interpretation. It is a function of r only, linear
in both @ and P, and vanishes at r=0 if P and ij are
regular at the origin.

Suppose that

f(k'+- k) = —(4') '[e—"',X,f„„„.
Secondly, consider the inequalities

[It-i,Aj=0,
B~ *,It~7= o.

(2.10)

(2.11)

(2.12)

f(k'& k) =—f( k+———k') . (2.13)

In the same way, (2.12) delivers the unitarity statement

The brackets of (2.11) and (2.12) are constant because
pi„II' k, and fi, * all satisfy (2.1). The equalities are
evidently valid at r=0, and hence at all r. Now sub-
stitute (2.6) and the analogous form for P i, into (2.11)
and apply formula (2.10).One of the terms that appears
is [X i, (r),Xk(r)$, but this vanishes as r —+~ in virtue
of (2.8). The result is the time-reversal property,

(E+V'/2m) P(r) =- 0. f(k'+ k) —f*(k&——k')

Multiply (2.1) by p(r), multiply (2.3) by It (r), subtract,
and integrate over dr, applying Green's theorem. Then

k
dQk«

4x

2m dr p(r) V(r)It (r)r'dQ B. Brackets for BSE

and, in particular, if both p and tt are regular at the
origin,

2m g(r) V(r)It(r)dr=)&, i/j„„. (2.5)

II.(r) = e' '+X„(r),
where, a,s r ~~,

X„(r)= (e'""/r) f+O(r ') .

Equation (2.7) implies, as r ~~, that

(2.6)

(2 7)

(2.8)

This argument also shows that if P and f satisfy the
same equation, i.e., either (2.1) or (2.3), then [g,It]
is a constant independent of r.

We note briefly some uses of this concept in potential
theory which will ha, ve their generalizations for the
BSE.

Firstly, let It i,(r) be the outgoing solution of (2.1)
for momentum k, i.e., regular at the origin and

Z, = '+I ' 2~,a/(ar), — (2.15a)

Given a family of functions i/ upon which a partial
differential operator acts and a family of functions P
upon which the transposed operator acts, one may
attempt to construct a bilinear function of P and P
similar to the form that enters into the "identity of
Langrange" in the theory of ordinary differential equa-
tions and which may serve simila, r purposes.

For the SchrOdinger equation, the appropriate de6ni-
tion was given in the previous section; the bilinear
function is essentially a matrix element of the Aux

operator.
For the Wick-rotated BSE, it is natural to regard x

as the interesting variable in such a construction and to
integrate over the angular variables. Thus, we shall
define the bracket [&,It7 of functions p(x„) and p(x„)
as afunction of x only, in a way which parallels the
treatment of the nonrelativistic case above. We shall
also write [g,P], when the point x at which the bracket
is evaluated deserves erriphasis.

As a preliminary, we define "second-order" brackets
(@,p)"' and (p, It) i", associated, respectively, with the
second-order operators Zi and ~,,
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S l ter equation Th

ord aes
f(8/8) M g lly 'f

are expressed in coordinates ~; w i
ta,ngular than the Jacobian J(f), where)

d4x= J($)d4$, (2.16)

(2.17)

It follows that

efinition of transpose. One writes down

Jul(2;f), integrates by parts, and carries e i
tions through J to get

J(&A)4 =; ) = J@(X).g)+(derivative terms) .

=x" sin'8 —(40)
Br

= —(x' sin'8 cos8 PP)

d——(x' sin'8 yP) . (2.25)
do

the d d8 term of (2.25)
vanish when the integration over angle is carrie ou .

Thus we infer romf 2.21) the explicit definition

(P P) &'& = x' sin'8

losed volume

Jd'kL(& 4)0—0(& 0)7
= surface terms. (2.18)

Xd8 Q
——P——(2coi cos8)gf . ( .
dg (jg

2.26)
dx dx

.t' to be exploited. V~'eTh' '
the essential proper yT- is is

)(') as.begin by characterizing (P,P~ as

d
x' sin'8 d8dQtpZ, Q (@,4')—pg= (g,p)—(1) (2 19)

Similarly,

d
x' sin'8 d8L1t X)gP —(Z~y)gj = —Q,ig) "' 2.27

iatel introduce a notational simp
'

lihcation.
s in MBS I, that all functions carry

YI in the @ function . The s a,re n
usual way:

Xd8 Q
—f +(2cug c—os8—)I|1/
dP ($g

2.28)
dg dx

I'I (84,$)*VI (84,11)dQ=1. (2.20)
(2.29)'8d8LOPs, g,y —(g),g~,g)gj = —L~,lt, 29

on 03 + can be replaced byThen the dependence of Z)I on
and (2.19) can be rewrittendependence on, an h t the left-hand side of (2.29) eclualsIt is easy to see t a e

with If1= Itl(x, 8), f=$—(x,8—
The operator X)lean be separa, te in o par

'Zl D 2~18/(Br—)—, — (2.22)

—(4,&20) '"+—(~ie,k) ',
dx ds

so we may define the BSE bracket by

I 443= (A&24) "'+(&14,%)"'.

(2.30)

(2.31a,)

where
d' 3d

+
ds s dS s

(2.23)

~ ~

An equivalent definition is

L4»4j= (4,&14)"'+(~~44) '" (2.31b)

angular momentum, is written out in
Observe the identities

d dP dp )
x'(QDIf fD@)= —x' g————

—xLA~V=P&'&j,

'c ex ansions of P and QLet the spherical harmonic exp
be given b

rk. we re uire the explicit expressionsFol practical work, we 1eqlllr
for the brac e s in

2, 24) g„(x). Diligent application o e ru
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tion leads to

(O,tt) "'=*'Z (g-f-' g-—'f-
2—~iA-(g-f- i+-g- if--)) (2 33a)

(4A) "'=x' 2 (g-f-' g-—'f.
+2~qA-(g-f- i+g-- if. )-) (2 33b)

[&,1th=*'2 (g-f-"' g-'f—-"+g-"f-' g."—'f
+3(gnfn" gn"f-n)/x

[4—i~qPn 2k'—+ (»'+4&+3)/x' j(gn fn' g.'—f-)
4piipi&C4n[gnfn q +gn—qfn —gn fn Z , gn—q fn-

+2ri(gn 2fn —gnfn 2)/x7+—2(cp2 cpl)An

X[X(g,f)+X(f,g)J), (2 34)
where

X(g&f) = gn fn i+gn ——i fn gn fn i +k gn—fn i-
+[(1—rt)g„ i'f +(rt+2)g 'f. i7/x

—(n'+n+1)g f i/x', (2.35)

and where A „,ct„, and P„are given in MBS I, Eq. (2.16).
The general property underlying the use of the

bracket is the following. Let

Suppose we have complete sets (It") and (g„} of
solutions to a, BSE and its transpose. Then arbitrary
solutions + and 4 can be expressed a,s linear combina-
tions (repeated indices are summed):

O'=P"c, C=d"p . (2.42)

If we worl with one of the truncated approximations
to the BSE, a complete set of solutions will have finitely
many members. But in general, there will be infinitely
many terms in (2.42). In MBS I, we have even con-
sidered a class of solutions I( ') for the exact, free-
particle BSE where the index o, was a continuous
variable.

All the brackets
[y pm] B m (2.43)

x —+~, and evaluated for various x. The number of
decimals to which the computed brackets are constant
as x varies is a measure of the accuracy of the calcula-
tion. In our experience, it has proved to be a sufhcient
measure of accuracy.

Z. Complete Sets of Solutions

Zipent (x,tt) = A (x,tI),

S2i,y(x, g) =B(x,tt) .
(2.36a)

(2.36b)

will be constant. If arbitrary linear conibinations are
taken,

Multiply (2.36a) by p, (2.36b) by It, subtract, and
integrate over x and 0. Then, we have

then in terms of the transformed functions, we have,
dropping the primes,

x'dx sin'0
$1

Xdtt[P(x, tl)A(x, &) —B(x,tt)tt(x, tl)j. (2.37)

[y Pm] —A yB qc m

If the transformations are managed so tha, t

[$„,P j= 5„"'/p (no sum on n),

(2.45)

(2.46)

In particular, if

then

Qi%qIt = P'P

ZiZqg= 0,

(2.38a)

(2.38b)

[4k,fj„[4k,iP]p = P vl—t x' sin'tl dx(N. (2.39)

we may say that the solutions to the equation and its
transpose have been arranged in conjugate pairs and
that g "}and (p,„}are bi-orthogonal sets. This was
done explicitly in MBS I for the I& '&, E' ') of the
truncated problem.

Assuming now that the It 's a.nd p's satisfy (2.46), we
can solve for the coefficients c„of (2.42) by computing
[P„,%'7. Thus, we have

G. Some Properties of Brackets

1. Brackets of Solutions

If It and p both satisfy the free BSE,

ZiZq&= 0, ~i~sq4 =o, (2.40)

and also

Furthermore,

+=~t™P-[4-Pj

[CP3= [4',It "lp-9-P3

(2.47a)

(2.47b)

(2.48)

or both satisfy the BSE with interactions, '

ZiZqtt = Vtt, ZiZqg =P V, (2.41)

then by (2.37), [4k,fg, is a constant, characteristic of the
solutions p and f, but independent of the coordinate
variable x.

In numerical work, one calculates families of solutions
defined, perhaps, by boundary conditions at x=0 or

' Of course @V=V@ if V= V(x) is a function. The notation of
(2.41) anticipates non local interactionp.

e—a r V(x )f(x„)d4x, (2.49)f(k'& k) = ———
8mB

' C. ,}chart@ and C, Zem@ch, Phys. Rev. 141, 1454 (1966'}.

which resembles the procedure for insertion of inter-
mediate states into a quantum-mechanical scalar
product.

3. Scattering Amplitude

The formula for the scattering amplitude f(k'4—k) is'
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where it (x„) satisfies By MBS I, Eq. (5.56c) we have

1 sin(k(r —r'~)
ImG(x„,x„')=

8m'. fr —r'
f

k

G(x„,x„')U(x„')tP(x„')d'x„'. (2.50)p(x ) hark r+

Q (2l+1)
8~8

(2.51a)e 'k''=P (—i)'(2t+1)P&(k' r) j&(kr),

lt (x„)=P (i)'(21+1)Pi(r" k)P((x,g),

XPi(r r') ji(kr) ji(kr'), (2.58)

(2.51b) and hence, comparing with (2.51c),

The partial-wave reductions for these functions are

G(x„,x„')=P (4 ) '(2l+1)Pi(r". r"')

XG&"(x,g; x',8'), (2.51c)

Grt" (x,g; x', 8') = (0/2E) j&(kr) j&(kr') . (2.59)

Substituting this into (2.54), we haver

f(k'~ k) =P (2l+1)Pi(k' k)f(, (2.51d)

gati=

jl(&r)(1+i&fl)+ GR"'Ukl. (2.60)
where the relation of partial-wave amplitude to phase
shift (below inelastic threshold) is Hence, p& as defined by

f,= (1/k)e'" sinai. (2.52)
satisfies

@,(x,g) =it, (x,g)/(1+ik f,) (2.61)

In reducing (2.49) and (2.50), the projection property
of the Legendre polynomials is best expressed by 4i= ji+ Gii"'U4i (2.62)

(2t+1)Pi(k' r)dQP&(r' k) =4~Pi(k' k).

Then we have

f&
— j&(tpr——) U(x)P&(x, g)x' sin'8 dxdg,

2E

with it i(x,g) obeying

P, (x,g) =j,(kr)+ G«l(x 8 x' 8')

(2 53) and is clearly real. It satisfies the same diff erential
BSE as if&, from which it differs by a constant factor. A
speci6cation of its asymptotic boundary conditions
will be given later.

Replacing P~ in (2.56) in terms of gi and recalling
that (e" sinB) '=cotg —i, we obtain

tanb& ——(tp/2E) [j,,P,)„.
In practice, we calculate pi and tan8i rather than

gati

and l.

4. Output Coupling Constant

Consider a reaction at energy E through the an-

X U(x y(x g )x P s;nsg~ dx dg& (2 55) nihilation Process

An explicit form for G&'&(x,g; x', 8') is given in MBS I,
Eq. (5.12).

Since p& and j& satisfy (2.38a) and (2.38b), respec-
tively, Eq. (2.39) may be applied. Because p& and j[
are regular at the origin, and the definition of bracket
carries a factor of x', [jigati)p=0. Therefore, the partial-
wave scattering amplitude is given by

1+2—& 3 —+ 1+2. (2.64)

I.et particle 3 have mass Ep, Ep(nsr+rnp. The coupling
strength at each vertex is g. Particles 1 and 2 continue
to have zero spin. The normalization of g may be
standardized by citing the interaction Lagrangian for
the three-particle vertex. If the particles belong to
diferent fields Pi(x), Ps(x), and gp(x) and particle 3 also
has spin 0, we put

fi= (1/2&) [j~A i)- (2.56)
(2.65a)

In practice, the bracket of (2.56) can be evaluated at
any x outside the range of the potential.

Of course, f~ and iPt(x, g) are complex. But the above
material can be rearranged to give tanb~ in terms of a
real wave function. Let G"' be divided into real and
imaginary parts: respectively.

&.( ) = (g/3 )0 (*)4 ( )0 (*), (2.65c)

But if two or three of the particles are identical, then

or

G"'(x 8 x'8') =G "'(x 8 x' 8') -7 The element of integration, when not explicitly indicated,
is always x' sin'8 dhd8, or, when appropriate, the same form &ith

+iGr~ii(x, g; x'&8 ). (2.57) primed variables.
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g2
f'""(Ir.'+—It:) =-

8~jV jVp2 jV2
(2.66)

Any one of these leads, by Feynman's rules, to a
vertex factor of simply g and a scattering amplitude for
the annihilation process which is

a,nd the rule for obtaining g'/4ir,

(
g 2Ep

= lim —(Ep' —E') tanbi
4~ .„, ~"Eo k

= lim (Eo' —E')Pji,4(j,
E-»F&p

(2.73)

If particle 3 has spin &, we suppose, without supplyin
where p~ is the function of (2.62).

details, that (2.65) is adjusted so that the result is
III. COMPLETE SETS OF SOLUTIONS

2

f'""(It'+—&) = —(2l+1P'((k' k) . (2.67)
8m' Ep2 —I'2

The partial-wave amplitude is

1 g2
B,nn

8~jV jV,2 jV2
(2.68)

(g'/4w), „,= lim (E()'—E') Lj((r')(r), (P( 1„(2.69)
E~gp

as the presciiption for the output coupling constant
in rationalized form. An alternative formulation is

given in (5.6).
Consider now that the mass of the intermediate

particle is above threshold. Then, we have a resonance
rather than a bound state and replace Ep by Ep —&iI'.

Assuming I'«Ep, we can approximate

Now suppose that a certain interaction between 1

and 2 defines amplitudes which are computed by (2.56)
and, further, that a bound state at Z~p is produced in the
1th wave. For E below threshold, f( is real (even though
the argument of j( is t'((r) and has a pole at E=Es.

According to the bootstrap philosophy, the inter-
action has simulated the annihilation process (2.64)
and the residue of fi at E= Es is related to the output
coupling constant g, i.e., the coupling to the particle of
mass Ep which emerges as part of the output of the
calculation with this interaction. Comparing the form

(2.68) valid at the pole with the general formula

(2.56), we have

P(x,8) = II (x, s- —8) .

This means tha, t if

(3.1)

then
(3.2a)

)P=Q f (x)R (7r 8)=Q (—1)" 'f—„(x)R (8). (3.2b)

A. Boundary Conditions for Free BSE

The Bethe-Salpeter equation, with or without in-

teraction, has in6nitely many solutions regular for
0(x( ~. Because the equation is linear, one may
construct a complete set or basis of solutions, an
arbitrary linear combination of which represents the
general solution. ' The basis members may be,con-

veniently delineated in terms of boundary conditions
at x=0 or x= ~. In either case, there will be a natural
division between singular and regular conditions at the
boundary points.

I.et there be given a set of functions r(")(x,8) regular
at the origin indexed by (v) and a second set s(")(x,8)
singular at the origin which solve the free SSE at a
definite energy and angular momentum, such that the
combined set is a basis. An enumerable family of func-
tions of this type will be constructed explicitly in Sec.
V by means of expansions in spherical harmonics and

powers of x. They, and certain derived functions, will

be called channel functions because the lead term in the
power series occurs in a distinct spherical harmonic
channel.

If If(x,8) satisfies the BSE, the transposed function

(P(x,8) satisfies the transposed BSE. The transposition
is obtained by v. —+ —7, or equivalently, 8~ m —8:

(E()——,'tl")' —Es= E()2—F'—fE I' (2.70) Hence we may define a transposed basis for the trans-

posed free BSE,namely,

Then, in the neighborhood of E=Ep,
r(„)(x,8)=-r(")(x,8)=r(")(x, s.—8),

s(„)(x,8) = s("'(x,8) = s(")(x, s- —8),

(3.3a)

g2 1
—g'~ ~ sin$& ———
k Ep2 —J".2 —imp l"

(3.3b)(2.71)

w ith the regularity or singularity of the function again

which implies the connection between width and
identified by its name.

The input wave j& kr satisfies both equations of
coupling constant, (2.36). Thus, there must exist expansions (summation

kp g'
I"=—

7

2Ep2 4z

%le are treating a BSE at definite E and l and the basis spans
(2.72) the family of solutions for those quantum members, not the whole

function space.
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convention again)

j&(kr) = r(")(x,8)C,(k) = C"(k)r(.)(x,8) . (3.4)

Since j&=g(, therefore C„(k)=C"(k). We have used two
notations for one quantity to keep the summation
indices Quent. In general, the r'")(x,8) alone are a com-
plete basis for solutions regula, r for all finite x includ-
ing x=0.

Now consider a, complete set of functions h(")(x,8)
regular a,t x= ~ . These may be defined by

{r(v)—s(v) lr(p)[s( ) s(v)]

u(~) = $(~)~ 2 $(ls) ~$ J (y),P, )-l

(3.13a)

(3.13b)

because the bracket may be evaluated at x= 0 where the
functions and their derivatives are finite and the extra
factor of x' secures the vanishing. Ke shall not suppose
that [s(»,s(")] vanishes, because our channel functions
will not have this property. If, however, the property
were thought especially desirable, one could define new
singular functions by

h(")(x,8) = s(")+r(»X ". (3 5a) which by (3.10) are transposes of one another. Then

h(„)(x,8) =h(")(x,8) = s(„)+X„pr(„),

where, for the sake of Quent indices, we put

~~v"=X„".

(3.5b)

(3 6)

The BSEunder consideration is real. 9'e can, and shall,
suppose that the boundary conditions at the origin are
real. Hence the $(') and r'"' are real. But above thresh-
old the regular boundary condition at x= ~ is not real,
as it involves outgoing waves. Ke separa, te X and ~X

into rea, l a,nd imaginary parts:

whcl c

X„"=X„"+if-„",X „p=X„p+it.-„p, (3.7)

X =—X ' (3.8)

The last in our list of functions are s'"'(x, 8) and s(,)(x,8)
= ...(")(x,8); they are the real parts of the h's,

s(" (x 8) = s " +r("X "

av(x)8) s(v)+ v r(p) )

(3.9a)

(3.9b)

and are equal to the h's below threshold where f„"
vanishes.

B. Bracket Relations

The matrix X„", to be obtained when r(") and $'") are
known explicitly, tells how much of the r(» must be
added to each $(") to cancel o6 the part of $(") which is
singular at infinity. Taking transposes, we have

[~(p) ~(")]=Ls(.) s'"']

[h(„),h'")]=0, (3.16)

in virtue of the property of regularity at ~ which the
h's share. This is less easy to establish from the bracket
definition. The family of E( '), E(,;) which satisfied
a. truncated BSE had the vanishing bracket property,
as shown in MRS I. These functions behaved like
x 'i'e " ' a,s x —+~, and since there was no possibility
of canceling when [E(„,;),E(a "] was formed, the
constancy of the bracket for a,ll x implied its vanishin~&.

Now the h's that we shall construct as channel functions
will have truncated versions which will be explicit com-
binations of the E's. Hence the brackets among trun-
cated h's will vanish. As the truncation parameter goes
to infinity, the truncated h's will converge to the true
A, 's, even though the E's themselves do not converge to
anything. Thus (3.16) is established for these h's. It
is then established generally, for any function regular
at infinity is a linear combination of these h's.

By (3.5) and (3.9), we have the decomposition of h

into real and imaginary parts:

and, moreover,

[~(.) r(")]=—[r(.),~(")]=~." (3»)
Thus, the families r("), 0-(") and 0-(„), r(„) would be
bi-orthogonal sets with the simplest bracket rela, tions.

It is also true that

h(v) a{v)+zr(p)f v

r

h(v) s(v)+zfv r(p)

(3 10) This resembles the Bessel relation[44]= —[4,4].

For arbitrary functions P and P, we find, by putting
8~ zr —8in (2.29), that

(3.17a)

(3.17b)

This tells us, for example, that [s(„),s'")] is antisym-
metric in ) and zz and that [s(»,r("']= [r „(s)(]p—)

Ke shall, in fact, add to our specifications of the
function basis the requirement

ih&("(kr) = —rz&(kr)+i j&(kr) .

Next, substitute (3.5) into (3.16) to get

[s,„),s(")]=X„"—3.„"=X„"—X„p.

(3.18)

(3.19)

[s(p),r" ]= [r(„),s" —]=8„" (3.11) The real and imaginary parts of (3.19) read

[s(„),s(")]= X„"—X„"=—X„"—X„pThe channel functions, whose construction has been
promised, will satisfy this condition. It is generally
true that

(3.20)

(3.21)

[r(„),r'"']=0, (3.12) i.e., f'p" is symmetric in zz and p.
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Hence, using (3.20) we have, from (3.9), that

Ls(.),s(")j=o.

Also, it is clear from (3.9), (3.5), and (3.11) that

(3.22)

Hence,

G(x,8; x', 8') = —r &"'(x,8)k(„)(x',8'), x(x'
= —k(")(x,e)r(„)(x',8'), x& x'. (3.33)

Lk(.)r("'j =—Er()»'"'3= e."

Ls(.),r(")3= —Lr() s(")3=4".
G(x,e; x', 8') = G(x, 7r —8; x', or —8'), (3.34)

(3 23) We define the transpose Green's function G following
(3.1);

(3.24)

Finally, observing that taking complex conjugates

kol) sip) )t )I, r(v) k(la) 2if Ã r(v) ~

that is, mtholt transposing the order of the arguments.

(3 25) Then G satisfies the same boundary conditions as G and

and noting the symmetry of f, (3.21), we have the last
bracket relations of this series,

e(x —x') e(8—8')

x' sin'8
(3.35)

Lk(.)»' 'j— L&(—»»'"'*j= 2(f." (3.26)
Ke have the explicit form

We have then three different bases of functions to work
with, the (r,s) basis, the (r,s) basis, and the (r») basis,
of which the erst two are real and the last two satisfy
the simplest bracket relations for bi-orthogonal sets.
The ingredients of the theory so far are the functions
themselves, the coefficients C„of (3.4), and the matrix
X. The imaginary part of X, namely f', is simply ex-
pressible in terms of the C„, as will be seen below.

C. Free Green's Functions

and
(3.37)

LG,r(")j„=—r(" (x',e'), LG, k ")j,=k"(x' e'). (3.38)

The symmetry of the Green's function

G(x,e; x', 8') = r(„—) (x,8)h &")(x',8'), x( x'
= —k(,) (x,e)r'"'(x', 8'), x& x'. (3.36)

and note the relevant bracket relations

The pa, rtial-wave Green's function' obeys G(x', 8'; x,e) = G(x,e; x'8') (3.39)

&P),G(x,e; x'8') = e(x x') 8(8 8')— —
x' sin 8

(3.27)

P( ),Gjo=0 Lk( ) Gj =0 (3 9)

Here, and in the brackets to follow, G always means
G(x,e; x'8'), and the primed variables are merely
parameters. There are two ways to calculate fr(„),Gj„
and Lk(.),Gjo. Firstly, from (3.28), we get

4t has already been exhibited in several representations,
namely, MRS I, Fqs. (5.12) and (5.23).

Its expansion in terms of basis functions is done as
folIows: Because of the boundary conditions, ve have

G(*,8;x',e')=r&")(*e)a(x'e) x&x'
=k(")(x 8)b (x' e'), x&x' (3.28)

where a„(x',8') and b„(x',8') are coeff)cients to be deter-
mined. We see that

C„(k)C»(k) .
2P

(3.41)

The calculation of X,' depends more directly upon
knowledge of the basis functions and vill be done for
the channel functions in Sec. V E and the Appendix.

Let Gv(x, 8; x'8') be the (real) interaction-dependent
Green's function generated by the real free Green's
function G~, that is,

can be obtained by bracketing the differential equations
or by inspection of (3.33) and (3.36). In physical terms,
this symmetry rejects time reversal invariancc.

The imaginary part of G is seen to be

Gz(x, e; x', 8') = —r &"'(x,e)i „i'r („)(x', 8') . (3.40)

But Gr is already glveil 111 tel iils of J&(kr) and J((kf )
in (2.58). Comparing with (3.4), we get, for E above
threshold

t r(,),Gj„=—b, (x',8'), Lh(, ),Gjo= a.(x', 8) . (3.30) Gv =Gz+ Gz VGv. (3.42a)

Or, multiply (3.27) by r(„)(x); multiply Z(Z2r(„) (x) = 0
by G and apply (2.37) and (3.29) to get For reference purposes, we list some further properties:

Lr(),Gj-=r( )(x') (3.31)
and, similarly,

(k(.),Gjo= k(.)(x') . (3.32)
~ In this section, the superscript (l) carried by the partial-wave

Green's function, and its real and imaginary parts in Sec. II and
MBS I, is dropped.

(2122 V)Gv =1 1

(Zino) Gv —Gv. V=1.

(3.42b)

(3.43 a,)

(3.43b)
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The primed operator ('Zi7)p)' differentiates the second

pair of coordinates of Gy in (3.43b).
The proofs of these relations are routine, as the

ingredients for them have already been laid out.

IV. N AND D MATRICES

A. De6nitions

Let ry&")(x,8) be solutions of the BSEwith interaction

(Z(22 —U)ry(") =0 (4.1)

indexed by v, which comprise a basis for the solutions
of (4.1) regular for all finite x including x=0. If V is
sufficiently well behaved at the origin, one may also
require that each rz'& satisfy the same condition at
x=O as the corresponding free solution r("~, but this is
not essential for the present argument. Let us assume
that the matrices

nonrelativistic limit. But in the BSE, the resulting
interaction goes like x ' at x —+ 0. There will also be
functions ry("' that go like 1 and functions h(„) that go
like x in this limit, in a typical case. Then the integral
in (4.6), which is over x dx, will diverge logarithmically
at the origin, although D„", of course, is well defined.
This point underlies a subtle distribution between our
approach to these matrices and that which is conven-
tional in potential theory. See the discussion below in
Sec. IV C under item (4).

The transposed function ry(„)(x,8)=ry'"'(x, 8) obeys

(ZiZp —V)r y(„)(x,8) =0. (4.i)

(4.8)

The transpose V—where V may be a nonlocal operator—is defined as in (3.1) or (3.34); i.e., 8~ m —8 for all

angles, but no transposition of the order of coordinates.
We define V as symmetric if

VP= fV
d„"(x)= fh&», ry(")), , n„"(x)= fr&», ry(")), (4.2)

converge to 6nite limits as x —+~. Then we define

and self adj oint-if under complex conjugation

(VP)*=tt*V. (4 9)
D„"=lim d„"(x)= [h(„),ry(")7„,
tV„"=limn„"(x)= Lr(„),ry("))„.

(4.3a)

(4.3b)

Lr(v) "y (44)

Invoking (2.39) and (4.4), we have another expression
for E:

The existence of a basis of r~('& functions with these
properties is a limiation on the pathology of V at the
origin and at infinity. An infinite range (e.g. , Coulomb-

type) interaction is excluded, but interactions which are
both repulsive and singular at the origin need not be.
As a practical matter, one may evaluate the brackets
of (4.3) at a point x„"outside" the range of V. That is,
the part of V beyond x„ is supposed to be too small to
a6ect the system to the desired order of accuracy.

Sometimes, one replaces V with A. V, where X is a vary-
ing parameter. The matrices may be designated as D(E),
D(E,X), etc. , according to which parameters need to be
emphasized.

The regularity of rz'"' at the origin implies

Symmetry and self-adjointness correspond to the
physical conditions of time reversal invariance and
unitarity, as they do for the Schrodinger equation.
Now both Lry(», ry(")), and fry(»*, ry(")) vanish at
x= 0, because they are regular there. If V is symmetric,
we have

Q&gRgry („) ry(„)V. —— (4.10)

Then by the argument following Eq. (2.41),

Lry(„),ry(")) = 0

for all x. Likewise, if V is self-adjoint,

Zi~, r y(„)*——r y &„)*V,

and then
Lry(„)*,ry'"') =0

(4.11)

(4.12)

(4.13)

D~"= (D)~) ~"+'(Dr) p". (4.14)

for all x.
The E matrix is real if, as is convenient, we take the

boundary conditions for r("& and rz'~, and hence the
functions themselves, to be real. Let D be separated
into real and imaginary parts:

SVp — r(p) Urg

One may attempt to write, in similar fashion,

(4.5) (Da)."=I:s(.)ry("))- (4.15)

Below threshold, h(„)——s(„) so D=D~ and DI=O. But
above threshold, the imaginary part of h&» is f „"r(,), so

D„"= Lh(„),ry("))p+ h(„)Vry("', (4 6)

B. Some Integra1 Equations

but the terms on the right side of (4.6) may be sepa-
rately infinite, at least for some values of p and v. Thus,
the most regular interaction a one-particle-exchange
model can deliver is that defined by scalar exchange.
This interaction becomes the Yukawa potential in the

What integral equation does r y &" '(x, 8) satisfy?
Notice, from (3.36), (4.4), and the definition of D,
that

(G,ry&"))p=0, )G,ry'"))„= r'"'(x')D„". (—4.1i)
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Then, multiply (4.1) by G(x, g; x', tI)'), multiply (3.35) by
rr&"&(x), subtract, and apply (2.37) and (4.7) to get

rv&"&(x' (I') =r'"'(x' 8')D "

+ G(x, g'x', &I&') V(x)rr'"'(x)x' sin'0dxd(I (4.18)

After interchange of x, 0 and x', 0', the result reads

Z. Symmetry and Vnitarity. 8 3Eatrix

In the asymptotic region, we have

rr&"&(x, t&) = —h&"&$r&q&,rr&"&j, „+r&~&Lho&,rv&"&$

= —h(")cV&,"+r'"&Dg&"' x —+~ (4.26a)

and also

r („)(x,tt) = h(,—)X, +r(,)D, , x —+ . (4.26b)

Now set
rr&"'=r'"'D„"+ GVrr&"&. (4.19) B "=(AD ') ".

Remembering (4.20), we have

(4.27)

If the matrix D„"is not singular, we can introduce

y&"&(x 8) =rv&»(x, tt)(D ') " (4.20)

@("'(x0) = h'"—&B),"+r&"& (x —+ ~ ), (4.28a)

@(„)(x,&I) = h(, )
—B,"+r(„) (x -+~ ) . (4.28b)

This function satisfies a more familiar type of integral
equation:

Let us follow the route that in the nonrelativistic case
led to (2.13) and (2.14). Equations (4.11) and (4.13)
can be converted into

y(v) —r(v)+ GVy(v) (4.21) I:4 (.)A (")3=o

Le& &*&(")j=0

(4.29a)

(4.29b)
C. Elementary Properties of N and D Matrices

1. Dynamics

in view of (4.20). If V is symmetric, we substitute
(4.28) into (4.29a) to get the symmetry of B:

First suppose that the determinant

A(E) = detD„(E)

(4.30)

If V is self-adjoint, substitute into (4.29b) and use
(4 22) (3.26) to get

(»)-'(B "—B "*)= —B "*i."B~".vanishes at E=EO. Then there exists a right eigen-
vector &z„of D„"(Eo) with zero eigenvalue, i.e.,

(4.31)

D„"(Eo)&z„=0.

Then by (4.16), the wave function P~= P rr &"&&z„

satisfies the homogeneous equation
Im(B„)= (B„~C,(k))*C~(k)B, .

2E
(4.32)

Or, if we combine (4.30) and (4.31) and express f in

(4 23) terms of the C's, Eq. (3.41), we get

k

(4.24)

and is regular at ~ as well as at the origin. Thus f~ is a
bound state for energy Eo.

Second, it is clear from the representation of j&(kr)
and the integral equa'tion for P&"& that P "& =g&"&C„(k)

solves the scattering equation (2.55). IIence the scatter-

ing amplitude for the lth wave is

f&=(2E) 'Lj& ~t&j-

As we see from (4.28a) with the significance of p&"&

supplied by (4.21), B„"is a kind of T matrix for scatter-
ing from channel v to channel p. Even though there is
only one physical process permitted under the condition
that E be below inelastic threshold, namely, two
particles in and two particles out, our X/D formalism is

that of a multichannel problem. But, according to
(4.32) only one channel is "open, " namely, the free
two-particle state with wave function j&(kr) in the co-
ordinate representation and wave function C&(k) in the
representation by basis functions. If we set t& ——kf), we

have, from (4.25),

$C&"&(k)r r ' &) (D ') "C (k)
2E

k
C"(k)B„"C.(k) .

2E
(4.33)

=(2E) 'C"(k)(ED ')„"C„(k). (4 25)
Then, multiplying (4.32) by C"(k)C„(k), we obtain

Thus, the questions of dynamic interest are phrased in

terms of the functions r("', h("~, r~("&, and the iV and D
matrices derived from them. We shall consider these

questions more fully in Sec. VI.

Imt& [t,
~

'. —— (4.34)

Thus the usual elastic unitarity statement for t&=e"'
Xsinb~ is recovered.
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(D '(E)}."=D."(E)/~(E), (4.35)

where h(E) is the determinant of D„"(E), as already
defined in (4.22) and D(E) is the cofactor ma. trix. Then

D xD r —D ADA $ vQ

I.et us pass to the limit E~ Eo, where

(4.36)

Then
6(EO) =0.

D."(Eo)D '(Eo) =D"(Eo)D."(Eo)=0.

(4.37)

(4.38)

That is, for each p, the D,i'(Eo) are the components of a
right eigenvector of D(EO), and for each &, the D„&'(Eo)
are the components of a left eigenvector of D(ED),
always with eigenvalue zero. Let (f„&"&}and (g&„&&'},
n= j., 2, . . . , be complete sets of such eigenvectors.
The D„i'(E,) is a superposition in two ways:

D.'(Fo) =2 a(o,u)f. '"'=2 g - 'b(u, ) (4»)

Taking the (f&"&} as orthonormal, we may project out
to find that a(p, n) is also a left eigenvector, so it can
also be designated g&„&& and D„&(Eo) is represented as
P„f„'"&g& &~. Hence (tVD)„", which is symmetric in the
limit E—+ Eo, as it is symmetric for E/Ep also has a
separable form of this kind. We expect, in general, that
h(E) has a simple zero for a single partial wave without
any special symmetry, and then D„"(Eo) has only one
eigenvector of each kind with eigenvalue zero. Thus,
the form of B=XD ' near E= Jio would be

where ~ is a positive or negative constant.

(4.40)

4. Comparison with jost Functions of Potential Theory

We consider the matrix Q given by

Q."=-9(.&r~'"&7o. (4.41)

We have already remarked that the integral in (4.6)
is expected to diverge, at least for some (ti), (i); hence
some components of Q will be infinite since the left-
hand side of (4.6) is finite. But suppose this were not
true. Then we could define a new function f&»=ry&"&

&&(Q ')„" and new matrices X=&VQ ' and D=DQ '.

3. Separability of B= iVD-' ata, Singularity

As we shall argue later, if the basis functions are set
up wisely, only a finite number of them actually will be
aGected by the potential, and so, dynamical calcula-
tions can be made using not the in6nite matrices E and
D, but only certain 6nite dimensional submatrices.
Thus, it is meaningful, even in a, general discussion,
to manipulate E and D as if they were 6nite
dimensional.

Let us write the inverse of D(E) as

Equation (4.6) converts to

D~i =b s+ k& &Vip(i & (4.42)

and the important quantity ED ' is identical to
XD '. Also, the bound-state condition detD=O is
equivalent to detD=O, assuming no pathology in Q.

We are now ready to compare our structure with that
of the Jost functions in potential theory. We refer to
the excellent review article by Newton, "in particular
to Newton's Secs. 3 and 4 and especially his equa-
tions (3.6), (3.7), (4.2), (4.3), and (4.4). In the reduc-
tion of our formalism to a single nonrelativistic partial
wave, there is only one function each of type k(x), r(x),
and &P(x). These correspond to Newton's wi(kr)*, i&(kr),
and $&(kr), respectively. His Eq. (4.3) defines the
numerator Jost function fi(k) as k'Wffi(kr), gi(kr)7,
which is termed a Wronskian, perhaps unwisely. "By
taking r ~~ in this "Wronskian" and also the complex
conjugate, one gets the denominator Jost function

fi(—k) = fi(k)* as, essentially,

fi( —k) ——LkA7. (4.43)

This identi6es it with our D, which is no longer a,

matrix. Then the complex conjugate of his (4.4) is the
same as our (4.42). Newton's normalization for the
Jost functions, or, equivalently, the D and Ã, was set
by the definition of gi(kr) L=—our &P(x)7 from an
integral equation whose Green's function was not
—r(x()k(x)), but rather

g(x,x') = 0, x( x'
= r(x)k(x') —k(x)r(x'), x& x'. (4.44)

Then the existence of P&(kr) was proved by the Born
series for this integral equation which converges, for
regular potentials, regardless of the potential strength.
Our approach, on the other hand, relies on the theory
of differential equations to prove the existence of the
ry&"), once the boundary condition at x=0 is made
clear.

In potential theory r v and 1b go like x'+' at the origin
and h goes like x ', and one may easily verify that the
"Wronskian" (4.41) depends only on these leading
terms. If the potential is no more singular than x ',
then one may also show that the x' ternl of the wave
function is unaffected by the potential. Thus, with
care for normalization, Q defined by (4.41) is unity and
the two theories are identical.

"R. Newton, J. Math. Phys. 1, 319 (1960); reprinted in
Quantum ScaQering I'heory, edited by Mare Ross (Indiana U. P.,
Bloomington, Ind. , 1963).

"Given an nth-order ordinary differential equation, one may
distinguish two constructs: the Wronskian, which is an nXn
determinant depending on a complete set of solutions, and a
"bracket, " formed from one solution of the equation and one
solution of the transposed equation. For the radial Schrodinger
equation, which is second order and symmetric, the two constructs
have the same definition. Clearly, the bracket rather than the
Vfronskian is the relevant one for the pr~ent:, considerations,
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The difference appears when one goes to Inore singular
potentials, but where the quantum-Inechanical structure
is still valid, as it often is if the potential is repulsive.
Then our version of Jost theory seems to remain valid—
admittedly, we are not presenting a full discussion
her" -while the conventional theory breaks down be-
cause the integral equation with g(x,x') contains
divergent integrals. When one passes to the BSE, the
conventional theory breaks down even for nonsingular
potentials as observed by Haymaker and Blankenbecler. '

[p]=n if i 1=-
=n+2 if i 2. = (5.1)

For example, one may say that the leading powers of
r'"' and 5'"' are x'"& and x t"~, respectively.

Transpose solutions r(, ) and 5&,) are obtained from
r("' and S'"' as described in Sec. III. The brackets
[5&„&,r~"&j, etc. , will be easy to compute because in the
limit x —+ 0 only the leading power-series terms
contribute.

Then, a new set of singular solutions, s'"' and
s(,~=s~"), will be formed from linear combinations of
the 5'~ and the S(„~, respectively. The object will be to
have singular functions which form the simplest possible
bracket relations with the regular functions, namely,
those of (3.11).

V. CHANNEL FUNCTIONS

A. Introduction

We shall now map out a classi6cation of solutions to
the BSE in terms of power-series expansions about x= 0.
The solutions will be called channel functions because
the leading power of x in the expansion multiplies a
single spherical harmonic; that is, the power series is
initiated in a specific channel.

Because of the variety of functions and boundary
conditions encountered, it pays to organize notation
carefully and to indicate in advance the principal
features of the channel functions to be defined.

First, we shall have "regular" functions r~"'&(x,8)
and "very regular" functions r&" "(x,8) for n= l, l+1, -

1+2, . . . . Their leading power-series terms will be pro-
portional to x"R„(8) and x"+-'R„(8), respectively. Then
there are "singular" functions and "very singular"
functions 5&"'& and S&" '& with leading terms x "R (8)
and x " 'R, (8). In the special case m= 0, which occurs
only for l=0, 5&' '& will begin with (lnx) R2(8). The
functions so dered will not contain, among their
higher terms, any term which initiates one of the other
functions.

Thus, the channel functions are labeled by index
pairs, of which the Grst index lables the channel and the
second takes on the values 1, 2 only. For compactness,
we also use the single-index notation, (v) for (n, i), (p)
for (m, j), etc., interchangeably with the double-index
notation. Moreover, when (v) stands for (n, j), [vj will

stand for the following:

We remark in passing that since Zij&(kr)=0 and
22j &(kr) =0, it follows that f= (8/Bk)j &(kr) solves the
free BSE. This example shows that a complete set of
solutions to X)iX)2&&t =0 cannot be obtained solely from
linear combinations of solutions to'Pig= 0 and X)gk= 0.

As a prehminary example, consider

( 2 mi2) ( 2 m22)P 0 (5.2)

as indicated in Sec. II of MBS I. In the equal-mass
case, these functions are equal in pairs, and the addi-
tional solutions may be taken as

I„+&'(mix)R,.(8), (—1)"E„+2'(mix)R (8) . (5.4)

These are found by considering the limit

1 I„~i(mix) —I„+i(m2x)
lim =I„~i'(mix) (5.5)

fPX9 ~'rf41 g Blg —m2

and the similar limit for the X functions.
For the special case (5.2), the regular channel func-

tions are given explicitly by

r&"'&=--'[m --e,.(m,x,8)+m;"a (m2x, 8)], (5.6a)

r &" '& =- (mi' m2') —'[mi "e„(mix,8)
—m2 "d (m2x, 8)j. (5.6b)

Their power series begin

r (n. , 1) R„(8)+O(x"+4),
2"+'(n+1)!

(5.7a)

S"+2
R„(8)+0(x&+4)

2"+2(22+2)!
(5.7b)

Similar combinations of the X functions yield explicit
formulas for the 5'"'.

(—1)~—&+&2 —
2(&2 —1) tR(8)—

5&" '& =-'- lnxRO(8)+O(x2),

+O(x-"+'-), 2&&0 (5.7c)

(5.7d)

( 1) rs—&2 n 22 &

P" (n, 2& R (8)+O(i. n+2)—
gt4+2

(5.7e)

Equations (5.7) specify these solutions completely
and may be taken as their delning boundary conditions,
in preference to the definitions like (5.6a) and (5.6b).
No special consideration for the equal-mass case is
required.

obtained from the BSE by setting ~&=co2=0. Then the
channels are uncoupled, and in the nth channel, there
are four independent solutions, e.g. ,

5 (mix, 8), d (m2x, 8), X (mix, 8), X (m2x, 8), (5.3)
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B. Recursion Relations

Suppose that a solution to

ZiZpg= 0
has the expansion

(5.8)

The conditions for r&„& and 5&„& are the same as (5.7)
except that E„(8) becomes E (zr 8) =—- (—1)" % (0).
The 5(") contain, in addition to powers of x, terms pro-
portional to (lnx)rc"' because of the logarithms in the
E functions.

This fixes the possible powers x " which may initiate a
series solution in the nth channel. It matches the
prescriptions of (5.7) exactly because the indicial equa-
tion is independent of co1 and co2 ~

Hence, the defining conditions for the channel func-
tions r (") and 5'") as x —+ 0 are given correctly —and with
factorical coe%cients which will prove to be reasonable
by Eq. (5.7).

Substituting (5.12) into (5.10) and equating coeffi-
cients of powers of x' 4 and x' ' lnx yields the recursion
relations

0=2 4-(x)&-(0) . (5.9) fppC(n, a) = —kopCi, (n,a)

Z 'P (x) =Q P„,;P„~;(x), (5.10)

Substitute (5.9) into (5.8) and a,pply the recursion rela-
tions for the spherical harnionics enumerated in MRS I.
Then (5.8) reduces to the following matrix equation for
the P:

+ Q Lf;C(n+j, a —2)+k,Cr, (n+i, a —2)j
i=0,+2

—O'C(n, a —4)

+ Q [Lf;C(iz+z, a —1)+k;Cz.(n+i, a —1)

n
dx2 x dx

)
X2

where'Z and 5; are derivative operators and the sum
goes over i=0, %1, &2. We have

d' 3 d n(n+2)

+f C(n+i, a —3)+Iz Cz.(n+i, a —3)j (5.14a)

fppCr, (n, a) = P f;Cr.(n+i, a —2)
i=0,+2

P„o——(4cpicp, P~ —2k') Z —k4 (5.11b)
+ g f,Cz. (n+i, a —1)—k'Cr. (n, a —4) . (5.14b)

i=+I

d (n+3)
P„+i——2(cpi —cp, )A „+i(Q„+k') —+

-dx x (5.15a)

The f and Iz coefFicients, dependent on n and a, are
5.11c

fpp= (a' —n')[a' —(n+2)'],
d (1—n)

F„, i ——2(cpi —cop)A (Z„+k') —+
-dx x

(5.11d)
Iz p p 4a(a' —-n—' 2n —2)—, —

fp
= 4cpicpzn +p(a+n+ 2) (a+rz),

(5.15b)

(5.15c)
5& +2 =4C01M2&~+2

2n+7 d (n+2)(n+4)t+—
dx2 x dx x'

d' 3—2n d n(n —2)
+ —+ —. (5.11f)

x dx x
+n,—2 4 12&n

dx2

For each n, write

P (x) = Q LC(n, a)x'+Cz. (n, a)x Inx7 (5.12)
a=ap

and substitute this into (3.10) to obtain recursion rela-
tions for the coefficients C(n, a) and Cr, (n, a). The pro-
cedure is straightforward and clearly explained in
Ref. 3, Chap. 4. There will be a family of solutions
regular at the origin. These will not have any terms in
(lnx). Then there will be a family of singular solutions,
each having first powers in lnx.

The indicial equation comes from the fourth-order
terms (e.g. , d'/dx', x 'd'jdx') in (5.10) as applied to
the lead term of the series (5.10); it is

(ap —n) (ap+n) (ap —n —2) (ap+n+2) = 0. (5.13)

fi = 2 (cpi —cop) A „+i(a+n) (a —n —2) (a+n+ 2), (5.15d)

fo= (4cpicppP 2k') (n—n 2)—(a+—n), (5.15e)

f i=2(cpz cpi)A„(a—n)(a+n—)(a—n —2), (5.15f)

fp = 4cpicppn„(a —n —2) (a+n),

fi' = 2 (cpi —cp p) O'A „+i(a+n+2),

f i'= 2(cpi —cop)k'A„(a —n),
hp =4cpicppn„~z(2a+ 2n+ 2),

(5.15g)

(5.16a.)

(5.16b)

(5.16c)

k&
——2(cpz —cp&)A.+i(3a' —n'+2an —4n —4), (5.16d)

ho = (4cpicpzPn —2k') (2a —2),
k i ——2(cpi —cp&)A (3a' —n' —2an —4a),

k p=4cpzcppn (2a —2n —2),

kl =2(cpi —cpp)k A~~i,

k i =-2(cubi —cop)k A „.

(5.16e)

(5.16f)

(5.16g)

(5.16h)

(5.16i)

To compute the series for r(" '), assign the lead
coeKcient C(n, ao) with ao ——n equal to L2"+'(n+1)!j '
in accordance with (5.7a). The coefficient C(n, ap+2),
as well as all other coefficients which can initiate other
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solutions, e.g. , C(n+1, ao+1), are zero for r(" ')
A. ll

the Cz are zero for the regular solutions. Then (5.14a)
prescribes the values of all C(n', a) for a )ao and all n'.
The procedure for r&"" begins with C(n, ao), where
ao= n+2 and is similar.

The calculation of the singular functions follows the
same lines. The lead coefFicients for S(" ') and S(" '&

are C(n, ao) with ao = —n and ao= —(n+ 2), respectively,
and they are defined by (5.7a). In the exceptional case
n=0, the lead coefFicient is Ci, (0,0), as indicated in
(5.7d). The recursion process (5.14a) for the singular
functions eventually brings us to index values n', u',
where a'=n' or a'=n'+2 The. se are the lead positions
for the regular functions and foo

——0. Then C(n', a')
is taken as zero and (5.14a) defines instead the earliest

logarithm coefF)cient Cz(n', a') for channel n'. There is
such an earliest logarithm coeKcient for each n'. All
further CI.'s are determined recursively from (5.41b).
After they are known, the remaining C's are determined
from (5.14a).

The r("& and S'"' have now been defined by recursion
relations for their series coefFicients. Computing time
for numerical calculations in typical cases is of the order
of seconds or less. Details of convergence and illustra-
tive functional values will be presented elsewhere.

Ls() r'"'7= —Lr() s'"'7=~".
In the equal-mass case, coi —co2=0 and

r& )
—( 1)( Ir& ) s.

&„)
—( 1) I Is()

(5.20)

(5.21)

D. Completeness

Suppose that P=Q f„(x)R„(8) solves the free BSE.
Then the coefFicients f„(x) are subject to the indicial
conditions and recursion relations treated above. Hence
we may put

g 6+2

f„(x)=d„,l—— +d„,2

2n+1(n+1) I 2n+2(n+2) (

+0(xn+4) (5 22)

It follows then that It has an expansion in the channel
functions:

The sum over p is, of course, limited to terms where
[S&„),r(»7 is nonvanishing, as indicated in (5.18).
Equation (5.19a) is to be used recursively. One begins
by evaluating s(„,&) in terms of s(,&) for m values less
then n; then goes on to s(„,2) in terms of already known
functions s& 1) and s(~ 2) for P(n. Then one can verify,
by mathematical induction, that

C. Brackets for Channel Functions P(x II) = r &")(x II)d . (5.23)

[S(„),r &")7=1 (no sum on )v).

The only other nonvanishing brackets are

[S(,2),r'" ' "]=[S(,1),r'" ' ')7= 4(vi(v2n—,

(5.17)

(5.18a)

P' r(n—l, l)] [S r(n, l)7 P' r(n—1,2)]
—k

—2p' r&n 1,1)7—
= 2(Cu2 —(dl) 3n, (5.18b)

[S(„,2),r'" ')7= —4(01(o2p„+2k'.

Now we define

(5.18c)

The transposed channel functions r(,) and S(„),
defined as in (3.3) and satisfying the transposed free
BSE, satisfy the same boundary conditions (5.7), except
that each entry has an extra factor of (—1)" '. The
recursion relations above may be taken over directly
for the transposed functions provided that the factors
(col —&v2) that appear in (5.11), (5.15), and (5.16) are
reversed in sign.

Now, we compute brackets via (3.24). The brackets
among regular solutions vanish, of course.

The evaluation of [S(„),r&»7 is simplified by the
observation that in the limit x —+0, only the initial
terms of the power series, as given in (5.7), can con-
tribute to a nonzero result. Direct calculation shows
that

In other words, the family r("' is a complete basis for
the regular solutions of the BSE. A general formula
for the coefF)cients in (3.28) is

&fv= [S(v) rl)I'7. (5.24)

WhiCh, beCauSe Of R (212r), COntainS Only termS With
n f even. The—refore, the expansion of jl(kr) in channel
functions is

X[(ik)nr&n 1)(x 0)y(ik)n+2r(n 2)(x e)7 (5.26)

In terms of the compressed notation with (p) = (n, i),
we have formula (3.4) with the coeAicients evalua. ted as

C„(k)== C"(k) = lri 'R„(-',lr) (ik) '"' (5.27)

A liiore general relation is [compare with MBS I,
Eq. (2.19)]

j 1( iX „sinn—r)e"" '- '
=-)r P R (n)(I( .) '"'r'")(x II) . (5.28)

As an example, consider the spherical Bessel function
jl(kr):

J„+,(kx)j (kr)=7r Q (i)" '— R„('2r)R„(8), (5.25)—
n)l

s(.) ——S(.) —P P'(„),r»]s(„),
s'") =s(„) ~

(5.19a)

(5.19b)
V'e rema, rk that the truncated equa, tion p)1)'~'

X (Z2)"'$ =- 0, to which we found explicit solutions
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I&"') and E( " in MBS I, can also be solved by
truncated channel functions. There are only 2S of each
type, as there are only E channels, and the recursion
relations must be adjusted so as not to couple to the
higher channels. Then there is an expansion of the type

+(ai& —, rivi~ ai+&{v&d ai,
V

where all the functions solve the truncated BSE.
Inverting the c matrix, we have

(5.29)

g„„(x,x') = —Q sin neo.

+n+1(&1a,jX) ~n+1(gaia, jX )
XR„(~)R„(~)

' ' —~. ;. (5.34)
,x

Let y=0.577. ~ denote the Euler constant and set

n+I I
n(~)= Z—

@=1g

if i= I

if i=2. (5.35)

It (a, ii(&—1),v &iv&+z iv&d a, i(&
—1),v (5 30)

Equation (5.30) expresses a truncated h'"& in terms of a
linear combination of X( '). It is the expression re-
ferred to in Sec. III B and used to argue for the vanish-
ing of the bracket Pz&„&,h&"&j between the exact h,

functions.
E. Matrix X„'

The channel functions r(") and s("' and their trans-
poses have been given explicit definitions and their.

brackets follow the scheme of Sec. III. The other func-
tions h("), s(") and h(„), s(„) can then be calculated if
X„"=X„"+zf„"is determined. In fact, t„" is already
known in terms of the coe!Iicients C'(k) by formula
(3.41) and these coefficients have been evaluated in
(5.23).

To obtain X„", we return to the Green's function
G'(x, 8; x', 8') and its real part, Gzz "&(x,8; x', 8'). Take the
case x)x'. From (3.33), we have

G&z'(x, 8; x', 8') = —s&"&(x,8)r(„&(x',8')
—r&"&(x,8)X„nr(„&(x',8') . (5.31)

Suppose, also, that the Green's function is known in
the form

G'(x, 8; x', 8') = Q g„„(x,x')R„(8)R„(8'). (5.32)
n, n'

Then, with (z)=(zz, i) and (jz) =(zz', i'), as before, we
have —X„&=real part of the coefFicient of

x Ev] x'E~3

, . (-1)-'-' (533)
2 ~"&+'(zz+z)! 2 i»+'(zz'+z)!

in the power-series expansion of g„„(x,x'). For example,
Eqs. (5.23) and (2.11) of MBS I give us

Then, invoking the known power-series expansions of

I„+1(s) and X~1(s), we get X„n= real part of

(—1)"' ' Q sin'ndn
Cz&=1, 2 p

XR„(n)R„(n)o,,(!1.,;) ~"&+ &"'

XD.(-,'~.,;)+v--,'~()j (5.36)

This formula is quite usable for the bound-state case.
The integral is replaced by a Gaussian quadrature,

sin'n dn R„(n)R„(n)~Q B„(a)R,(n), (5.3&)

as described in IVI.BS 1.The sufi converges to the correct
X„"quite rapidly as the number of intervals is increased,
provided that the energy is not extremely close to
threshold. Equation (5.36) exhibits the same phe-
nomenon seen for the Green's function in the previous
paper. That is, Gaussian quadrature is not applicable
for scattering because of singularities in the integrand,
i.e., in 0-

A more general method for calculating x„"begins with
the representation of G "&(x,8; x', 8') derived in MBS I
and given in Eq. (A1) of the Appendix of this paper.
This is converted into the form (5.32) and then the
prescription (5.33) is applied. This technique is more
general than the preceding one, and still practicable.
Some calculational details are given in the Appendix.
Ke have not been able to 6nd a form for X„"which is
both compact and explicit.

VI NlD METHOD IN COORDINATE SPACE

A. Scattering %ave Functions and Amplitudes

A natural approach to the calculation of wave func-
tions, with or without the help of 3 and D matrices, is
to match up a general solution of the BSE having the
proper boundary conditions at the origin with a general
solution satisfying boundary conditions at infinity. It
is convenient to take the matching point x= x„outside
the range of potential so that the "outside" solution
obeys the free BSE. This is tantamount to using a
"cutoff" interaction which vanishes for x)x„.The cal-
culation may be done for a series of increasing values
of x„until the results have converged to the order of
accuracy desired. "

This approach to the Kick-rotated BSE cannot be
applied routinely to scattering above inelastic threshold
as evidenced by the unitarity relation (4.32) which
accounts only for elastic scattering in intermediate
states. Ke hope to generalize the present approach
later on.

'2 All components of Ã and D are necessarily finite in a cutoff
calculation, but some, depending on the asymptotic behavior of
V, may diverge as the cutoff goes to infinity. This does not affect
the use of the N and D matrices for the calculation of the phase
shift or other physical quantities below inelastic threshold.
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B. Bound StatesSuppose then that we seek the real scattering wave
function P(»8) which satis6es

(2&22—V)g= 0.

Then (t) also sa, tisfies the real integral equation
(6.11)P(»8) = rr&")(x,8)n,

P(x,8) =- —s& &(*,8)P„4(»8) =j(»8)+ Ga"'V4» (6.2) (6.12)

Calculation of the wave function f(x,8) for a bound

(6.1) state at E= Ep can be approached in two ways. Firstly,
we can set up the representations

where the input wave j(x,8) is any solution of the free
BSE which is regular in the finite plane. In terms of
solutions regula, r at the origin, we have the expansion

y(x, 8) = r r (")(x,8)a„ (6.3)

with coefficients e„ to be determined. The asymptotic
form is

P(»8)=- s&")(x,8)—b,+j(x,8) (x)x„), (6.4)

with coefficients b„ to be determined. In a, practical
computation, we approximate (6.3) and (6.4) as finite
series, retaining the channel functions with the lower
channel indices, then increase the number of functions
until the results converge to the accuracy desired. Ex-
pressions for b„ in terms of p can be obtained from (6.2):

b„= r(„)Vy = Pr&„),yj,„. (6.5)

Alternatively, in terms of the real interacting Green's
function Gr&'& defined by (3.42a) we have

b„= r„V,+ r&„& VGr"' Vj. (6 6)

r) &")(x,8)a„= s&"&(x,8)—b„+j(x,8), (6 7)

The coefficients a„and b„are calculated by matching
(6.3) and (6.4) at x= x„. Tha, t is, we have continuity
of the wave function,

and match at x= x . Proceeding as above, we get, with
D= Dg below threshold,

D„"n„=0,

iV „"&&.„=P„

(6.13a,)

(6.13b)

Equa. tion (6.13a,) supplies the eigenvalue condition

A(Eo) = detD„"(E&))= 0 (6.14)

to determine Eo. When A&0 is found, the solution of the
homogeneous equation (6.13a) for the n„ is obtained
by standard algebraic methods. One may also replace
V by 3 V, where X is a variable, keep E constant, and
use

A(E,X)= 0 (6.15)

to determine X=X(E). There is a slight calculational
advantage to obtaining X as a function of E rather than
the other way around as the functions z("&(x,8) are
independent of X.

A second approach to the bound-state problem is
via the solutions (t(x,8) to the inhomogeneous problem
(6.12) for energies E in the neighborhood of Eo. This
method also yields the normalization of the bound state
and the residues of the scattering amplitudes at their
pole at E=EO, including, for example, the output
coupling constant.

Let us suppose that the bound state at Eo is non-
degenerate. The interacting Green's function Gy("
will have a pole at E=Eo with residue proportional to
$(»8)t«(x', 8'), where

Z&Egg= VII, Zi'Zgg= g V,at x=x„plus continuity of all its derivatives as well.
Thus, bracketing (6.7) successively with s„(x,8) and

or, equivalently,
r„(x,8) at the matching point, we get

(6.16)

(Da)."~.= t:z(.) jj (6.8a) Q=GVIt, g=ItVG. (6.17)

(6.8b)

Then the coeKcients and hence P(x,8) for all x is deter-
mined from

(6.9a)~.=(Da ')."Lz(),jj,
b.=(&Da ')."Lz(),jj. (6.9b)

For the physical scattering process, we take j(x,8)
= ji(kr) = r&'&C, (k) and obtain the phase shift via (2.63):

(2E/k) tansy&
——pji, z"b„+j i)„=C)'(k)b„

=C~(k) (ÃDa-')„"C.(k) . (6.10)

This can be seen by multipling (3.42) and (3.43) by
(Ep —E) and taking the limit E +ED. Let us also-
assume g V= Vg (time reversal invariance) so that g is
proportional to the transpose f of It. Then we can write,
for the region of the pole,

~(x,8)~(x',8')
Gr&')(x, 8;x',8')=e -, EO=E (6.18)

EE,2 jv~

where ~ = &1.This fixes the normalization of the bound-
state wave function. Let f(x,8) still be represented by
(6.11)and (6.12).
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VI A The form factor F(I~),ction g(2:,0) defined in Sec. VCo side th fu ction y 2:,
'

V

'
er the two formulas or

bo e for an arbitrary gy
a Eo. Consid

6.6 and (6.9b). These also ave a
Noting that

(6.28)

r(„)V4 =fr,„)47=P„

pvj= Lp j7=p L'& & j7

6.6,we have for the pole pa, rt of b„by

Me.I: 2(.) j7
Q2 E2

And, by (6.9b) and (4.35), the pole part is also

O'I))."Ls.,j7
(E—Ep) (dA/dE) E,

Hence
dA

&3 P„=—e(2Ep) ()VD „',p,

dE E,

(6.22)
fi d by differentiatingThis can be ven e

(~)Gv&&)(Z 2 —V)Gv"'= Gv' (6.3O)

ect to E and pursuing the conseqse uences. The
lrey point in the verificat&on is o n

n the variable A, and the bound-state wave

0 is known.
on the structure o e

din t es " containeddin the ear iest ones,

deaf

falization conditions, i
from one another and from the a ove,
in content.

e of these forms be-make contact wit some o
ginn' ' '

entit for E below threshold)ginning with the identity for e o
(6.»)

(&) 6 29
8—V G '"=— Gv . (. )(@1 2 V

BE

(6.24)

where
dE dM]

ding

E~—= —-+——= ——.
de

(6.25)

o obtain the output coupling constan, p jt ut '(x, 8)
and (6.18) and apply (2.69):= j&(ikr) in (6.4) a,n

the coefficientshes the normalization o
~ ~. In order that

~ ~'cl b tthe ri ht-han si e
the roduct form. is w

hshed in Sec. IV; see especia

E' '"d t'ki" d'ff r values of E Ileai p ailca,lculating 5 or v
. cticalmatter, his a sm oother functionp

ei '
omentum~ t an oof the imaginary momen

m ute dh/d&r by dif-near thres oh ld. It is better to compute
ferences and use

QG~(~)
G t')(Z&Z)2 —V)V 1

(jE

—gpss(&)"'—G "'V — (631)(Z1Z2)GV V

o&G ")/BE. Equation
rn on the integration-by-parts

reduces to
(6.31) depends, in turn, on the in egra

'

formula

(&) (3Gy (&)

Gv "&- . (6.32)V ZiZ2 (F122) V
(jE

se the difference between tt e two sides
0f (6.32) is expressible in terms o rac e

ch of w ic vannishes on account o
~ ~

at these limits.Green's functions a
(629) d t g theg 6 18) into . a

double-pole terms, we get one o t e can
za.tion expressions

(Z)Z2 —V)p = —e.
BE

(6.33)

dh
no er uced b introducing a variabria, ble(626) Another form is produce y in"(' )P' ) " .( ~)

An alternative is, from
0 6.6

QVj& =e{C4(i&;)p„)2. ( .6.27)

coupling st g

(Z&Z)2 —X(E)V)P = 0 6.34

1955 .K. Nl.shsj ma, Progr. T core
S. Mandelstam, Proc. Roy. o . on o
A, Igein and C. Zemach, Phys. Rev.
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is an identity for the bound-state wave function /=Pi;,
for a range of E values including Eo.

Taking the E derivative of

tion at x= x applies to the continuity of the coeAicient
functions and their first three derivatives in the relevant
Ã channels. That is,

It (Zi22 —XV)It =0 (6.35)

and integrating by pa, rts where necessary, we get d'

,.7 (&) (~'=* ) (7 2)
BU

(Z,Z, ) —I
BF

/V/=0.
BE

Therefore the normalization (6.33) at E=Eo is
equivalent to

BX)
!

BEi~,
/VII = —e. (6.36)

VII. TRUNCATION METHOD

There is another way to handle the matching problem
which, at first sight, appears more direct and simple
than the cV/D way, and deserves to be noted on that
account.

Suppose that rz'"', s('&, and j are approximated by
spherical harmonic expansions which contain only E
terms:

(7.1a)

l+N—1

s&"'(~ 0) = Q g '"'(x)E (0)
n=l

(7.1b)

l+N—1

n=l
(7.1c)

It is appropriate to consider only the 2Ã functions
ry(") and the 2' functions s("& whose power series are
initiated in the first E channels. The matching condi-

Equation (6.36) is ea,sier to apply numerically than
(6.33) because the integral is cut off by V, but (6.23),
which has no integration, is easier still.

For an attractive interaction, U){) and A.)0, and
also (BX/BE) &0. In the equal-mass case, mr=a&, the
bound state has a definite parity under t + t (tim—e-
parity). Thus (6.36) tells us that &=+I if /=+It and
e= —1 if p= —It. A bound state in the case miNm2
can be imagined as continuously evolved from an
m1=m2 problem, with P and for E&' also evolving con-
tinuously. In this evolution e cannot Rip sign. Thus the
notion of time parity can be a,ssigned to states when
m1/m2, not as a symmetry quantum number, but
either by this evolution process or by the sign of &.

Another method, relating to the nodal lines of the wave
function, will be discussed elsewhere.

for i = 0, 1, 2, ,3, and I&n& I+X+1. Thus there are 4N
linear equations to determine 4' unknowns, the coef-
ficients a„and b„. The calculation is done for a series of
increasing values of .V, until the results have converged
to the desired order of accuracy.

One may formulate this program in such a way that
the approximations (7.1) are exact solutions to the
truncated equations (ZiZ2)~It = Vp and (Fichu)' It'= 0.
Thus, ry("), r'"), and s("& can be taken from the be-
ginning as solutions to the truncated equations. If the
power-series method is used to ca,lculate them, the
recursion relations themselves can be truncated. Then
s("& is computed from the s(") and the r("' with the aid
of the niatrix X„".To find the approximation to j(x,8)
which solves the truncated free BSE, expand it in a
series of r("), and then replace the r(") by their truncated
versions.

In this way, one arrives at an approximation to a
BSE result as an exact result of the truncated BSK.We
found it perfectly feasible for calculation. The essential
point, which is not obvious in a naive approach to the
truncation approximation, is that the asymptotic
boundary conditions which determine s"' cannot be
developed within the truncation approximation itself;
rather the properties of the exact BSE, as contained in
its Green's function, and the matrix X„', must be ex-
ploited. Otherwise, one lands in the difficulties for the
scattering problems which were exhibited in MBS I.

To treat the bound-state problem via (7.2), one puts
the j„equal to zero. Then the eigenvalue condition is

IV(E) = 0, (7.3)

whei-e IV(E) is the Wronskian of the set of solutions.
That is, IV(E) is the determinant of the 4NX4N matrix
formed from the array of function coe%cients f„'"'(x„),
g„'"&(x„),and their first three derivatives.

The method outlined here combines two approxima-
tions in one. The single parameter E determines how
many basis functions are used to approximate the wave
function and how many channels are employed in the
calculation of each basis function. The N/D method
separates these two problems, and if used efhciently,
requires substantially less computer time. For a given
level of accuracy, the number of basis functions re-
quired in the N/D method can be much less than the
number required in solving the truncated BSE.
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The E and D matrices have been de6ned in (4.3) in
terms of basis functions for both the free and the inter-
acting BSE. We now outline a method for computing
iV and D which does not require prior solution of the
interacting BSE, but replaces it with a system of first-
order ordinary differential equations. We call it the
phase method because it generalizes the method of
variable phase which Calogero has developed as a
powerful tool in the analysis of nonrelativistic potential
theory. "

It also may be regarded as an adaptation of the
method of variation of constants in ordinary differential
equations. 4 The assertion is sometimes ma, de that there
is no method of variation of constants in partial dif-
ferential equations. But this does not hold in our case,
where the boundary conditions are expressed in terms
of one variable.

Let the interaction V(x) be repla, ced bp a cutoff
interaction V„(x) which va, nishes for x)y. Let the
associated functions of the basis regular at the origin
be r&&")(x,8;y). We are discussing here only local
interactions. Then for x&y, we have

The corresponding equation for d„' is

—d "(x)=x' sin'8d8k(„) Vrr&").
dx

(8.5b)

E„"(x)=x' sin'8d8ri„)r'") (8.6a)

F„"(x)=xz slnz8 d8 r )ki") (8.6b)

G "(x)=x' sin'8d8ki»ri") =F„"(x) (8.6c)

H„"(x)=x' sin'8 d8 k& )k'") (8.6d)

Then, combining the above equations, we get

Equations (8.3), (8.5), and (8.6) are a complete
system. let us define certain matrix functions of x,
depending only on the basis of free solutions as follows:

r i")(x 8 y) = r) i")(x 8)

and for x+y,
d

r &)(x 8 y) = —k'(x 8)n "(y)+r"(x 8)d "(y). (82) d) "(x)= V(x)L +) (x)n) "(x)+G)"(x)d)"(x)j (8 7b)

The r&&")(x,8;y) have jumps at x=y in their fourth-
order derivatives in x, but will be continuous in their
third- and lower-order derivatives. The coeKcients
nz" and d&' can be evaluated by bracketing the
rr&")(x,8; y) with k&") and rii) for any x in the cutoff
region, in particular, for x= y, where rr &") (x,8; y)
coincides with r r ~")(x,8).

Thus, we can drop the notion of cutoff and have,
for all x,

rr'")(x 8) = —Iz"(x,8)n),"(x)+r"(x,8)d),"(x), (8.3)

n„"(x)—n„"(xo)= x'dx sin'8 d8 r i„)Vr v'"', (8.4)

where n),"(x) and dq"(x) have the definitions already
given in (4.2). We also see that )compare with (2.37)$

The integration of this coupled, linear, 6rst-order
system is an interesting alternative to the solution of
the fourth-order BSE. The functions n„"(x) and d„"(x)
are de6ned from boundary conditions at x=0. These
can be inferred from the early terms of the power series
for the functions r~„), h{„),and my{') once the behavior of
V(x) at the origin is specified. Above threshold, the
equations can be made real, of course, by replacing
h{„)with s(„) and d„"with its real part. The values of LV,

D, and Dzz are obtained as indicated in (4.3). The
integration of (8.7) does not have to be carried beyond
the range of the potential. We have not explored this
system numerically except in the trivial case m&=m2,
X&=0, where it worked well.

To see the parallel to Calogero's method in potential
theory, let us start from the integral equation for the
Schrodinger wave function in the partial wave 1:

whence

cf—n„"(x)=x' sin'8 d8 r &» Vrr &") .
dx

P(r) = j&(kr)+2znk j&(kr~)n&(kr~)

XV(r')P(r')r"dr'. (8.8)
(8.5a)

Then in terms of u(r) =kgb(r) and the capped Bessel
functions j&(s) = sji(s) and 8&(s)= sni(s), we have

'4 F. Calogero, Variable Phase Approach to Poteetiat Scattering
(Academic, New York, 1967). u(r) =A (r)j (kr) —B(r)A[(kr),
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where
2m

A(r) =1+
Lawrence Radiation Laboratory, where a part of this
work was done.

n((r') V(r')N(r')dr', (8.10a)

Thus

—2m
B(r) = — j((r') U(r')u(r')dr'. (8.10b)

k

APPENDIX

From (5.12) of MIIS I, we have

G'(x, e; x', e')

2'
Vn)(A ji—Bn)),

k
(8.11a)

+"' dP
e« -")g (ny1)-'R (e)R (e')

4F n=&

db dA—sing
dr dr

dB)
+cose iR

'
dr)

which are the analogs of (8.7). Finally, put

A(r) =R(r) cose(r),

B(r)= R(r) sine(r),
so that

(8.11b)

(8.12a)

(8.12b)

~LI„(Qx()&„(Qx))—I„+2(Qx()&„+2(Qx))j, (A1)

where Q= ()32—k2)'I' Also,

~ (p cose)'
(Pr

7

r=o

(n+r)
cos"e R„(e)= g g„"R„(e). (A3)

m max f l, (n—r) )

The quantities $
' are defined recursively by

(A4a)
= —(2m/0) V(cosh ji—sine 6))2, (8.13) and from MBS I

which is Calogero's equation for the variable phase
shift.

IX. SUMMARY

The structure of the Bethe-Salpeter equation in the
bound-state region and the scattering region belowin-
elastic threshold has been analyzed in terms of brackets,
lY' and D matrices, and complete bases of functions
characterized by boundary conditions at the origin and
at inanity. The calculation of bound-state and scatter-
ing data and wave functions has been outlined by
several methods. The work provides the ingredients for
the elementary kind of bootstrap where the forces are
produced by one-particle exchange and self-consistency
is required between input and output values of masses
and couplings. More sophisticated bootstraps must
await development of more sophisticated calculational
techniques. The angular momentum quantum number
/, which enters as a parameter in the definition of the
coefficients A„, n„, and P„, and delimits the range of the
channel index n (n=l+integer), can be adjusted in
value to dehne outgoing wave states for complex l,
Regge trajectories, etc., by the methods described.
iiEodel calculations using these methods and further
properties of Bethe-Salpeter systems will be described
in a paper to follow.

$nm $ (mn+1) A (m +1)+$ (nm —1) A m . (A4b)

Substituting. these into (A1) and using the relation

Z
n=o m max( l, (n—r) ) m=l r=] n—mr

it follows, if g (x,x') is defined as in (5.31), that

(A5)

g (x,x') = Q P P - (n+1)-'
n=l r=)n—mi r&=)n—m&(

$„„"$„„"'(I„E„—-I„~2K +2) . (A6)
&r&'r

Consider the case x&x'. Ke have

X„(Qx)I„(Qx')—I).„~2(Qx)I„+2(Qx')

L(& (n+2q) lnX) (X~ (n+2q'))~, n(Q)
q=o qr 0

+(x(—n—2+2q))(&~(n+2q'))0. ,n(Q)g (A7)

The relation defines p and 0- in terms of the coefIIicients
in the power-series expansion of the Bessel functions.
Substituting this in (A2) an. d using the relation
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n —l 7'
r n—m~ rr-~ n—m'r ~-0 rIr-0

oo MAX max ma~'

(A8)
i=(—m—2) i'=m' n=MI N (I=O (I'=0
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n 2+r+2q,

i' =n+r'+2q',

max =-,'(i+n+2 —!n m—!)+c'),

max'=-', (i' —n —in —m' ~)+c),

MAX =-', (i'+m')+ g,

MIN =the greater of 1, —', (m —2 i) —c),—

where 6 is either zero or —'„depending on which choice
makes the above limits integral, we find that

g (x,2,")= terms in (x' lnx) (x"')

i = m-+ 2(j—1), i' = m'+ 2(j—1),
r= m+2( j—1)+n+2—2q,
r'= m'+2-( j'—1)—n —2q',

MIN=i, MAX= m'+ j'—1,
max'=-', (m' —n —ln m—I+2j 2)

max= —(m+n+2 —tn —mt+2 j—2) .

(A13)

dp p'(p' &')'— (A14)

ol

One further. point is to be noted. All the integrals in

(Aii) are of the form

MAX max max'

+ Z Z (~')(~"') dp pi(p2 ji2) jin(p2 LL, 2) (A15)
i=m —2 P=m' n=M IN q=o q'=0

( 1)r' +&a2 dP P(r+r')——.„-(e). (Aio)
(n+1) „,, 4Z .!.'!

Now —X~,;)(""&') is the real part of the coeKcient of

where r, j)0.
These integrals, after integration by parts and

algebraic manipulation, can be reduced to three ele-

mentary integrals:

(1+)m +2 (j 1)(1+r—)m'+2 (j ' 1)( 1)
m' 1——

2(n2+ j)!2(m'+j')!
in the above expansion, so (Re means real part)

MAX max max'
(m', j') —Regr m' j'

n=MIN q=O q'=0

pidp ~ i+1 ( ~ )i+1

+"' dP 1 ((o1—k) ((o2 —k)
— = —ln

„, (p' —k2) k mrm2

+~1 PdP

(A16)

(A17)

(A18)

where

( 1)r' +(ac gP Pr+r'

X$nm"5~m
"'

~22 "(e), (Ai 1)(n+1), 4E r!r'!

(p2 P2)

Below threshold, le=ice and the left-hand side of (A17)
can be expressed as

m'j'
( 1)m' —12(m+2j—1)

X(m+ j)!2' '+"' "(m'+ j')! (A12)
—ta,n ' — —tan ' (A19)


