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In this paper we present the neutrino luminosity due to a completely relativistic electron gas in the
presence of an intense magnetic field. The neutrino emission rate is determined rigorously, under the assump-
tion of the V' —A theory of universal weak Fermi interaction, by standard field-theoretical methods. It is
shown that the neutrino radiation rate can be expressed as a function of temperature, density, and the
field-strength parameter @ =H/H., where H.=m?c/eti=4.414X108 G. Comparisons are made with pre-
vious approximate results due to others, and the reasons for discrepancies are discussed.

1. INTRODUCTION

HE importance of weak interactions in stellar
evolution problems has been the production of
neutrinos; the reason is that the mean free path of a
1-MeV neutrino in lead is about 108 c¢m, or one light
year, and is much larger than the dimensions of a star
(~10'" cm). A general survey of neutrino processes
important in astrophysics in ordinary stellar matter can
be found in Chap. 6 of Ref. 1, where an exhaustive list
of references is given. In general, neutrino processes are
important in later stages of stellar evolution, when the
core of the star has contracted considerably. The con-
traction of the stellar core generally will increase the
strength of any magnetic field already present in stellar
interiors in earlier stages. The presence of magnetic
fields will give rise to new neutrino processes which are
normally forbidden in vacuum, such as the emission of
a pair of neutrinos by an otherwise free electron moving
in a magnetic field. This process is analogous to the
ordinary synchrotron radiation by a free electron in a
magnetic field.
In this paper we calculate the neutrino production rate
by the synchroton process (magnetic bremsstrahlung)

e — e +rvtp. (1)

Reaction (1) is forbidden by energy and momentum
conservation laws when both electrons are strictly free.
The presence of the magnetic field will cause electrons
to move in circular orbits; therefore, the electrons will
not be free and reaction (1) can take place. As has been
extensively studied in a number of papers,? the effect of
a magnetic field on the electron is to quantize its energy
in the direction perpendicular to the field H, which is
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taken to be in the z direction. This quantization
effectively replaces, in the expression for the electron
energy, the momenta in the x and y directions by the
field strength, 1ie., p2+p,2— n(H/H,), with
n=0,1,2,..., and H,=m?3/et=4.414X10'% G. Such a
quantization will leave p, unaltered. Reaction (1) can
therefore be visualized as a bremsstrahlung process or
a decay of an electron from an initial state with quantum
number 7 to a new one with »/, through the emission of
two neutrinos which carry away a certain amount of
energy. In this paper we compute the energy-loss rate
of process (1) in stellar matter, using the exact solution
of the Dirac equation for an electron in an external
magnetic field.

2. DIRAC EQUATION WITH MAGNETIC FIELD—
TYPICAL INTEGRALS

The Dirac equation describing an electron of mass m,
charge ¢>0 in an external electromagnetic potential 4,
has been discussed previously.? Here we only give
essential details regarding this problem. The Dirac
equation is

9 mc  ie
[w—— +—++ “‘Y#Au:l‘l’D =0. (2
o0xy, h e

In an external magnetic field H, we have
A4=0, A=%H><r, (3)

taking H in the z direction; then H,=H,=0, H,=H,
and
As=0, A,=—3yH, A,=%xH, A,=0. (4)

Because of the nature of the problem, it is more con-
venient to work with a different ¥ gauge transformed
in the following way:

Y=ypeil @) (5)
where the function f(x,y) is chosen in such a way that
A4=0, A,=—yH, A,=A,=0. (6)
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From Eq. (2), we see that
J(e,y) = —3(e/he)xyH . (M
As shown before,?'? the spinor ¢ is given by
Y(r,) =emEhy(r),
Y(r) =i thaathenrg—E212y, (£)
CI_H n(S)
_ a0
CiH (%)
with
E=mc*(1+224-20n0) 2 =mce(x) , 9)

n=0,1,2,..., x=p,/mc,
H,=m%%/eh=4.414X10% G, O=H/H,,
E=yy 24k, /v 102, ’Y=®7\c_2, Re="h/mc,

10)
Ci=ad, Cy=SaB, C3;=95bA, Ci=nbB,
a=[3(1+9e ]2, b=[3(1—ne )],
1 x 1/2
orriae)]
2 (x*4-210)1/2
(1)

1 x 1/2
st
2 (x?+2100)1/2

The two indices n==1, S==1 stand for positive and
negative energies and the sign of the projection of the
momentum component along the spin. H,(x) are the
Hermite polynomials normalized to 1:

71/2 1/2

w227y

(12)

H,(x) =(
For future reference, we will study here the integral

Ru=/d87'//fT(r)F#‘pi(r)eiq'rm: (13)

where T,=vsy,(1+7vs). Substituting Eq. (8) into
Eq. (13), we easily obtain
o L= =0/ ] 3=/ —0/ 1]

» Iua
L, L,

(14)

I,= / e D Ly Tt (eionidy.  (15)

This integral is of the form
(nln')y= / @D ()T (Hewiidy. (16)

3 N. P. Klepikov, Zh. Eksperim. i Teor. Fiz. 26, 19 (1954).
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For n2>#', we denote {(n|#') by I(n'|n). It can be shown
that?

I | n)=3(n|n)(—1)Ve i n>n"  (17)
with
S(n|n') =3 |n) = (n'ln'l)=12e—t12ntn") /2
XoFo(—n'y, —n; —171), (18)
p=tan"'(q,/q.), t=(@"+q )/ 2v%*,  (19)
oFo(a,b; ) =143 (a)i(b)x*/k!,
k=1 (20)

(a)k=I:I1 (a+s—1).

The variable ¢, enters in (16) because it has made use of
the first of the & functions in Eq. (14). For any # and »/,
the obvious generalization of Eq. (17) is (n—#n'=N)
(n|n")=2@m|n")[eNe(=1)"0(n—n")

o8 (—1)r0(n —m) — (— 1), ].
6(x) is a step function such that

f(x)=1 forx>0
=0 for x<0.

(21)

3. PROCESS e~ —e +v+v—EQUATION
FOR THE ENERGY LOSS

From the theory of weak interactions, we know that
the Lagrangian for this process has the form?

£=Z [lpe(x)oﬂl/e(x)][‘pv(x)pdbv(x)]7
Fi=(1/V2)0:g:(145) . (23)

In agreement with the V'— A4 theory, the index ¢ can be
only V (vectorial, Oy=v,) and 4 (axial, O4=%y,ys).
The g's are the weak interaction constant, to be
specified later. The wave function ¢, is given by Eq. (8),
while ¢, is simply the free-particle wave function

o) = (1/ 3/ Qe =it ()

(22)
where

(24)
where

(’Yuf’n+mv6/h)“v(ﬁ =0.

Using Eq. (8), with 7;=7;=1 and (24) in the expression
for the S matrix

1
= ——/d“x L£(x) (25)
he
and integrating over {, we obtain
Sji=ﬂ_l5(E;—Ef—E,,—Ep) Z ﬂy(ﬁ)
XEas(p) [ 29010 )00
(26)

=Q (B~ E;— B, — E;) 2 ii(p)Fius(9)(0)
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where p, and g, are the four-momenta of » and 7. The
| Sy:|2 is easily seen to be

—2

|Sys] 2=

8(E;—E;—E,—E;)

X% [ (p)Faus(@)a(@)Fu(p) N33, (27)

2wh

with

Fi=viFitys, Niy=0:0;.
The usual rule §2(E)— (T/27%)8(E) has been used? to
derive Eq. (27). The next step is to perform the sum-
mation over the spinorial index r=1,2, which has been
omitted in Eq. (27) for clarity reasons. Applying the

usual procedure to handle these problems,” we have
after some algebra

2 [u(PF a(@a (F u(p)]

Cpacqs

=%8:gj TrMg;, (28)

pH~a

Tr{ivaOi(1+7ys)ivs(1—vs)yOitysy =TrMs;, (29)

where E,=E,=cp, E;=FE;=cq, p=|p| because for
neutrinos p,2=p?—pe*=—m,2=0. The next step is to

integrate over the neutrino and antineutrino
momenta p,q. This is obtained by using

. ? (. o0
g—)(zm)s/ 2 §_9@)_;/ 2 G0

Again calling expression (27) after the sum over polari-
zations and momenta have been performed |Sy;|2, we

obtain
ap / dq

T 1
|Sult= ——
(2nh) h®

CPalqp
3(Ei—E;—E,—E,)
8E,E,

X2 gigiN e TrM ;. (31)
2]

We now introduce a four-vector Q, such that
Q= (Q,iQ0) =[p+4,(i/c)(Ep+E,)].

Multiplying Eq. (31) by the identity

(32)

/d“’Q #Q=p+q)=1,

* H. Muirhead, The Physics of Elementary Particles (Pergamon,
New York, 1965), pp. 279-283.

® G. Killén, Elementary Particle Physics (Addison-Wesley,
Reading, Mass., 1964), p. 190.
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we obtain
1
|Sir| 2= — | Q3 gigiN s TrM ;5 dsP/dsq
2whh® 2¢ i :
Cpalqp
X 6*(Qu=putqs). (33)

AE,E,

The integration over p and ¢ can be performed by using
the Lenard relation,® i.e.,

2/d31) d¥q 540 o)
4 25, ZEan(]B p=Pp T

= [0, F20.0(00Q; (34
we finally obtain
T 11«
[Sis|2= onh e 20 21 @*Q F(Q)8(Q0)0(Qu?) , -
F(Q)=% £:8:(0u’3as+2Qa06)(0:)(0;") TrM,
and ’
M ij=1v0:(1475)ivs(1—v5)vOitya.  (36)

Summing over the indices i=V, Oy=v, and i=4,
O4=1y,vs (and analogously for index 7, Oy=7v,,
O4=1v.ys5), we obtain

F(Q) = (Qu0ast2QuQs){gv¥{v,){v:)T(— 1)1+
XTrlivay,(14+vs)ivs(1—7y5)v-]
+8agv(—=1)4{y, )(iv-vs)
XTr[i'y,,'yp(l +vs)ivs(l —’Ys)i’Yr‘Ys:]
+gagv(—1)Foriliy,ys)(yn)t
XTr[iyaty,ys(1+vs)ive(1—vs)y-]
+842(—1)%iv,ys) iy rvs)t
XTrltyaiveys(14+vs)ivs(1—vs)ivoys]},

where we have used

(37

'YrT = 74'YTT'Y4 = (— 1) l+aﬂ'¥1 )
(Fy-vs) T =tyrys(—1)%m.
The general expression
Si= —g:g0,* Tr[mO0:(1+vs)7a(1—7v5)0;]
+2gig; Trliv,Qu0:(145)ivsQs(1—v5)0;]

is given in Table 14-1 of Ref. 5. Using these results,
Eq. (37) becomes

F(Q)=32¢%(Qu0,r —QpQ-)(—1)1H0ms
X <’Yp(1 +'Y-5) ><’Yr(1+'y5>>T ’ (38)
where we have taken gy = —g,=g. With a little change

SH. Y. Chiu and M. H. Zaidi, High Energy Astrophysics
(Gordon and Breach, New York, 1967), Vol. II, p. 62.
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of notation, Eq. (35) now reads (¢?=gq,?)
T 1132
ISH‘I P — —
2k h® 2¢ 24
X0(q0)0(g,%) (— 1)1 R Ry

Using Eq. (14) for R, and R4', we obtain

5|1 L 2T ML /wd " /wd
if| "= z z
2nh 2000524 Lerz ) ! /_w )

X8(po—p: —2) 6 pe=po+4.9(q0)0(qu)
X[gu®0ap—qaqs](— 1) 84T L4t

where we have used the fact that 82(x) = L—18(x) if x has
the dimension of length, and we have changed the §
function on the variable p, into a Kronecker § function
using the relation 8(x) =L~5,. Integration on g, can be
immediately performed. Introducing polar coordinates
g==q COSgp, ¢, =¢ sing, we obtain

/ d°q(qu*62p—9ags)

(39)

(40)

T 32rg> hL2L.
[Sis|2=— / qu/ dé
2uh 2X24ch® L,2L,2
X0(q0)0(q0*—¢*—q:P)F(g,0), (41)
with
F(g,¢0) =[qu*6as—qaqs](—1)"*%s
XIaIBTI az=q c0s¢, qy=q sing, q;=p,—p,’ * (42)

The 6 function indicates that integration on ¢2 can go
only up to gu*=gq¢®—¢.%. Introducing a new variable
—(¢*/qu?), Eq. (41) reduces to

L2L, 1
T / doI (o5,
L2L2Jo
32mg*h (mc)*

48ch° 2

43)

[Sir|2=So

= (44)

qM2 2
Ipana) === [ dp F(gu(1—p)', 8).  (45)
™ Jo

A factor (mc)* has been taken out of the integral in the

definition of So of Eq. (44), so that the integral I in (45)

is dimensionless. All the momenta entering in (45) are

now measured in units of mc, i.e., p.,/mc=x, p,//mc=x',

etc. The probability per unit time and volume, @, is

given by

|Sis| 2 1 !

®= = So/ dp I(p,x,x'). (46)
L.L,L, T L,L,L2* Jy

The neutrino luminosity 7 is defined as

1= Zf". (Ei—Enf(E)[1—-f(E)]®,  (47)

CANUTO, CHIU, CHOU, AND FASSIO-CANUTO 2

where E;—E;=mc?[ e(x)—e(x')] is the energy carried
away by the neutrinos and f(E) is the Fermi distribution

JE)=Q1+e o)~ ¢=kT/mc*. (48)
The summations are given by?
L,
YL > (19)
n 2mhe 7 J_o
r-EL-I - / /N ()
L,, 1 HLL,
—— /dpz’
21rh 2 H, A2 »
L.L,L, H -
d'.  (50)

iy
(27")27‘03 H, —o0

Substituting now Egs. (46), (49), and (50) into Eq.(47),
we obtain the final form

H 00 00
I=l—3Y Z; dx/ dx'[e(x) —e(x')]
X /@)1 —f@)] / do I(wal'p), (1)
1 1 1 327g%h (me)*2w

c?

(2#)37\ 4 2nh  48chs 2
1 1 gme?

=- 52
6 (2)8 ch¥R® &2

=1.74748 X108 erg/cm? sec,

with
g=1.4149X10~* erg cm3.
4. FUNCTION I(x,x',0)

Using the Pauli-Dirac representation for the v
matrices, Eq. (42) can be rewritten in the following way:

F(q,9) = (qu0as—qaqp) I aLs, (53)

where I, is given by Eq. (15) and L.=I1.(t—¢,
go— —q,). It is a matter of a very lengthy and tedious
algebra to show that

I(x,x’,p) = QM4(A +pB) +QM2(QSC+90D) 2 ) (54)
where
A =w1%p12Fw’po? —dwswidsPa,
B=wd:2 20240 ,
w12P1 % FwaPo +4wswapsps 55)

C=wsps—wsds,
D=wspstwips
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and been given in Eq. (18), where the argument ¢ is now
61=3(n|n'—1), ¢s=3(n|n"), (56) 1=(1/20)gx*(1—p). 7
Go=B(n—1|n'), ¢s=B(n—1|n'—1). The parameters wg, after having performed the sum-

mation over the spins of the initial and final states, are
The general expression for the function ®(z|#n’) has given by

- x T & 20 (nn’)/?
oll=|1—— | 1+ ——|, wws=—wiws= ’
L e(x)dl  e(x)- e(x)e(x)
r x T % r x (21’ ©)1/2
(.022= 1+ —_— 1"" |, Ww3z= - —:I P)
L e(@)dl () L e(x)d (@)
B z T & r ¥ (2n0®)1/2
w32 = 1 -_—-— 1— |, Ww3z= 1 —_—— - (58)
L e(x)dl () L e(@)d ex)
r x T % 7 B x (2n0)12
wl=| 1+—— | 1+ —— |, wwi=|14+—— —
L e(w)dl  e(a')d L e(@)d e(x)
B x (20" @)1/2
Wow4 = 1 '—-"jl .
L e(x)d  e(x))

The integration over the variable p, which appears in Eq. (51), can be performed by using the expression for the
hypergeometric function, given in Eq. (20). The result is

1
/ I(x,x",p)dp =4Ogu w2 K (1|0’ —1)Fwe?K (n—1|n') +wswil 1(n, n' |n—1,n'—1)]
' —40 wi?L(n|n' —1)+wlL(n—1|n")+4wswdM 2(n, n' |n—1,1n'—1)]
+20{ws[ (e—¢€)+(x—a') 2K (n|n") +wl[ (e—€) —(x—a") 2K (n—1|n'—1)}. (59)

The general expressions for the functions K, L, My, and M, are the following (a=¢x?/20, @=H/H,):

KV |M)=( 1M1)—1{(N+M) ![1 e 3‘:".]

m=0 1!
o (=N)p(—=M)r(—1)% N-+M—k ™
oy EMEIDK )(N—{-M—k)!l:l—e—“ b f—]
k=1 k! m=0 !

+22(—1)lc,(N+M—z)z[1—e—aN%_lin']}, (60)

m=0 .

L\ M) =M !>“{(N+M+1) 1[1_e—a S f‘f]

m=0 !

hnd (_N)k(—M')k(—l)k NA-M+1—k g™
+2% <N+M+1—k>![1—e—a ) —]
k=1 k! m=0 m!

o N+-M+1-1 g™
+z(—1)lc,(N+M+1—l)![1—e—a > —']} (61)

1=2 m=0 p!
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My, M|N—=1, M —1)=[(N—1){(M —1) !}1{ (N+M—1) ![l—e—‘"

o (—=N)i(—=M)+(—N+1D)u(—=M+1);
2 (
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N+M—-1 ™
z )

m=0 m'

k=1 k!

N+M—-1—k g™
—1)’°(N+M—k—1)![1—e—°‘ 5 —]
m=0 !

® NAM—-1-1 g™
+z(—1>lcz'<N+M—z—1>![1—e—a 5 —‘]] ©2)
=2

m=0 m.

My(N, M|N—1, M—1)=[(N—1) (M —1) !]—1{(N+M) !,:1——6—“ NiM im]

o (=N)e(—=M)A-(—N+1)(— M +1),
+Z(1)( It (—=N41)i( )(

k=1 k!

with

m=0 7!
N+M—k ™
—1)k(N+M—k)![1—e—a > —]
m=0 m!
© N4+M-1 g™
+Z(—1)’Cz'(N+M—l)!l:1—e-°‘ > ——:'}, (63)
=2 m=0 !

(=N)i(=M)(=N)w (= M)

C=

k+k' =1 k>0;k">0

(=N)e(—M)(—N+1)p (=M +1)

b

kIR

(64)

C/=

k+k =1;k>0;k'>0
k
@ir=1II (@+S-1).
S=1

5. NUMERICAL RESULTS

In Tables I-III we list for each density ps/u. (1076 o/
in g/cm® the neutrino luminosities for H=H,,
H,=m**/eh=4.414X10® G (©=1) at temperatures
T=2.5X108, 5X108, and 10° °K, respectively.

The dependence of the neutrino luminosity on tem-
perature and density can be seen qualitatively from

TaBLe I. Neutrino luminosities logi (erg/cm® sec) as a
function of the degeneracy parameter » and den51ty log1o(pe/1e)
(1076p/u, in g/cmd) at femperature T=2.5%X108 °K.

Iogm(ps/ﬂe) logio
7 (g/cm3 (erg/cms3 sec)
-8 —6 —4.2518
—2.8 -3 —2.0000
10 —0.268 3.5682
15 —0.315 5.7324
20 0.204 7.8976
25 0.447 9.6721
30 0.602 10.3222
35 0.663 10.5798
40 0.771 10.9685
45 0.978 11.6435
50 1.079 11,7993
55 1.114 12.0414
60 1.176 12.1461
65 1.230 12.2552
70 1.300 12.3979
75 1.672 11.9494
1135 1.699 8.0792

)

kIR

Fig. 1. In general the neutrino luminosity increases with
density for a particular temperature, until a maximum
is reached. We also note that the neutrino luminosity
decreases rapidly toward zero at high densities corre-
sponding to the regime of complete degeneracy. The
reason is that the neutrino bremsstrahlung process con-
sidered here cannot occur in a completely degenerate
electron gas, regardless of whether the electron plasma
is magnetized. Mathematically it is clear that the
product (e—u)0(u— €) vanishes. Furthermore, the maxi-
mum energy-loss rate shifts to higher value at higher
temperatures.

TaBLE II. Same as Table I for 7'=5X108 °K.

logio(pe/pe) log1ol

7 (g/cm?) (erg/cm3 sec)
—8 —5.602 4.7924
—2.8 —2.509 7.0414
2.2 —0.398 9.2304
10 0.114 12.5682
25 0.748 14.2788
34 1.000 14.3222
43 1.301 14.2788
50 1.653 14.2788
55 1.000 13.3802
60 1.000 11.3010
65 2.000 9.6721
70 2.000 7.7076
75 2.000 6.1461
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For purposes of comparison, we quote here the
relevant approximate expressions for the neutrino
luminosities from Landstreet’s thesis [the criterion
for using 4%, namely, Eq. (20) in the published version
of Landstreet’s thesis,” contains an error]; these are

1I=10"4H S Top* (if Hep*P<8X10°T),
le I ZX 10—7T719/3p4/9H82/3 .

Itis interesting to note that the discrepancies between
Landstreet’s results and ours are large at low densities.
At high densities, Landstreet’s results are essentially
in agreement with our work. The reason for the dis-
crepancies at low densities is due apparently to the
various approximations introduced by Landstreet. The
most serious one of the simplifying assumptions made
by Landstreet is his replacement of sums over states by
integrals with the densities of a free electron gas in the
absence of the magnetic field, namely,

Amprdp E*E
2= [ s
n (2n#)® 2m2h2c?

In doing so he has neglected the effects of the magnetic-
field energy levels. This is a reasonable approximation
for high density and large quantum numbers. It is clear

TaBLE III. Same as Table I for =109 °K.

log1o(ps/ke) logio?

n (g/cm?) (erg/cm? sec)
-8 —4.698 9.491
—28 —1.698 11.813
2.2 0.0 13.949
10 1.114 15.886
25 2.079 16.579
50 2.897 15.845
55 3.000 14.973
60 3.000 12.643
65 3.000 10.785
70 3.204 8.544
75 3.000 6.361
85 3.000 2.000

7 J. D. Landstreet, Phys. Rev. 153, 1372 (1967).
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T=5xi0°%°K

LOG (erg/cm3 sec)

T=2.5x10% °k

1 1 1 1 1 L
-6 -5 -4 -3 -2 -1 0 I 2 3 4
LOG (5 /pe)(g/em®)

Fic. 1. Neutrino luminosities (logiol in erg/cmd) as a function
of density [logio(pe/me) in g/cmd, pg=10"t] at temperatures
2.5%X108, 5X108% and 10°°K, respectively. The field-strength
parameter @ =H /H., where H,=m??/eh=4.414X 108 G, is taken
to be unity.

that the replacement of the sums ), by integrals is
not really valid for small quantum numbers and at low
densities. Considering the large number of approxima-
tions made by Landstreet, the general agreement of his
results with ours at not too low densities is satisfactory.
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