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Neutrino Brernsstrahlung in an Intense Magnetic Field
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In this paper we present the neutrino luminosity due to a completely relativistic electron gas in the
presence of an intense magnetic 6eld. The neutrino emission rate is determined rigorously, under the assump-
tion of the V—A theory of universal weak Fermi interaction, by standard field-theoretical methods. It is
shown that the neutrino radiation rate can be expressed as a function of temperature, density, and the
Geld-strength parameter O'=H/H. , where H. =tnsc'/eh =4 414X10"G. Comparisons are made with pre-
vious approximate results due to others, and the reasons for discrepancies are discussed.

1. INTRODUCTION

'HE importance of weak interactions in stellar
evolution problems has been the production of

neutrinos; the reason is that the mean free path of a
1-MeV neutrino in lead is about 10" cm, or one light
year, and is much larger than the dimensions of a star
( 10" crn). A general survey of neutrino processes
important in astrophysics in ordinary stellar matter can
be found in Chap. 6 of Ref. 1, where an exhaustive list
of references is given. In general, neutrino processes are
important in later stages of stellar evolution, when the
core of the star has contracted considerably. The con-
traction of the stellar core generally will increase the
strength ef any magnetic field already present in stellar
interiors in earlier stages. The presence of magnetic
fields will give rise to new neutrino processes which are
normally forbidden in vacuum, such as the emission of
a pair of neutrinos by an otherwise free electron moving
in a magnetic field. This process is analogous to the
ordinary synchrotron radiation by a free electron in a
magnetic Geld.

In this paper we calculate the neutrino production rate
by the synchroton process (magnetic bremsstrahlung)

e -+e +v+i.
Reaction (1) is forbidden by energy and momentum
conservation laws when both electrons are strictly free.
The presence of the magnetic field will cause electrons
to move in circular orbits; therefore, the electrons will
not be free and reaction (1) can take place. As has been
extensively studied in a number of papers, ' the effect of
a magnetic Geld on the electron is to quantize its energy
in the direction perpendicular to the Geld H, which is
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taken to be in the s direction. This quantization
effectively replaces, in the expression for the electron
energy, the momenta in the x and y directions by the
field strength, i.e., p, '+p„' —+ tr(H/H, ), with
0=0,1,2, . . , an.d H, =tts'c'/eh=4. 414&(,10" G. Such a
quantization will leave p, unaltered. Reaction (1) can
therefore be visualized as a bremsstrahlung process or
a decay of an electron from an initial state with quantum
number e to a new one with e', through the emission of
two neutrinos which carry away a certain amount of
energy. In this paper we compute the energy-loss rate
of process (1) in stellar matter, using the exact solution
of the Dirac equation for an electron in an external
magnetic Geld.

8 mc ie
+—+~„A„ i' =0.

Bx„k Ac

In an external magnetic Geld H, we have

A4 ——0, A=-', H)&r,

(2)

taking H in the 2' direction; then H, =H„=O, H, =H,
and

A4=0, (4)A.= ——,'yH, A„=-,'~H, A „...=0.
Because of the nature of the problem, it is more con-
venient to work with a different iP gauge transformed
in the following way:

iPDe~f (*s)=,
where the function f(x,y) is chosen in such a way that

A4=0, A, = yH, A„=A,=Os — (6)

2. DIRAC EQUATION WITH MAGNETIC FIELD—
TYPICAL INTEGRALS

The Dirac equation describing an electron of mass m,
charge e&0 in an external electromagnetic potential A„
has been discussed previously. ' Here we only give
essential details regarding this problem. The Dirac
equation is
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From Eq. (2), we see that

f(x,y) = ', (—e/—Ac)xyH .
As shown before, "the spinor )P is given by

I(n'ln) =C(nln')( —1)"'e—'("-"')4', n&~n' (17)
with

For n &&n', we denote (n l
n') by I(n'

l
n). It can be shown

(7)
that

with

)P(r /) e zz)Et/—re(r)

)P(r) —et(kzz+/zzz)e —42/2u (])
C2H ($)

„(() O2H--2(k)
C4H (&)

X4H. 2($).

E=rnc'(1+x'+2n8) "'=ntc'4(g),

n, =0,1,2, . . . , x =p,/tnc,

H =tn'c'/eh=4. 414&&10"G, On=H/H„

(9)

f =yy'/'+k, /y"', y = O)t, ', X, =h/rnc,
(10)

C1=aA, C2=SaB, Cs=gSbA, C4=7/IbB,

~=Ll(1+v ')j"' b=l:l(1—
n ')j"'

1 —1/2

2 = — 1+5
-2 (z'+2z0)"')

1 g —I/2

8= — 1—S
-2 (z'+2zO)"')

C(nln') =C(n'ln) =(n'n'() —"'e—"'/', "+ ' '

y,P, (—n', —n; —/-'), (1g)

tp=tan '(q„/q ), /=(q '+q„')//2yh', (19)

pjt()((pzf)2 g) —I++ (g)))(t))4g&/)zl 1

k=1 (20)

s=1

3. PROCESS e ~e +v+v —EQUATION
FOR THE ENERGY LOSS

The variable q, enters in (16) because it has made use of
the first of the () functions in Eq. (14). For any n and n',
the obvious generalization of Eq. (17) is (n —n'=N)

(n,
l
n') =C (n l

n') Le
—'Nt'( —1)"'8(n—n')

+e4N4( 1)ne(n n) ( 1)nS n' j (21)

t/(x) is a step function such that

8(x) = 1 for x ~& 0
=0 for x(0.

The two indices q =~1, 5=~1 stand for positive and
negative energies and the sign of the projection of the
momentum component along the spin. H„(x) are the
Hermite polynomials normalized to 1:

+1/2 1/2

H„(x)= — H„(x). (12)

For future reference, we will study here the integral

E = d'r)prt(r)I' )/2(r)e'4"" (13)

where I'„=pe„(1+&4). Substituting Eq. (8) into
Eq. (13), we easily obtain

sL(p.—p' —q.)/6 ~L(p p*' q)/&3— —
E.„= — — I„, (14)

L* L.

where
y (g) (1/gfI)e(P x/rze zEzt//zu (P)—

(y„p,+nt, c/44)u, (p) =0.

(24)

Using Eq. (8)) with r/, = y/f =1 and (24) in the expression
for the S matrix

1
S=— d4x Z(g)

Ac
(25)

From the theory of weak interactions, we know that
the Lagrangian for this process has the form'

&=2 L4"(g)OA"(g)ILL(g)FA"(g) j (22)
where

F'= (1/~~)O'g'(1+&4) . (23)

In agreement with the V—A theory, the index i can be
only V (vectorial, Or=y, ) and A (axial, 02(=iv„y4)
The g s are the weak interaction constant, to be
specified later. The wave function)P, is given by Eq. (8),
while )P„ is simply the free-particle wave function

e—((2+A'2)/2u, t($')I2 u„(p)e yyy//tdy

This integral is of the form

(15) and integrating over /) we obtain

Sr, Q 'o(E; Er E„E——;) g— u„(P—)——

(nln') —= e—(42+et)/2H, ((t)H ($)etyyy//td (16)

' N. P. Klepikov, Zh. Eksperim. i Teor. Fiz. 26, 19 {1954).

&&p,u„(q) d'r )P,(r)O, )pf (r) e-t(p+4) '/4

=Q 'f/(E; Ef E„E„)pu„(p—)F,uy—(q)(0—;),-(26)
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we obtain

with

TQ 2

g(E. Er E E )
2%A

F u X... 27)f u(p)F, up(q)u(q)F, u(p A ...
22

Ft E;;=00, ..t~i='Y4 i 'Y4)

d'Q Q g;g; V;; TrM, ;j " " tPp (Pq
kh' 2c

~'(Q. =p.+q.) (33)

be erformed by usingover and g can e peThe integration over
the Lcnard relation, 6 i.e.,

E has been used' to-+ (2'/21rk)8{E) has been. used

ation over the spinoria w lc a
omitted in Eq. r
usual procedu re to han e
after some algebra

Ztu~')(p)F;u" q u
'(p'){ )u(~')(q)Fzu(p)(p)$

TrcV;), {28)

( 5
'

p
— Ot 4 =TriV,;, (29)Trfiv 0, vs

'
p

— Ot 4 — r(&+ 5)ivp(~-v1)v40)'v4 =

«q p~'(Q» =p.+q»)
2E» 2E,

= —
I Q.'~-p +2Q.Qp&e(Q.)~{Q ')

24

we 6nally obtain

—d'QF(Q)~(Q. )0{Q.'),'2c242xk h

F =;, ' 2 p)(0;)(O, t) Tr.V;;,F(Q) =Z gC (Q'~-p+2Q- p

jlf')= iv-0—'(&+v5)ivp(& v1 v4—0) v4.

r the indices s=, y —, s —A)Summing OVCl

=i v5 (and analogous y
Og =1V~V1)& wc 0

2Q-Q)~g '(+
~+ )1V (& —V5)r.jXTr['v-vp v.-

'
p

(—)'"(.)( ~ )'
(~ —v1)1v.v~jTIL1V~Vp VS IVp

—&)"'"(iv,v~)(v, )'
~+v1)ivp(~ —vs) v.tUTIL'17~1V»V5 V6 p

&+v1)ivp(~ —v1)iv,vs]),

' -&)'"{'v,v )('v,v.
XTr[iv.t',v»vs 1+v1 iv p

e used

because forw ere „= = E,=E;=cq, p=(—p~
os p — '— '= —m, 1=0. The next step is o

dover t e neintegrate ne
. This is o ainIIloIllCIlta pqq. T

0

(2.a)» (

OVCI' POIRI'1-ression (27) after the sum ov p
een performed ~S,~', wez d momenta have een pzRtlons RIl mo

Obtain

p»cqp —E)

tol ~ SUch thRtdUcc R foul-vcc ol%C now intro

Q.=(Q»QO = p) =E +rl {iic)(E»+Ea)3

. (31 by the identityMultiplying Eq. 3 y

d' 8{E,—Er E,
where we havSE,E,(21rh) II'

') 3~)
r '& 1)&~4-

&+ g;g;N;; TrM;;.
(iv.v1) =iv.v1-

Thc gcncI'Rl cxpI'csslon

0(&+ ) Q(—+2
f. 5. Using these resu ts,Table 14-1 of Ref. . s'is glvcn in R

K . (37) becomes

F(Q) =32g'(Q»'~p. -Qp .
X vp +v5

d'Q ~'(Q =p+a) =1,

ve = — = . With a little changeve taken gy= —g~=g. i ' n eNor I'articles {Pcrgamon,

EPP" 9- .
Eh.'" {Add,".W
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F (35) now reads (q =—qz 8)of notation

(4S)C21 (4) 1
@ PT/444Cf(Z) =(1+'' "

32g K

2~(4 h' 2c 24
dpq(q„8$ P

—
qaqP)

2matgons ga,re iven by8i ( 1)1+4P4g RP~ ~ (X8(qo) e(qz

(49)
L

dp, = ——E
27rk

dx
g t we obtainUsing (14) for g and p )
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g/

32g2~ ALx Lz

2 I42ch'X24 ~
dq„diaz

,+„8(qo)e(qz )X&(P —P

) 1+444I Ipt, (40)2$
p
—fog p

g

32~g2 ALx'L z

S;fl'=
2 „2X24c7

(4])( )g( 8 —q8 —
qz )~(q&~

XLq.

I—1)(x) jf x hasdthefactth« '( )
the ~

where we have used
d we have changethe dimension of I gt '
to a Kroner. er ~ «unction on t

L;~$ . gntegratyon on 0us&ng

d gntroduc&ng

the relation ~ ~
d o].ar coordinate

x- sinp& we o

2x

dp.'I)I (p

Iz
w~ dp)

22~h, 2~ Hc ~~

(2~)'&.' II "'
dg'. (50)

H
t=t,—z ~

—oOC

d, L-,(,) —(*')3

xx'p, (5')))j dp I(x&x &p )

46) (49) and (50) into Kq (Substituting now qs (
we obtain the final

L 2L
=g T

Jz 0

dpI(p)X)X ) ) (43)

with

1)1+4P4( ) Lq gap qaqph~—
, . (42)4 =44)

~

on 2 can go
~

tes that integrationThe u
2 2 intro uc&ng

0 f nction indicates
a new variab e2=qp2 —

gz .only uP
q, E (41) ~educes to(q'/q84') )

with

IQ49X&0—49 erg cm ~

32 g8$ (444c) 24r

) 8 )4 4 24rI4 48ck 2

1 g'mc'
7474g X10"erg/c»'

6 (2)r)8 cf$%4
(52)

(44)
32~g8h (mc)

7
S0—

2'

I(p, X,X') == d~p(q (1—p)'" &).

inte ral in thou of th 1 g .
5)

nowmeasure in
it time and. vouThe probability per unct sm

given by

CTyoy I(x,x, g)

t tion for the p

(53)I Lp&( ) (q 8$
p
—

qaqp a P&

)E . (15) an«-=I(~ .I is given by q
I n thyand tedious

where a
tter of a very engq„~ —q.) It"'

algebra

4(A+pB)+q84'(q8C+qpD ',I(X,X',p) = q84

Z (&' &f)f(E')L& f(~f —&, —(47)

46) whereSp dp I(p, x,x') .
LxLyLzT LxLyLz2 0

'
osit I is de6ned asThe neutrino luminosi y

—44484P4)t)8$ )A =Mr $1 4P8

+44 'Q +4&P8404$8$B=441 $1 G)8

+=4P8$8 —444)t)4
&

D = 4P 848+4444 4

(55)
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y, =C(nIn' —1), y, =C(nIn'),

y, =C(n —1ln) y4=C(n —11n —1)
(56)

The general expression for the function C(nIn') has

been given in Eq. (18), where the argument t is now

t = (1/20) cM'(1 —p) . (57)

The parameters co~, after having performed the sum-
mation over the spins of the initial and final states, are
given by

M], = 1—
x- x'-1+—

e(x) e(x')

20~ (nn') '~'

e(x)4(x')

M2= 1+
6x — 6 x

x -(2n'0~)'t'
M]603 = 1—

e(x) e(x')

G)3'= 1—
6x — 6x

x' -(2nQ)'i'
M2G)3 =

e(x') c(x)
(58)

M4 = 1+
e(x)

x'— —(2n0~) &/2

1+ ) MrM4= 1+
4(x') e(x') e(x)

x -(2n'0~)'i'
M2M4 = 1+

4(x) 4(x')

The integration over the variable p, which appears in Eq. (51), can be performed by using the expression for the
hypergeometric function, given in Eq. (20). The result is

—40'[Mx'L(n
I
n' —1)+My'L(n —1 In')+4M4M4M2(n, n'

I
n —1, n' —1)]

+20~{M/[(c—4')+(x —x')]'K(n In')+M4'[(4 —4') —(x—x )]'K(n —1 In
—1)}. (59)

The general expressions for the functions K, L, Mq, and M~ are the following (n =q~'/20, 0'=lI/P, ):

K(lvIM)=(E!M!) ' (X+M)! 1—e
m=o m~

- (-&)~(-M)~(-1)' N+M —k ~m

+2+ (X+M—k)! 1—e ~

k=1 kI m=o

+ Q (—1)'C&(lV+M —&)! 1 —e- Q —,(60)
l=2 m=o mf

N+M+1—k Om

L(NIM')=(X!Mt) ' (X+M+1)! 1—e
m=o m~

(—Ã) 4( —M) g( —1)' N+M+1—k ~m

+2+ (X+M+1—k)! 1—e-
k=l kt m=o mI

N+iV+1—/ O m

+Q (—1)'C4(X+M+1—l)! 1—e " Q —,(61)
l=2 m=o m!
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N+M 1~m-
MI(V, M)X—1, M' —1) =L(X—1)!(M—1)!] ' (IV+M 1)!—1—e

m=o m!

~ (—cV)g, (—M)p+( —iV+1)p( —M+1)g, %+M—1—k ~m
-(—1)"(IV+M—0—1)! 1—e-

=1 k! m=o m!

N+M —1—l Om

+ Q (—1)'CI'(/A+M —1—1)! 1 —e " Q —,(62)
l=2 m=o m!

M2(E, M!,X—1, M —1)=L(IV—1)!(M—1)!] ' (X+M)! 1—e
m=o m!

~ (—IV)a( —M)a+( —iV+1)I (—I'&+1)I N+M —k ~m

(—1)"(%+M—k)! 1—e—"
=1 k! m=o m!

+Q (—1)'CI'(1V+M —l)! 1—e— Q —,(63)
Z=2 m=o m!

(—&)~(—M)~( —IV)I (—M)a
CI=

k+k'=l' k&0 k'&0 @per

k+k~=l; k&O; k'&O
(64)

S=1

S. NUMERICAL RESULTS

In Tables I—III we list for each density pe/Ir, (10 ' p/p.
111 g/CII1 ) 'tile neutI'II10 lumlIlosltles fol Z= Z,
H, =m'c'/eh=4. 414&&1018 6 (0~=1) at temperatures
T= 2.5&10', 5P 10', and 10' 'K, respectively.

The dependence of the neutrino luminosity on tem-
perature and density can be seen qualitatively from

TABLE I. Neutrino luminosities loglpl (erg/cm sec) as a
function of the degeneracy parameter y and density loglp(pp/p, ,)
iIO 'p/p, in g/cm'l at temperature T=2.5&&108 'K.

Fig. 1. In general the neutrino luminosity increases with
density for a particular temperature, until a maximum
is reached. %e also note that the neutrino luminosity
decreases rapidly toward zero at high densities corre-
sponding to the regime of complete degeneracy. The
reason is that the neutrino bremsstrahlung process con-
sidered here cannot occur in a completely degenerate
electron gas, regardless of whether the electron plasma
is magnetized. Mathematically it is clear that the
producte(e —Ir)8(p —e) vanishes. Furthermore, themaxi-
mum energy-loss rate shifts to higher value at higher
temperatures.

loglp(up/~. )
(g/cm')

logl pl

(erg/cm' sec)
TABLE II. Same as Table I for T=5)&10' 'K.

—8—2.8
10
15
20
25
30
35
40
45
50
55
60
65
70
75

115

—6—3—0.268
—0.315

0.204
0.447
0.602
0.663
0.771
0.978
1.079
1.114
1.176
1.;230
1.300
1.672
1.699

—4.2518—2.0000
3.5682
5.7324
7.8976
9.6721

10.3222
10.5798
10.9685
11.6435
11.7993
12.0414
12.1461
12.2552
12.3979
11.9494
8.0792

—8—2.8
2.2

10
25
34
43
50
55
60
65
70
75

log 1p (pp/y. )
(g/cm')

—5.602—2.509—0.398
0.114
0.748
1.000
1.301.
1.653
1.000
1.000
2.000
2.000
2.000

Iogll
(erg/cm' sec)

4.7924
7,0414
9.2304

12.5682
14.2788
14.3222
14.2788
14.2788
13.3802
11.3010
9.6721
7.7076
6.1461
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4''dp
(2m. A)' 2m'A'c'

In doing so he has neglected the eRects of the magnetic-
6eld energy levels. This is a reasonable approximation
for high density and large quantum numbers. It is clear

For purposes of comparison, we quote here the
relevant approximate expressions for the neutrino
luminosities from Landstreet's thesis [the criterion
for using /„', namely, Eq. (20) in the published version
of Landstreet's thesis, ~ contains an error]; these are

l„'= 10 "H 'T p' (if H p'"&8&&10'T7)

~ iz 2X10 'T"" '~'H'"

It is interesting to note that the discrepancies between
Landstreet's results and ours are large at low densities.
At high densities, Landstreet's results are essentially
in agreement with our work. ; The reason for the dis-
crepancies at low densities is due apparently to the
various approximations introduced by Landstreet. The
most serious one of the simplifying assumptions made
by Landstreet is his replacement of sums over states by
integrals with the densities of a free electron gas in the
absence of the magnetic field, namely,

[6—

l2-

lo—

o 8—

Eo

0)

(3a"2-

-4
-6

I ~ .M. J.
-5 -4 -3 -2 -

I 0 I

LOG (p /p. e)(g/cm )
6

2 3 4

Fn. 1. Neutrino luminosities (logj0/ in erg/cm ) as a function
of density /log&0(p6/p, ,) in g/cm', p6 ——10 'pg at temperatures
2.5)(10g, 5X10', and 10' 'K, respectively. The Beld-strength
parameter 0=&I/II„where 8,=m'c'/eA =4.414&(10"6, is taken
to be unity.

TABLE III. Same as Table I for T=10' 'K.

—8—2.8
2.2

10
25
50
55
60
65
70
75
85

log o(p /p )
(g/ ')

—4.698—1.698
0.0
1.114
2.079
2.897
3.000
3.000
3.000
3.204
3.000
3.000

logfol
(erg/cm' sec)

9.491
11.813
13.949
15.886
16.579
15.845
14,973
12.643
10.785
8.544
6.361
2.000

7 J. D. Landstreet, Phys. Rev. 153, 1372 (1967).

that the replacement of the sums P„by integrals is
not really valid for small quantum numbers and at low
densities. Considering the large number of approxima-
tions made by Landstreet, the general agreement of his
results with ours at not too low densities is satisfactory.
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