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Methods for the Bethe-Salpeter Equation. I. Special Functions and
Expansions in Spherical Harinonics*
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Elements of the structure of the Bethe-Salpeter equation are studied. Properties of useful special functions
are obtained and free-particle solutions to the truncated expansion of the equation in four-dimensional
spherical harmonics are derived in terms of known special functions. The validity of the truncation approxi-
mation is examined in terms of a convenient representation of the Green s function. In particular, it is shown
that the method of truncating the differential Bethe-Salpeter equation cannot succeed for scattering. The
development of alternative procedures is deferred to the paper following. As a by-product, a simple compu-
tational technique for the approximation of integrals by Gaussian quadrature is derived.

I. INTRODUCTION

HE two-body relativistic equation known as the
Bethe-Salpeter equation (BSE) received its first

applications in quantum electrodynamics more than
15 years ago, but a substantial period elapsed before
quantitative studies relevant to, or at least preliminary
to, strong-interaction calculations were taken up. Follow-
ing the first calculations in the ladder approximation for
bound states' and scattering, ' obtained from variational
principles in coordinate space, many results and a
diversity of methods have been obtained for the two-
body relativistic problem, both in the bound' and scat-
tering regions. '

If one takes seriously, as we certainly do, the view
that these relativistic wave equations and their ex-
tensions offer a fruitful approach to the dynamics of
strong interactions, one must anticipate a development
of both theoretical structure and of calculational tech-
niques of which the references above are only the be-
ginning, a development with a larger perspective than
the desire to match an experimental number im-
mediately, and in fact, more extensive and varied than
the work done on the Schrodinger equation in propor-
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Nuovo Cimerito 53A, 30 (1968); P. Narayanaswamy and A.
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tion as the relativistic problem is more complex than
the nonrelativistic problem.

The present work is the first in a series in which we
explore the properties of the BSE in coordinate space,
its special functions, asymptotic behavior, approxima-
tion schemes, some new calculational methods, shapes
and nodal properties of wave functions, significance of
the so-called "abnormal" states, and so on, with intent
to develop an intuition about the equation as well as
analytic behavior.

We surmise that many of these questions are more
aptly understood in coordinate, rather than momentum,
space because of certain intuitional advantages and be-
cause this is distinctly true for nonrelativistic equations,
but this is only a surmise. Problems arising from in-
elasticity may be more amenable to analysis in mo-
mentum space, and in fact, most of the calculations of
Refs. 3 and 4 follow momentum-space formulations.

In this paper, we treat the free-particle Bethe-
Saltpeter equation in Wick-rotated form,

8 2

~7'+ ——co i —nt i'
Br

8 2

&& V"-+ —+~, —msv ik(r, r) =0, (l.l)
B7

with two principal objectives.
First, we explore the family of free-particle solutions,

their Green's functions, and special functions related to
them, both for a deeper understanding of the structure
of the BSE and as a preliminary to calculations of
bound-state, scattering, and bootstrap parameters, to
be described in a subsequent paper.

Second, we study approximations based on expansion
of the wave function in four-dimensional spherical
harmonics (Gegenba, uer polynomials) and truncation of
the series after a finite number of terms. The truncated
function satisfies either (a) the differential equation
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formed by truncation of the BS differential operator or
(b) the integral equation obtained upon truncation of
the free-particle Green's function. Either approach
transforms an equation in two continuous variables r,
r into a matrix equation in one continuous variable x,
x= (r'+r')i/'. One hopes to find convergence in cal-
culated results as the matrix size, i.e., the number of
retained terms in the spherical expansion, is increased.
The first scheme —let us call it the differential method-
has been applied to bound-state calculations and the
second, or integral method, to scattering as well,
usually in momentum space.

In this paper, we obtain a correspondence between
the two: The Green's function, and other functions
characteristic of the differential method, can be cast.
as sums over a certain parameter o., while analogous
functions in the integral method appear as integrals
over n. The relation of sum to integral is that of a
Gaussian quadrature approximation based on the
orthogonal family of four-dimensional spherical har-
monics. The truncated integral equation is thus in-
herently more precise.

For bound states with energies not close to threshold,
the differences are minimal. But as the energy moves up
into the scattering region, an integrable singularity, of
the inverse square root type, moves into the interval of
integration over n. The inability of a Gaussian sum to
approximate integrals of this type dooms the differential
truncation method for scattering problems. Not only
does unitarity fail at any state of truncation, but there
is no convergence to unitarity.

The same analysis which exposes the difficulty in the
differential method provides a remedy. Certain methods
closely related to it can be made to work in the scatter-
ing case if the boundary conditions imposed on the wave
function at infinity are inferred from the exact BSE
which, in this respect, differs essentially from the
truncated differential BSE. This will be done in the
paper following this one, to which we shall refer as
MBS II. By a slight variation of the spherical harmonic
expansion procedure, we achieve a united approach to
bound-state and scattering problems, unitary at each
level of approximation, and founded on the differential
equation, that is, the Wick-rotated differential BSE
in coordinate space. We believe it to be a strong con-
tender, among methods investigated till now, for strong-
interaction calculations involving derivative couplings,
nonlocal interactions, and electromagnetic perturba-
tions. Of course, the advantages anticipated for
the coordinate-space methods over momentum-space
methods need to be tested on meaningful physical
problems.

Section II contains the relations among the spherical
harmonic functions E /(8) and the imaginary Bessel
functions I„(s), E'„(s') which are fundamental to the
special functions of the BSE.The asymptotic properties
of solutions to the truncated free-particle BSE are con-

sidered in Sec. III, and explicit solutions, in terms of
what we call vector Bessel functions, are constructed.
In Sec. IV, the notation of a bracket t p,P$ of two func-
tions is dined, and brackets among the free-particle
solutions are computed as a step in the derivation of the
Green's function for the BSE. The importance of the
bracket is explored in considerably more detail in
MBS II. An array of Green's functions which are useful
in one way or another is marshalled in Sec. U. Finally,
the results on the relation between the integral and
differential approaches to truncation and the in-
adequacy of the differential method are given in Sec. VI.

As a by-product, an elementary and, apparently, new
method for deriving and applying the rule for Gaussian
quadrature is found. When the relevant orthogonal
polynomials are normalized, the two- or three-term
recursion relation obtained by multiplying one of them

by the variable de6nes a tridiagonal symmetric matrix.
The data required for an cVth-order Gaussian quadra-
ture are obtained from the eigenvalues and eigenvectors
of the E)&X truncation of the matrix, which are easily
calculated even for large 27 by current computer
techniques.

Generally speaking, our notation follows that of SZ,
Ref. 2. Here is a preliminary outline: The two inter-
acting particles have masses m~, m~, and space-time
coordinates

+1 (rl tl) +2 (r2 t2) ~ (1.2)

The two-particle system has a define energy-momentum
vector I-'„and is rderred to the center-of-mass frame:
P„= (O,F). The space-minus-time convention is used.
for scalar products. For energy above threshold,
L~'~&mi+m~, the rela, tive momentum k of the system is
calculated from

(/g2+m 2) 1/2+ ($2+m 2) 1/2 (1.3)

1~ m12 ~2 CO2 =m2 —K

For the purposes of this paper, we take the center-of-
m.ass and relative coordinates as

~Y„= (R,T) = ((oixi+/d2x~)/L&', x„=(r,t) = xi —x„(1.6)

allowing the separation

+(xi,x2) = exp(iP„X„) P(x) = exp( —iET) P(x) . (1.7)

The momentum transformation conjugate to Eq. (1.6)
is ~.=(0,~)=p.+p. ,

P.= (p Po) = (~2Pi —~iP2)/&.

The Wick rotation in the complex planes of the relative
time and relative energy variables is carried out by

whence the "particle energies" co&, co2 are given by
—($2+m 2)l/2 ~ —($2+m 2)1/2 +—~ +~ (1 4)

In the bound-state region, ~mi2 —m2'j i/'&E&mi+m~.
The momentum is positive imaginary, so put k = i~ and
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setting

t= re '4
ptt ———p4e+ ~

) Q goes flolll 0 to &zl', (1.&)

with the result, for Q= zzr,

tv, ely. Thus

L2=— sin8z —,(2.1)
sin8z 89z 88z sin 8z 8ttt

t = i r—, po
—— z—p4 &

y,„p„=r p tpp —rp+——rpt.
(1.10) gz = ———sin'8 —+

sin 080
(2.2)

When this rotation is introduced into the HSE for two
spinless particles,

3 (382
2 —+2+ — +

B7 (/x x (/x X2
(2.3)

(v, —
Btq2

m12
2

—m ' O' —I%'=0, 1.11 The eigenvalues and eigenfunctions of L' are, of course,
l(l+1) and Vt (8i,gz). For 2', we have

the result is e

i'ZztP —UtP =0, (1.12)
Z-'jR, (8) U,"(8„y)) =-n(n+ 2)R„,(8) V,"(8„y),

n = l, l+1, I+2, l+3, . . . (2.4)

where iP=iP(r, r) is the (Wick-rotated) relative wave
function, V is the interaction, nonlocal in general, and

8
Qi ——V'+ ——a&i —mi' —— '—2cui—+k', (1.13a)

87 8T

Zz = Vz+ —+(v —mzz = z+2a)z—+kz. (1.13b)
87 BT

Note that 2i ~D&z when mi~mz and ~i ~ —&uz.

Spherical coordinate notation is summarized by

introducing a notation for the spherical harmonics in
four dimensions, R„ /(8). More precisely, we define
them in terms of the Gegenbauer polynomials C„"(s)by

i/2 —
(n l) t

—I/z

R„ t
——— 2'l t (rz+1)—

(n+l+1)!

&((sin8) tC„ /'+t(cos8) . (2.5)

Their elementary properties can be inferred, after
translation of notation, from standard references. 5 They
are mutually orthogonal and normalized to unity:

r=x sine, 7.=x cos8, 0~0~~ (1.14)
R. /(8)R„, /(8) sin'8 d8= 8„„.. (2 6)

d4x= drd7-= x'dx sin'8 do~0
'dx in'8d8 in8 d8zdg. (1.15)

The relative momentum k„of two free p«, rticles of
momenta k~, k2 is

k„= ((uzki —k,(oi)„/E= (k,0),

C /'+t(0) =0, n l odd—
(-,' n+-,' l)!= (—1) ' "/', n —l even. (2.7)

l l(zn 2l) t

with ~&~ defined by Eq. (1.3). The resolution into
partial waves of this state is

ei kI AX

I�
&ei 1C '2&X 2& e

—il' Te—ik ~ r

= e '/"r P (i) (2t1 +1)P ( tkr) jt(kr) . (1.17)

2 ) '"
2)

'" sin/m+1) 8

R„,o —— —
~

C„'(cos8) =
zrl zr sin8

(2.8)

In this paper, we treat only spinless particles and shall
suppose that the system has a definite angular momen-
tum /. Then the relative wave function takes the form
tP(r, r) V& (8&,ttt). For brevity, we droP explicit mention
of the V& factor. For example, we say that ji(kr) is a,

solution of (1.12) for V=O when we mean that jt(kr)
&&Ft (8,,$) is a solution.

The addition theorem reads

(n+1)C„'(cosy)

n

= —',zr Q (2l+1)R„,/(8)R„, /(8')P/(cos8, ),
L=O

cosy =cos8cos8'+sin8sin8'cos8z. (2.9)

II. SPHERICAL HARMONICS jIN FOUR DIMEN-
SIONS AND BESSEL FUNCTIONS

The equation
( '—X')tP= 0 (2.10)

I.et L' and 2' be the angular parts of the three-
dimensional and four-dimensional I aplacian, respec-

' For exa, mple, W. Ma,gnus, F. Oberhettinger, and R. P. Soni,
For~&zllas and Theorenzs for the Special Factions of Mathenzatical
I'Izysics, 3rd edition (Springer-Verlag, New York, 1966).
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has particular solutions n„=A,A„g, (2.16b)

I„„(~x)
~.(~x,8) = —R„,,(8) (2.11a)

1 l(l+1)
P =A„'+A 22= — 1 —— —. (2.16c)

2 n(n+2)
aIld

&„+i(Xx)
X P.x,8) =(—1)" ' R„,((8), (2.11b)

I.et 8/8r act on the solutions 8„, X„of the wave
equation (2.10). The Bessel relations

where I ~i(Xx) and E'„+(ax) are the imaginary Bessel
functions. The 8„and X„will be useful later.

The function x"R„,&(8) is a homogeneous polynomial
in r, 7- of degree n and contains the "centrifugal" factor
(x sin8) '= r'. While l is a good quantum member for the
spinless BSE, different n's are mixed by the operator
8/8T)

(2n/s) I„(s)=I„ i(s) —I„+i(s),
2I„'(s)=I„,(s)+I.„(s), (2.17a)

(—2n/s)Z„(s) =Z„,(s) —Z~, (s),
(2.17b)

2E'„'(s) =E i(s)+R'„+i(s),

together with Eqs. (2.15) and (2.12), imply

—coso ——slI10—.
Ox x 80

A solution of the BSEpossesses the expansion

(2 12)
—8„=X(A „+28„+2+A„d„ 2),
BT

8—X„=X(A.+iX„pi+A X i).
BT

(2.18a)

(2.18b)

(2.13)

R„,((2r 8) = (—1)"—%„,(—(8) .

Functions 1l (x„) even under r —+ —r will be composed of
R„,i's with n = l, l+2, l+4, . . . , and will be said to have
"even time parity. " Functions with "odd time parity"
change sign under v. —+—v and are composed of har-
monics with n= l+1, l+3, l+5, . . . . In the equal-mass
case mi ——m2, the operator +i@2 is invariant under
7 ~ —v., and time parity is a good quantum number for
the BSK.

Hereafter, we assume the choice of / is fixed. The l
subscript. on the R's will be dropped.

The recursion formulas are

cos8 R„=A „+iR„+i+A „R„ i, (2.15a)

Substitution of Eq. (2.13) into Eq. (1.11) and applica-
tion of the orthonormality of the 8„,&'s in the usual
way yields a matrix differential equation of fourth order
for the "vector" {f„(x)}and this, ultimately, is the
equation we wish to solve. Note that if r —+—7, then
8 —+ vr —8 and, moreover,

Tha. t is, c(„and X„sa,tisfy, with respect to 8/8(hr),
the same recursion relation that E does with respect
to cos8. This is crucial for the construction, in Sec. III,
of explicit "vector Bessel functions" which solve the
truncated, free-particle BSE.

Another formula uniting Bessel functions and the R
functions is

(i)'j((—iver sin(2)e' -'
- I„„Px)

R„(~)R.(8)

=m Q 8„(Xx,(2)R„(8)=2r Q c(„px,8)R ((2). (2 19)

As a special case, take n=-,'x, X= —ik, and note that
I„(is)=i"I (s). Then

J„~i(kx)j &(kr) =2r Q (—1)'" '&" R (-', m)R. (8),
n—l even kx

(2.20)

which is the harmonic expansion of a free-particle
standing wave. Equation (2.19) may look imposing,
but its proof lies near the surface of our considerations.
Thus, since

cos 8 Rn (2 +2R +s2+PoR +(S2 s2pO (2.15c)

where

—sin8(8/88)R„= —nA„+iRS+2+(n+2)A R„ i, (2.15b)
82

aXT cosa —(g ( OS~) 2pic cosa

87
(2.21a)

and, in general,

1 l(l+1)

2 n(n+1)

A g
= 0!~

= G ~+y =0,

(2. [6a.)

V2j((—iver sinn) = (X sinn) 2j((—iver sinn), (2.21b)

the left-hand side of Eq. (2.19) satisfies Eq. (2.10). Be-
cause it is regular at x=0, it must be a sum over the
functions 8„(Xx,8). Further the nth coefficient of this
sum is proportional to R„((2) because the left-hand side



KE RS HA%, SN0 D GRASS, AN D ZE MACH

of Eq. (2.19) is symmetric with respect to X, n, and. x,
8. The proportionality constant must be independent of
n as the left-hand and hence the right-hand sides are
eigenfunctions of 8/gr with eigenvalue X cosn I see Eq.
(3.26), below). Finally, the limit x —+ 0 determines the
value of the constant.

Let y be the angle between x„,x„'.A familiar addition
theorem reads

I&i(Q I x.—x.'I)
— =2 P (n+1)

Q I
x„—x„'I =o

I-+i(Qx&) E-+i(Q*))
XC '(cosy) — —.(2.22)

Qx Qx

(—1)"E.(s) —E„(—s) =i~I„(s). (2.29)

Therefore, if Im(X)(0, x real and positive,

(—1)"X.(—1~x,g) —X.(ax, g) = (—1)'i~a„(ax,g). (2.30)

III. SOLUTIONS OF FREE BSE: VECTOR
BESSEL FUNCTIONS

A. Txuncation

Let P(x, g) be a solution of the BSE whose expansion
in R functions is

The cut of E„(s), like the cut of lns, is taken along the
negative real s axis. Equation (2.28) implies that if
—x&args&0, and —s means e' s,

More important to us is a result obtained by differenti-
ating Eq. (2.22): P(x,g) = P f„(x)R„(8) (3.1)

1 8 E (Qlx„—„'I)
I~.(el-..--". I) = — Q

Q ge lx„—x„'I

= —2 P (n+1)C„'(cosy)
n=0

E'„+i(Qx))
X I.+i'(Qx&)--

Qx)

I.+i(Qx&)+ —E +i'(Q») (2 23)
(Qx&)

or, equivalently, via Eq. (2.17),

E (el .—.'I) =z c-'(- y)(I.(e,)E.(e,)
—I-+o(ex )E-+o(e»)) (2 24)

and let iV be a fixed positive integer. If the series (3.1)
be cut off after the Eth term, we speak of an approxima-
tion to P by truncation with truncation parameter N.
The truncated f is still a function of x,g, but may also
be interpreted as a vector function (f„(x)) in an
iV-dimensional space. The operators cosg, 8/gr, Zi,
etc. , when restricted to this space, are "truncated"
operators. They may also be considered as E)(3Tmatrix
operators, with matrix elements given by

E„(8)ZiE„(8)sin'8 dg, etc.

Both (cosg)~ and (cos'8)'v are Hermitian, of course,
and their only nonzero matrix elements are Lsee Eq.
(2.15)j

In Sec. V, the resolution of Eo(el x„—x„'I) into partial
waves is required. Thus, we set

(cosg) n, ~—1 (cosg) n.—l, n 4n|.
(cos'8)~ „2——(cos'8)~„2 „=n„,

(3.2a)

(3.2b)

(2l+1)
Eo(Qlx„—xl'I) =2 Pi(r" r"')E("(x„,x„',Q) (2.25)

and apply Eq. (2.9) to get

E("(x„,x„',Q) =2m' Q (n+1) '
n=l

XLI„(ex )E„(Q*,) —I„„(e*,)E„„(ex,)j

(cos'8)~„,„=p„, n=l, l+1, . . . , LV+l 1. (3.2C)—
Now (cos'8)~ is not the square of (cosg)~; ra, ther, by
virtue of Eq. (3.2a,), the correct statement relates
(cos'8)'v to the square of (cosg)~+'.

Two approximations to the differential BSE can now
be formulated, the truncated BSE

(3.3a)

Xg (8)g (gj) (2 26) and the do ubly truncated BSE

Lastly, we mention some further Bessel relations: ((&.)"(&.) -I')~= o (3.3b)

E (s)I„'(s)—E„'(s)I„(s)=- 1/s, (2.27a)

E„~i(s)I„(s)—E„(s)I„+i(s)= 1/s, (2.27b)

E„(z)= (—1)"+'I„(s)lns+a-"
X (entire function of s ) . (2.28)

The interaction V is presumed to be rotation invariant
here. Equation (3.3a) is doubtless a truer approxima-
tion to the exact equation because it is the condition
obtained from the Rayleigh-Ritz-type variational
principle' when the trial function is truncated. But
Eq. (3.3b) is the equation we shall treat analytically,
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because the free solutions satisfy the second-order
equations

(Zg)~/=0, (Zg)'v/=0, (3 4)

and these solutions can be written down analytically.
The discussion is still relevant to Kq. (3.3a) because in
the equal-mass case the two formulations are equivalent,
as we now show.

matrix, the {a„)are the associated eigenvectors, and
the exponent s is determined from a certain con-
sistency requirement. Because the BSE describes waves
spreading out in four-space, vre anticipate s=--,'. In
the asymptotic limit, (3.8) reduces to

l9 8f„(x)+k' f ('x) —2coi P (cos8)'v„, — =0. (3.10)
ax2 8$

B. Equal-Mass Case (m~ ——m2)

In the equal-mass case, Z&Q2 is invariant under
r ~ —r. Then (Z~p2)~ contains &8'/(Br)')v, but not
&8/Br)~. Its matrix connects terms of like parity but
not of unlike time parity. Any truncated operator &O)'v

of this character can be divided into two pa, rts,

The first, part connects terms of even time parity only;
that is, it has the matrix elements of type (O)~„„.with
both n —l and n' —l even. It is a matrix of dimension ~S
or 2 (cV+ 1), depending on whether E is even or odd. The
second part does the same service for odd time parity,
being a matrix of dimension 2E or ~~(E —1) for X even
or odd. It is easy to verify that

{&&~)""&&~)'"}+={&&~&~)")+
= {(pgZ2) ~+')~. (3.6)

with the & pertaining to E odd or even, respectively.

Substitution of the lead term of (3.9) into (3.10) yields

g L(X'+k') 8.,
—2&vi'A(cos8)'v„„]a =0, (3.11)

—1. & cose&- 1, 0&-o;& x. (3.12)

An insight can be obtained by observing what happens
in the limit as cV —+~. Then the operator (cos8)-' is

just multiplication by coso, and the eigenvalues are
coso, for any e, thus the spectrum becomes continuous
and occupies the whole interval (3.12). The eigenfunc-
tions are 8 functions, 8(8—n), and have the harmonic
expansion

8(8—n)
(3.13)= Q E„(n)E„(8).

sino sino.

which is the desired eigenvalue equation.
It is easy to see that the eigenva, lues of the Hermitian

matrix (cos8)~, which can be represented by cosn, all
lie in the interval

C. Asymptotic Behavior of ($~)~/=0

We now search for solutions of (Pq)~iP=O, where

E+N—1
X„'—2cogh cosn+k'= 0. (3.14)

Returning to the general case, consider an eigenvalue
cosn with eigenvector {a„}and let X„be determined by

P(x,8) = g f„(x)R„(8).
n,=l

The matrix equation for the f's is

(3.'I) One root of this equa, tion is

X„=&ui cosa+ (cuj-' cos'o. —k') 'i'. (3.15)

3
+ ———

—Ox s 8$

n(m+2)
——+k'

mg —(o~ & 3 &my+(u). (3.16)

In the bound-state region, k=-ia, and 0(~&m~. Then
the & of (3.15) are all positive and lie in the interval

8
Xf-(x)—2~1 2 —(cos8)".,

m gg

N

sin8— f (x) =0. (3.8)
x Bg

In the scattering region, co&' cos'n may be less than k',
and the rule k'-+k' —ie (outgoing-wave boundary
condition) instructs us to take the square root as
follows in this case:

X»=coy cosQ —Ztlv —My cos Q~

(3.18)—k& Re(X„)&my+(ug.
e
—Xv

General theory' tells us that in the asymptotic region Both positive and negative values of X„also occur,
x —+~, solutions exist of the form but always,

f„(x) — -La„+O(x—')j, (3.9)

where the possible A, 's are eigenvalues of a certain

E. Coddington and N. Levinson, Theory of OrChmary Diger-
entiul Equations I'McGraw-Hill, New York, 1955).

This scheme identi6es E solutions with asymptotic be-
havior (3.9); they are the solutions regular at ~ for the
BSE. They are so identi6ed from the asymptotic form
of the BS integral equation (see SZ, Ref. 2) which in
turn derives from the causality i~ prescription in the
definition of the Green's function.
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There are also X solutions singular at ~, obtained
with the opposite sign of the square root in (3.15) and
(3.17).These X's are negative in the bound-state region.
They lie in the interval

served to motivate the analysis. Thus as iV ~~, the
roots of (3.24) become a continuous distribution on the
interval 0&u& v., as indicated in (3.13).

Consider now the functions

—(mr+(vi) & P.& —(nzi —(vi), (3.19) l+N —1

and the associated wave functions diverge exponentially
as x —+~. The gap between the regular and singular X

spectra vanishes as the bound-state energy approaches
threshold, and the spectra overlap in the scattering
region.

To proceed further, we must solve the eigenvalue
problem for (cos8)~ and, more generally, find eigen-
functions of 8/Br for all x.

D. Eigenvalue Problem

n=l

l+N—1

Sz= Q X„(X xe)R„( u).
n=l

(3.25a)

(3.25b)

We have already remarked that d„and X„satisfy the
same recursion relations with respect to 8/Br that R„(0)
satishes with respect to cos8. Pursuing the same line as
in the above paragraphs, we obtain the eigenfunctions
and eigenvalues for (8/Br)~, namely,

Let n be any angle between 0 and ~. Let X be any
constant. Consider the function

(8/Br) ~Sr Xco——su Sr,

(8/Br)~Sir Xcosu——S~,

(3.26a)

(3.26b)
l+N —1

R„(u)R„(8),
n=l

(3.20a)

or, equivalently, the vector

S (u) =R„(u), l&n&l+S 1. (3.20b)—

We have, from (3.2a),

g (cosg)~„, S (u)

with the same u's as before, namely, the roots of (3.23).
For even X, the zeros of C~'+'(cosu) occur in pairs,

one zero being the negative of another. When n is one
angle of a pair, the other is m —o.. For iV odd, S—1 of
the zeros occur in pairs and the remaining one is cosn= 0,
o;= ~m. . Define normalized eigenvectors by

E+N—1

P (u) (h ) 1(2R (u) (h )
—1 — Q [R (u) 72 (3 27)

=A„+iR„+i(u)+A.R„ i(u), n&l+N 1—
=A „R„ i(u), n =l+E—1.

But from (2.15a,),
(3.21a)

Then, for n, m(l+X —1, and the 1V eigenvalues u,

Q B„(u)R„(u)=8„,„, Q R„(u)B„(u')=8„, ~ . (3.28)

cosu S~(u) = A„+iR„+i(u)+A„R~ i(u) . (3 2 ]b) Note for

Therefore
Q [(cosg)~—cosu7„, S (u) =0,

Q A.B„(u)B. i(u)
(3.22)

=-', P g„(u) [A„+iB„~i(u)+A.B. i(u)7

provided that
R~+((u) 0= (3.23)

=-', cosu Q [B„(u)7'=k cosu. (3.29)

C~'+'(cosu) =0. (3.24)

The Gegenbauer polynomial C&'+'(z) is of degree cV

and even or odd according as E is even or odd. It has
E roots, all real. They are found in the open interval
—1(s&1.

We have established, then, that the eigenvalues of
of (cos8)~ are precisely the roots of (3.24) and that the
associated eigenvectors are {R (u)). Or, in function
language, the eigenfunction is (3.20a). In the limit
Ã —+~ this structure goes directly over to (3.13), which

Now if l&1, then R~+i(u) has at least one factor of
sinu, so that u=0 and u=vr are roots of (3.23). &ut
these roots are uninteresting as all R (u) va»sh at
these values. The other roots of (3.23) we term the non-
trivial zeros of EN+~,. they are, in fact, the roots of

The condition
R(+~(u) = 0 (3.31)

supplies E nontrivial values of 0., but only &E values
of (cosu)'. These are the eigenvalues. They can be as-
sociated with the -',X values of u in the interval (0,2v.).
We already know that

Z+N —1

B.(u)h. (u) =1
n=)

(3.32)

The eigenvalue problem for (cos'8)~ can be solved
in the same way. First, suppose S even and consider
the ~iV-dimensional subspace of even time parity
spanned by

{R„(0)), n l, l+2, =. . . , 1+(7—2. (3.30)
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and, by (2.14), This type of equation was already obtained in Sec.
III C in the study of asymptotic behavior. The defini-
tions of I' ') and IC( " are fixed by setting3.33

n
Xa i=%i COS(2+((Oi COS (2 k ) (3.45a)

Hence, averaging (3.32) and (3.33),

(n—l) even
(3.34)

R(+~+i((2) =0. (3.37)

The root (2= 2)r is irrelevant as all E„(22r)=0 for n in
the list of (3.36). There remain i2N nonzero values of
c so2(,2associated with (2's in the interval (0,222r), which
are the eigenvalues. The normalized eigenvectors are

{v2I(l„(n)), n=l+1, l+3, . . . , l+N 1. —(3.38)

Therefore, the normalized eigenvector for n is

{v2B (n)), n= l, l+2, . . . , 1+N —2. (3.35)

Similarly, the -,')7-dimensional subspace of odd time
parity, spanned by

{R„(g)), n=l+1, l+3, . . . , 1+N—1 (3.36)

provides for (cos2g)~ the eigenvalue condition

M2 cos(x+ ((02 cos (2 —k') ' '. (3.45b)

As before, the square root is taken positive when real,
and negative imaginary when not real. The A values
Of (2 lie in the interVal (O,ir). FOr baund StateS, co, (n2;
and the P; are real, positive, with

n2; —(d;&X „&2n~+cv, . (3.46)

For scattering, co;&m; and there are three cases.

Case 1. k&&~;cosa. Then A. ,; is real, and

k&X,;(m, +co, . (3.47)

In particular, A. ,;= —ik if o.= ~+. In this case, I( ') is,
apart from a constant factor, a truncation of the ex-
pansion of j((kr) in Eq. (2.20).

Case 3. &~, coso.& —k. Again X; is real and

Case Z. —k&~, cos(2(k. Define cu, cos(2=k cos(p, ),
with 0&&,;&ir. Then

(3.48)

E. Construction of Solutions —(cu;—n2, ) & X,;& —k. (3.49)
Consider the functions

(3.39a)

(3.39b)

2I(a, ~) P .)2I(a ~)

2It(a, i) ()(,)2+(a, ~)
(3.40)

where the X,; are functions of n and co;, i = 1, 2, to be
specified below. The summations are from n=l to
n=l+N 1as before. Let (2—be one of the nontrivial
zeros of E(+&((2). Then by (2.10) and (3.26),

~a ~a, 1 ~n'—a, 2 ~ (3.50)

The solutions may be classified as even or odd under
time parity. Set

I(a,e)(x g) (I(a, l)+I(a—a, 2))/vy

=P g (X x,g)v2I(,'„(n), (n —l) even. (3.51a)

We have found 2N solutions to (Z)i)~(Z)2)~/=0 of
type I( ", regular at x —+ O,and 2E solutions of type
E' '), regular at x ~~.A fourth-order equation for an
E-component vector function has precisely 4E in-
dependent solutions so we have a complete set.

Let us now specialize to equal masses. The A. , ~ and
A. , 2 are related, so we write

—E ' =X,;cosnE
87

Hence, both I(a '& and E'( ') satisfy

provided that

(X,i)2—2cvi cos(2 X,i+k2=-0,

()(a, 2) '+2cu2 cos(2 Xa,2+k'= 0.

There is a peculiarity for N odd and time parity even.
Then N+1 solutions of type I( ') are required, but
only N are delivered by the above prescription. In fact
o.= —,'m is one of the roots here. For this case,

(3 44a) I( ')(x,g) =P g„(—ikx, g)VZB„(22r),
n

(3.44b) (n —l) even (3.52)

Similarly,

I(a, o)(x g) (I(a, l) I(v—a, 2))/i'

=Q g„(X x,g)v28 (n), (n —l) odd. (3.51b)
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solves both ('Zz)~&=0 and P)z)~/=0. Therefore

l3—(kI'*' '&) =Q I„+g'( ikx—)R„(8)R„(,'zr),-
Bk n

(&z
—l) even (3.53)

is the (zV+ 1)st solution.
The de6nitions of Z(" '&(x,e) and E' '(x, 8) follow

the same lines. These even and odd I's and K's were
constructed to solve the doubly truncated BSE, but as
indicated in Sec. III B, the even (or odd) time-parity
solutions of the singly truncated BSE, Kq. (3.3a),
having —,'X spherical harmonic components, are the
same as the I& '~ and E& ' or I& '~ and E' '& solu-
tions of (3.3b) with truncation parameter zV (or 1V+1).
The peculiarity mentioned in the previous paragraph
does not arise for these solutions.

Construction of vector Bessel functions for (3.3a)
when m~/m2 is more complex. The operator to be
diagonalized is a linear combination of (cose)'v and
(cos'8)~ with coeKcients depending on ~z, a», and X. It
appears unnecessary to go into this because the in-

adequacy of the truncated BSE for scattering can be
made clear enough in the equal-mass case. The promised
remedy does not, in any case, depend on explicit
knowledge of these functions.

IV. BRACKETS

A. Transyosed Equations

I.et'Zx, 2z be the transposes of 'Zz, Pz. Thus

'+k'+2(oze/er, 'Zz= '+k' —2(uze/er. (4.1)

The only change is in the sign of r. Similarly, we define
a transpose operation on functions of r, w by

exists a bilinear function which we term a brack. et of g,
g. It is related. to the notion of a matrix element of flux.

We shall use brackets ((((,P) (" and (P,P) "' associated
with the operators Z)& and Zz, respectively, and a,

higher-order bracket L(t,g1 associated with Z(Y)z.

The brackets are functions of x only. The discussion
here is valid if Z& and Z)& are replaced by (X)&)~ and
(Z)z)' . The definitions begin from

cj—(y,P) "'= x' sin'8 (zeLyZ, P —(Q,y)gj, z = 1, 2 (4.5)
dx

xz sin'8 deLP@zgzf —(Pqgzg)fj. (4.6)
dx

Then the brackets can be written explicitly as

((t,P) ("= x' sin'8

8$ 8$
&&de ~—p——(2(0, cose)gp, (4.7a)

Bx t9$

(p P) ('& = x' sin'8 de

8$ 8(t
&&de ~—~ +(2M, cose)gg, (4.7b)

8$ Bx

(4.8a)

(4.8b)

Furthermore, if p, f are expanded in spherical
harmonics,

f(~ r) =f(r —r) (4.2)
then

4=2 f-(x)R-(8), 4=2 g-(*)R-(8) (4~)

E( )(x 8) =X(~ '&(x 8)

n=l
(—1)"-(x„(x.„x,e)I(,'.(~). (4.4b)

These functions satisfy (Zi)~(%)z)~$= 0.

B. De6nition of Brackets

Given functions P(x,e) and g(x,e), which may or may
not be solutions of the BSEand the transpose BSE, there

or, equivalently, for functions of the po13r coordinates,

f(x,e)=f(x, —e). (4.3)

Then we have transposed vector 8essel functions

I(;) and E(,;~ given by

I(,,)(x,e) =I( '&(x,e)

l+K—1

(—1)"-'~„P,., ;x,e)B„(~), (4.4a)

(4A) "'=*'2 Lg-f-' f-g-'—
2cu&A (g f —z+g„gf )], (4.10a,)

(4A) "'=x' Z Lg-f-' f-g-'—
+2~z~-(g-f- z+g- ~f-)j -(4 1ob)

The proofs of these relations will be given in the
following paper, where the topic of brackets is covered
more thoroughly. For our present purposes, it is suf-
6cient to note the following.

(a) If '7);&=0 and X),y=0, then by (45) (yP) "&

is a constant independent of x. If Z(Y)@k=0 and
QqZlzP=O, then Pp,f$ is a constant.

(b) If Fat =0 and Zzp=O or @z$=0 and 7)z(t =0,
then by (4.8), the constant Lp,1k) is zero.

(c) If Z)if= 0 and. Pig= 0, then Qz$ = 2Eep/er and

by (4.8a), the constant bracket is

(4.11a)
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,fp,p = 0 and ~2y =—0, then Z
(2)

[443= —2+ &
{37

(4.11b)

C. Brackets of Vector Bessel Functions

f '1 . Recall that as x~~, the I( ') and ' aveami y.
x . Therefore,asymp 0 it tic parts that go like exp(&, , ).

only
a i) (i)(I(« ~)

E"')'*' E((,') I' ' )(a, a) p

the other combinations can succeed inare nonzero; t e o er
ired b oint (a)bein x independent for large x, as require y po

above, only by vanis ing.a, h' . The ingredients for calcu-
a 1b ackets are all in hand. We app y

definitions (3.39) and (4.4) of the functions, de ni-
f d X the bracket formulas (4.10),tions (2.11) of d„an

~2 27'~ and the 8 normahzationsthe Bessel identities ~ . z, an
(3.28) and (3.29), in that order. The result is

(E(,.) 1(~ &')) (&) = —(g(,)
E(~,()) (()

= ()( ) '((0' cos'n —k')' ',
i = 1, 2. (4-.12)

u as for the fourth-orderTh complete set of formulas
bracket, deduced with the aid of (4.
(4.12), is

[I(,;),I' "j=[E(,),E(
.
)

' — . (P i)~ —0 (4.13a,)

= (o )
—'() et), i, j=1,2 (4.13b)

where
~ p,.„)'

2E cosn ((d,' cos'n —k')"' (414)

i n in (4.14) is for i=1, and the minus sign
'th t' 1for i=2. The square root in (4.14) is ei er po

. The BSE is symmetric (equalor negative imaginary. e is
I(a, e)to its transpose) when nzim =m2 and I(,,) =I,p

= —I( ' ), etc. The only nonzero brackets in t eI(a,p) = —I ', e c.
equa -m1-mass case are (with o = o.

, i=+o (

(a,e)E(-,.),I"'j=[E(-.),1' 'j= —[I(-,.),-
= -LI(-,.) E''j=(n-) ' (4 15)

E P&R&&&&K GREE@&S PUZcnoNS
ep. Green's F&nct~o» f«Exact

The representations for whic wewe have s ecific ap-
1'cation are listed below in 5.6 already derived

in SZ and the partial-wave reductions ( . )
(5.23). We begin by listing the more ba

'
ore basic forms from

which these derive, in order to x convconventions and
normalizations.

„I)The one-particle free Green's functions ~ x—x
and Gp(x —x') satisfy

/(p)2+m)') Gi ——()4(xi —xi
/(p2'+ rl2') G2 ——- P(x2 —x2

(5 1)

~ ~

an t e ou gd h t oing wave (causal) boundary condition.
The two-particle propagator is then G~ 2, an
tive Green's function is

G( ') = e'~xG, (x,—xi )G, (x2—x&'—.,' d4X. 5.2)Spygp

With E„=- (O,A'), we have

+co) Bli
Bt

2

X &' — i —(o2 —m2' G—=()4(x—x') . (5.3)
83

Th perform the Kick rotation,
'

n 1.10). TheT en we per orm
ined isproperty o t e imeh t 6 function to be maintained

t')(t t')dt —+ b(r —r')dr, so tha—t'

()(t—t') ~+it')(r r') . —(5.4)

We retain some of our notation, but w'ith modi6ed
meaning:

(5.5a)new G(xq, xq ) = (—i) Xold G(x~,x14

new tI4(x —x') = (—i) x old t')4(x x')
I
. —

= t')(r r')/) (r r') . (—5.5b)—
The new Wic -ro a e

' k-. t t d) Green's function has the
representations'

G(x„,x„')=
i ( —z')d4p

( s.)' Q'+(p4+i~ )'+~i'j[p'+(p4 —i~2)'+~2'$
(rl 1 dP

—e~( ")Eo(Q
I
x„—x„'I )

, 8m'E,

(5.6a)

(5.6b)

(5.6c)
'kj r—r') 00

SxE, r —r

.ion can be handled routinely, as wn. se( 7' = ) ' —lt~'w ' its l, nalytic continuation can e ane( b 27rjb(t) = |'t—je ' —t i~7 If the 5 function is represented y
remarked by R. Saenger, Ref. 4,
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i[—~i—(p'+~i') '"j,
i[+~ —(p'+ mg') "'j

and below the p4 poles at

i[—,dr+ (p2+~i2) i&~j

i[+&2+ (p'+ rn2') "'].

(5.7a)

(5.7b)

In the bound-state region, co;(m; and C can be taken
along the real p4 axis.

The rotated Green's function obeys

where Q=(P' —k' —ie)'I' The contour C runs from

p4 ———~ to p4 ——+~ passing above the poles in the

p4 plane at

This equation will turn out to be more useful than it
looks.

We now develop an alternative to (5.12) which begins
from (5.6a,). Suppose first that E is in the bound-state
region; then C lies along the real p4 axis, and we can
transform the momentum variables to spherical co-
ordinates (p,n, 0„,&„):

p4 ——p cosn,
I pl = p sinn,

d'p =p'dp sin'n dad 0„. (5.13)

The analytic continuation to scattering energies may
be done at the end of the calculation.

To obtain partial waves, we make the projection

ZiZ), G= 0'(x —x'),

and the equations for the wave function,

(Zi'Z2 —V)p =0,

4 =A+GV4,

(5.8a,)

(5.8b)

(5.8c)

dQdQ' V "(0,&)V(~*(0,'y')e'i"e —'i' "
=~ (4~)'Vi"«.&.)Vi"'(0.,&.)ji(lplr) ji(lplr')

keep the form and signs they had before rotation. This
arrangement means, perhaps unfortunately, that V
and G have signs opposite to the nonrelativistic poten-
tial and propagator, as usually defined [the V in (5.8b)
is positive for an attractive force).

Let G be resolved into partial waves:

G(x„,x„')=Q Fi"(08,P) Vi *(03',P')G "&(x,0; x', 0')
L, m

=47r(2l+]) ji(lplr) j~(lplr').

Then

G"'(x 0. x'0') =~—' p'dp sin'n da

, ji(l p I r) ji(l p I
r')

(5.14)

(5.15)

Then, since

0'(x —x') =

2l+1
Pi(r. r')G'(x, 0; x', 0') .

4m

0(x—x') 0(0—0')—~(n —n')
g' sin'8

where
5.9

Di p'+2ip~——i cosn+z'
= (P+ih, i)(P—ih, i), (5.16a)

D2= p 22pM2 cosix+K
= (p+ iX.,2) (p —8. ..,) . (5.16b)

sin'0

XZ V-(0 A)V "(0'A'), (510)
Z, m

the equation for G('& is

The X's defined in (3.43) and (3.44) which figure in the
asymptotic behavior of the wave functions now appear
as poles in the momentum propagator. We pass to the
spherical harmonic expansion

G'(x, 0; x', 0') = Q g„,„(x,x')R„(0)R„(0') (5.17)

and apply (2.19):

'Zi'Z2G"' =
0(x-x') 0(0-0')

sin'0
(5.11)

(—i)'j((lplr)e '"4'=ir p 8 (—ipx', n)R„(0'). (5.18b)
The explicit form is obtained via (2.25), (2.26), and

(5.6b): Hence,

G~'&(x 0 x'0')

eel OQ

e~~' "i P (n+1) '[I„(Qx&)& (Qx&)
4jV

—I. (Q )&- (Q* )3R-(0)R.(0') (5»)

g, (x,x') = sin'n da p'dp

a„(ipx,n) 0 (—ipx', n)
X . (5.19)



SAt PETER EgUATIO ~pic F T H 0 && gI. THE 281&

'. 8 (2.30) and (2.14), withFirst consider the case x(x . y
Xx~ —ipx' and 8 —+o.,

5 23) into the scattering regl»The continuat»»
requires mere y el the continuation o t e,; an
which has already been discussed.

/i7r S„(—ipx, n)

= —1)'[(—1)"'X (ipx', o.) —X (—ipx', o.)j
= X„(iPx', vr —n) —

&

— '
~ — ', — . 5 20—(—1)"'X (—iPx', m —n) . (5.20)

of (5.20) into (5.19) leaves gn, n'(x&x
hum of two terms. j:n t e er

make the transformationX„(—ipx, 7r n) o—nly, maze e ra . ' —+

, p —+ —p. This implies0!)

p'&p p'~—p,

B Green's Functions for Trunca ted BSE

e uation which hasConsi er'der the doubly truncate eq
I 2) regu ar al t the origin an2X solutions

The ropa gatorre ular at ~. esolutions E( ~), E(
equation is

(Zl) ~(Z~) ~G~("(x,8; x', 8')

8(x—x') 8(8—8')

x' sin'8

DgD2 —& DgD2, (5.21)

(—1)"'d„tiPx,n . —' ', — l x n')"' „(' )X (—iPx', vr —n) ) u„(lPx,n)

XX„(ip*',~—n),

in view of (2.11, , ain
'

. ) (2.14), and I„( s) = (—1—)"I„(s).
Therefore, still for the case x(x', G)&r") =Q I' "(x,8)c,;,

a&s

x(x'

ar boundary conditions mustThe solution with regular oun
have the form

g„„(x,x') =
7r—Z

sin'o. do, p'dp =Q E' "(x,8)d „, x)x'
a ~ 1

(5.25)

8„(ipx,o()X„.(ipx', mn). —
X

d in theof inte ration can now be closep " ' g
p p

due to the cut in n+l s x run

integral is evaiuate
= —iA. ;. The case x'&x is trea eted by resolv-

lace of (5 20) The completeing g„(ipx,n) into X„'s in place of
result is

G'(x 8 x'8') = Q g „(x,x')I(.'„(8)R„(8',)
6

tell us

( ) = = "' ==o, (52g)[E ' G ] =»& = [I(a,&) &GN n=o(a, i) )

and hence

wi ', . d; de endent on x' and 8', towith coefficients c,;an, ;, e
be determined. Suppose &3»(x,8) obeys

(Z,)"(Z,)~'y=0. (5.26

and 5.26) by G)&r("; then take theMultiply (5.24) by g an
difference and integrate over x'dx sin

x' 8' . (5.27)y G ))j)r, „[P,G~="—)j, 0= P x', 8=' . 5.

5.25) and the bracket formulasBut the explicit form . an
(4.13) tha, t

g- = —2 sin'n dn u„(X,~x,n)
(~)E(,')(x 8)=

= —(o. „) 'c„, 5. a

/X(r, ;X„(&),x', m. —n), x(x

Sill u (iO( Xn(X», ;X&O,')
Therefore,

~(&)

= —(o. „.) 'd

i=1,2 J

Xo. ;8„(&(,,x', 7r —n), x(x' 5.23

as defined in Eq. (4.14). The integrand in

nsider, 5.22 as a prin
'

(5 22) has no singularity.

( )

' .. rmless since

p te contributions to
prrincipal-value integ rais and eac is ni

G)(r (') (x 8 x' 8') = —Q I' *'(x,8)
a, i

/
X&r „E'(,;)(x',8'), x(x

= —P E(. ')(x,8)
a&'s

Xo-,I(,) (x',8'), x)x'. (5.30)

of this result with the A' —+~ hmit,or a corn arlson of
' —+ llnllt,

derive ind
'

the previous section, we rep rase
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the factor h of (3.27):

G~~'&(x, 0; x', 0') =g„„"v(x,x')R (0)R.(0'),

g.„"(x,x') = —P h.~„(X,x,n)
cL

q s

Xa. , ;X (X „.x', ir —n), x&x'

Then the matrix M„, ,

iV„„= y„(x)xy (x)zv(x)dx, (6.6)

is tridiagonal, real, and symmetric, with nonzero ele-
ments made up of the coeKcients 3„,8„that occur in

= —Qh X„P;x,n)

The iV)&lV truncation of M „,with indices restricted to
)&0,;8„(X,;x', r n), —x)x'. (5.31) 0&m, m(X —1 will have X eigenvalues X.

Then the methods of Sec. III D show the following.

VI. COMPARISON OF TRUNCATED AND EXACT
BSE: GAUSSIAN QUADRATURE

Ke turn again to the eigenvalue problem of Sec.
III D, and consider the E roots of

C~'+'(cosn) =0.

By (2.6), (3.27), and (3.29), we have

R„(n)R„(n) sin'n dn =Q h.R„(n)R (n), (6.2)

where the sum is over just these roots, provided that

'"'=g„(X)/{Q $P P)j'}"', 0& &A —1. (6.8)
n=o

(3) The Gaussian weight factors are

N—1

n=o
(6.9)

(4) The Gaussian quadrature rule

(1) The lI, 's are the solutions of Pii(x) =0.
(2) The components of the normalized eigenvectors

v(") are

3&n&cV+l —1, 1&m&iV+t, (6.3)
F(x)ii (x)dx=P hgFP, ) (6.10)

because both sides of (6.2) a,re then equal to 0„, Ob-.
serve that if F(n) is any polynomial in cosn of degree
&21V+1, then F(n) sin"n can be written as a, linear
combination of the terms R„(n)R (n) with m and nz

within the limits of (6.3). Therefore,

F(n) sin2l+2n dn —Q h s1n2l+2n F(n) (6.4)

y.(x)y (x)w(x)dx=8„ (6.5)

is an exact relation for this class of F(n). Furthermore,
the sum of (6.4) approximates the integral if F(n) is
approximately equal to such a polynomial.

This is, essentially, the well-known rule for Gaussian
quadrature' adapted here for the orthogonal family of
R„(n) 's. The argument, when abstracted from the
context of our general discussion, is at least as simple as
other derivations. It applies to any system of orthogonal
polynomials because the existence of a recursion rela-
tion like (2.15a) is common to all. More precisely, let
{P„(x)}be any complete, orthonormal family of poly-
nomials, with g„of degree n, n= 0, 1, 2, . . . , defined on
a& x& b by the weight function w(x), so that

is exact if F(x) is a polynoniial of degree not greater than
2)V+1. Thus the practical task of computing the zeros
and the factors hq is reduced to the diagonalization
problem for an elementary type of matrix.

For our purposes, the point of interest is the relation
between (5.23) and (5.31). In particular, g„'v is the
Gaussian approximant of order lV to g„„.This confirms,
formally, at least, that as E —+~,

G~&'&(x 0 x' 0') ~ Gi(x, 0; x', 0'). (6.11)

%'hatever the accuracy of the integral truncation
method for the BSE, this formulation is more accurate
than the differential method insofar as an integral is not
exactly equal to its Gaussian approximant. Calcula, —

tions of bound-state energies with the truncated dif-
ferential BSE do, in fact, give good results, i.e., rapid
convergence (to the correct answer) for increasing .V, if
the binding energy is not small. For example, our own
calculations in the ladder approximation with all masses
equal (to be described la, ter) yielded good convergence
for (a/m)&0. 1, i.e., (E/2m) &0.995. Calculation of the
residue of the scattering amplitude at the bound-state
pole did less well, unless (E/nz) &0.4.

The quantity 0-,; which enters into the integrals and
sums has a denominator which includes

cosn(a&i' cos'n —h') 'i' (6.12)
I'or example, Z. Kopal, Xnnzerz'ca/ Analysis (Wiley, New

York, 1961). giving a simple pole at n= —,'ir and (integrable) square-
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root singularities at m; cos o.= k . The simple pole,
treated as a principal value, is not necessarily fatal to
the Gaussian sum if the discrete o.'s are arranged sym-
metrically about the pole, as they are. However, the
square-root singularities, which appear at the edges of
the integration interval at k=0, and move into the
interior of the interval for k) 0, cause the convergence

difhculty for bound states near threshold to which we
have referred, and are fatal for scattering. What this
means is that regardless of the auxiliary functions or
methods used in the differential approach, the boundary
conditions at x== ~ inherent in that method do not
approximate or converge to the true asymptotic bound-

ary conditions. One may expect—and this was the case
in a test calculation we performed —that the calculated

scattering phase shift oscillates about the correct result
without convergence as E —+~, being either too large
or too small depending on how the discrete n's for the
relevant 1V (whether or not the calculation explicitly
uses them) lie in the interval (0,7r) with respect to the
singular points. A modi6cation of the differential ap-
proach which circumvents this difhculty is given in the
following paper.

ACKNOWLEDGMENTS

%e gratefully acknowledge the hopsitality of the
Lawrence Radiation Laboratory, Berkeley, and also
of the Aspen Summer Institute of Physics, where por-
tions of this work were done.

PHX'SICAL REVIEW D VOLUME 2, NUMBER 12 15 DECEM HER 1970

Methods for the Bethe-Salyeter Equation. II. Brackets and the N/D Method*

DAvID KERsHAw

Universify of California, Berkeley, California 947ZO

AND

CHARI, FS ZEIKACH

Stanford Jinear Accelerator Center, 5tanford University, Stanford, California 94305
(Received 30 April 1970)

A systematic study of the Bethe-Salpeter relativistic two-body equation is continued. The equation is
treated in Wick-rotated coordinate space. A bilinear combination of functions, called a bracket, is defined. Its
relation to scattering amplitudes and their residues at poles, and to questions of structure of the equation
and numerical accuracy of solutions, is developed. N and D matrices similar to the Jost function of potential
theory are defined in terms of complete sets of solutions to the equation characterized by appropriate bound-
ary conditions. Scattering and bound-state properties are defined in terms of them, by formulas analogous
to the N/D methods of S-matrix theory, and properties of symmetry, unitarity, and behavior at poles are
derived. Various methods for computing wave functions and bound-state and scattering data are presented,
A generalization of the variable-phase method of potential theory, which substitutes for the Bethe-Salpeter
equation a coupled set of ordinary linear first-order differential equations, is given,

I. INTRODUCTION

HIS paper is the second in a series entitled
"Methods for the Bethe-Salpeter Equation. "We

shall assume familiarity with the principal parts of the
first paper, ' hereafter referred to as MBS I, and use its
notation without redefinition.

The general objective is to "make friends with the
Bethe-Salpeter equation (BSE)," ultimately to exploit
it as a familiar and benign tool in a meaningful study of
strong interactions. In MBS I, the special functions
relevant to a scalar BSK were assembled and the
truncation of spherical harmonic expansions was
analyzed in terms of various representations of Green's

* Work supported in part by the U. S. Atomic Energy Com-
mission, and by the Air Force Ofhce of Scientific Research, Con-
tract No. F44620-70-C-0028.

~ D. Kershaw, H. Snodgrass, and C. Zemach, preceding paper,
Phys. Rev. D 2, 2806 (j.970).

functions. Here, we build a structure for the BSEwhich
parallels both formal and physical aspects of the non-
relativistic problem. Because of the presence of the
relative time variable, which is an essential feature of 3
relativistic theory with retarded interactions, andwhich
signals the coupling of two-body systems to systems of
many particles, the parallel is to a multichannel system
even though the BSE, outwardly at least, refers only to
a one-channel two-body problem.

We treat sets of solutions at a given energy and
angular momentum, characterized by regular and
singular boundary conditions. In terms of them, LV

ancl D matrices similar to the tost functions of potential
theory' are defIned and dynamical problems are posed
in a manner amenable to calculation. The basic prop-
perties of symmetry, unitarity, and separability of
residues at poles are derived. Several calculational pro-

2 R. Jost, Helv. Phys. Acta 20, 256 (1947).


