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when Eq. (82) is satisfied. Equation (83) can then be
written in the form

which connects the parameters 0 and co. It is then a
straightforward matter to compute dsQ/dzos and show
that the first geodesic equation (27) follows from the
definition of co alone. 8y using Eq. (89) one can then
show that

zt 'y(zt yP ')'= ——,'clV/ciP . (88)

To see if Eq. (88) is equivalent to the geodesic
equation (28), transform the curve parameter from
0 to zo. Constraint (25) yields the equation

a '(a'P~) =t't '7(a'VP~')'

dQ/dzo =+y,
so that Eq. (88) reduces to the remaining geodesic

(89) equations (28).
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The problem of whether a measurement interaction can leave the joint object-apparatus system in a
mixture of states, in each state of which the apparatus's observable displays a dehnite value, is set within
the most general quantum-theoretic framework for treating measurements. It is shown that the question
posed by this problem admits only a negative answer. Some schemes for approximating the true object-
apparatus state by means of such mixtures are examined. It is argued that such schemes constitute funda-
mental changes in the interpretation of quantum theory.

I. INTRODUCTION

'HE quantum theory of measurement pursues the
idealization where the measured object, the mea-

suring apparatus, and the interaction between the two
are each treated within the formalism of quantum
theory. If both object and apparatus have, as measure-
ment begins, a pure state, then, since the interaction
between them is represented by a unitary motion on
the joint object-apparatus space, the terminal state of
the joint object-apparatus system will be a pure case
in which, generally, neither the object nor the appa-
ratus has a de6nite state. If one thinks of the apparatus
as a macroscopic device say, a pointer and scal-
then the result that the apparatus has no state func-
tion is unacceptable. One may try to avoid this result

by treating the initial state of the apparatus (more
realistically, one may argue) as a mixed state and then

hoping that the final state of the joint system will be a
mixture of pure states in each of which the apparatus
is itself in a pure state. The question of whether this
can successfully be done is known as "the problem of
measurement. " For measurements satisfying von
Neumann's account, ' signer has shown that the
problem of measurement cannot be solved affirma-

tively. ' O'Espagnats and Earman and. Shimony4 have

*Work supported by NFS under Grant No. GS-2034.' J. von Neumann, Mathenzatical Fozzndations of Qzzantzzoz

Mechanzcs, translated by Robert T. Beyer (Princeton U.P. ,
Princeton, 1955), Chaps. 5 and 6.

s E. P. Wigner, Am. J. Phys. 31, 6 (1963). The same result is
contained in A. Komar, Phys. Rev. 126, 135 (1962).' H. d'Espagnat, Nuovo Cimento Suppl. 4, 828 (1966).

generalized Wigner's a,rgument for the broader class
of measurements that fall under Landau's analysis. ' I
shall outline below the most general theory of measure-
ment consistent with elementary quantum theory, an
account which includes as special cases the theories of
von Xeumann and Landau, and by a somewhat
diGerent argument I shall show that no affirmative
solution to the problem of measurement is possible.
The remaining section will investigate the prospects
for a,n approximate solution.

II. PROBLEM

Ke shall consider an object system with associated
Hilbert space H, and an apparatus system with space
H . An appara, tus observable A with spectral resolution
A =gtz„A„will be used to measure an object observable

. 0 with spectral resolution 0=+X 0„.The interaction
will be treated in the tensor product space H =H,H, .
For generality, "states" will always be mixed, unless
otherwise indicated, and the density operator-trace
formalism will be used. Thus if initially the object has
state W, and the apparatus has state W, , the joint
system will have state W,W, . The measurement is
effected by means of a unitary motion U on H so that
when the measurement termina, tes, the joint systezm

has state U(W, (gtW. )U—'.
It is widely believed that there are no measurements

that will leave both object and apparatus in definite
4 J. Earman and A. Shimony, Nuovo Cimento 543, 332 (1968).
~ L. Landau and R. Peierls, Z. Physik 69, 56 (1931);L. Landau

and E. Lifshitz, @Nurture Mechanics (Pergamon, London, 1958),
pp. 21-24.
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pure states (i.e., where the final state of the joint system
factors) and that this is the source of the- problem of
measurement. But suppose that 0 and A have infinite,
multiplicity-free spectra. I.et (p,}, ($,} be complete
orthonormal bases for H„H made up of eigenstates
of 0, A. Then I@,8$;} is an orthonormal basis for H
and

deIIines a unitary operator U on H. If initially the
object had pure state &=Pa,P, and the apparatus
had pure state (=gab, f;, then the terminal state under
U would be

apparatus observable A takes on (or "displays" or
"has") the value ti. The problem of measurement, then,
is the following question: Are there unitary operators U
on H corresponding to a measurement from the fixed
initial apparatus state W such that for any initial object
sta, te W,

U(WOSW~)U =pm„Pie„], (4)

where for each n there is some eigenva, lue p, (n) of A
such that P„belongs to H,SH„(„i.

Before one can proceed further, criteria must be
established for when a unitary operator corresponds to
a measurement from a fixed initial apparatus state.

Thus the final state of the joint system factors so that
both object and apparatus have definite pure states.
Clearly interactions corresponding to U would count
as measurements' since determining the final apparatus
state Pa;$, would yield the a, (or at least the ~a, ~')
characterizing the initial, unknown object state
If initially the apparatus were in the mixed state
W =Pu„Pie„j, then the final state of the joint system
would be

U(P, SW.)U '=(P .P „g,, )
(Z~ Pib 1)8Pi=;s;i (3)

(I use P~, ~
for the operator projecting on the subspace

spanned by x. By examining x no confusion should
arise as to which Hilbert space the operator is de6ned
on.) Here the result of the measurement is to leave the
joint system in a mixture of states in each of which
both objects and apparatus have definite pure states,
indeed, in each of which the apparatus has the same
pure state Pa,$,. But this does not count as a solution
to the problem of measurement since the final apparatus
state is a superposition of states corresponding to
definite pointer positions (the (;). Thus, although
Pa,$, inight, for instance, be an energy eigenstate, it
would not correspond to any pointer position what-
soever; i.e. , in the superposed state ga, (; the apparatus
observable A takes on no value at all. It is the anomaly
of this feature that constitutes the problem of mea-
surement. One can now formulate that problem more
precisely as follows: Are there measurements that
always leave the state of the joint object-apparatus
system in a mixture in each state of which the apparatus
observable displays a definite eigenvalue.

For eigenvalue p of A, let H„be the subspace of H
spanned by the eigenstates of A belonging to p. Let
H, |3H„be the subspace of H spanned by the tensor
product of basis vectors of H, and basis vectors of H„.
If P is in H,SH„, then (ISA)g=tiiP (where I is the
identity operator on H,) and we can say that in iP the

6 J. Albertson, Phys, Rev. 129, 940 (1963), develops an account
of measurement using these interactions. These interactions, of
course, are not of the tradiational sort associated with the theory
of von ¹umann. See Ref. 7.

III. THEORY OF MEASUREMENT

The basic requirement' for a measurement is that
observations of the apparatus observable A made on
the state of the joint system that results from the
measurement should yield requisite information about
the initial, unknown state of the object with regard to
the object observable 0. The minimum requirement of
this sort is that one should be able to distinguish
between states of the-object that yield different proba-
bilities for some value of 0.

Definition 1. Call sta, tes W., W.'[W,W '] 0 dis-
tinguishable [(ISA) distinguish-able] if for some n,

tr(W. '0„)Atr(W. O„)
[tr(W. '(ISA„))W tr(W. (ISA„))];

otherwise 0 indhstinguishable [(ISA) indistinguish-
able].

Then we can make the following definition of mea-
surement interactions.

Definition Z. A unitary operator U is a W measure
ment (of the observable 0 by means of the observable
A) if and only if whenever W„W,' are 0-distinguish-
able, then U(W.SW )U ' and U(W. 'SW )U ' are
(I8A) -distinguishable.

The requirement embodied in Def. 2 is, of course, a
minimal one and in no way ensures that all the requisite
informa. tion about the object can be obtained by a W,
measurement. One can achieve a more complete de-
scription as follows.

Def'inition 3. A W measurement U is a W filter if
and only if whenever W„W, are 0-indistinguishable
then U(W SW )U—' and U(W. 'SW )U—' are
(I8A) -indistinguishable.

Let

b„=tr[U(W. SW.)U—'(ISA„)]
[=the probability for ti„ in the final state

U(W.SW.)U-']. (5)

Where fi, belongs to Xi„ let

a i, =tr[U(P(p, )SW.)U '(ISA )]
7 Details of the theory sketched below can be found in A; Fine,

Proc. Cambridge Phil. Soc, 65, 111 (1969).
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(= the probability for p„as the result of a W mea-

surement initiated in object state fi).
Let

would be (lA)-indistinguishable. For

tr(F;lA ) =intr„
(over all rc such that p,„&H,SH„).

(12)

xi, ——tr (W,Oi)
(= the probability for X& in state W,). tr(F, ISA„)=tr(F, ISA ) (13)

(7) It follows from (9) that if 1i'(n)=p'(n) for all n, then

Clearly the b„can be determined by observations on
the apparatus from state U(W.SW,)U '. The a„i can
similarly be determined by preparing initial eigen-
states fI,. The xs constitute precisely the desired
information characterizing the initial, unknown object
state W, with regard to the object observable O. The
requirement that U be a W, filter guarantees that

fi.=P ~r.ua.

Thus measurements by means of a filter reduce to
solving the system (8) of linear equations (for n=1,
2, . . .) for the unknowns xs in terms of the known b„,
a &. The uniqueness of the solution is ensured. 8

So far as I can tell, the above notion of a filter
captures the most general possible concept of quantum
measurement. The more specific proposals of Refs. 1,
5, and even 6 fall under this general notion.

IV. INSOLUBILITY OF PROBLEM OF
MEASUREMENT

One can now show with complete generality that
the answer to the question posed by the problem of
measurement is in the negative: There are no Mf,
measurements U such that (4) holds for all initial
object states W, .

To show this, suppose that gr, Ps are eigenstates of
0 belonging to distinct eigenvalues and suppose that
W, =gw Pl „l. Then if F,=U(Pfq, .lW, )U ', we
have

for all m, and hence that U is not a W measurement.

V. APPROXIMATE SOLUTIONS

Some investigators have responded to the problem
of measurement by devising an approximate treatment
of measurement that seeks to take into account the
macroscopic nature of the apparatus. ' "

The basic idea behind these proposals is to show that
the final state F of the joint object-apparatus system
that emerges from measurement is approximately given
by a density operator F' that is a, mixture of states in
each of which the apparatus observable has a definite
value. Thus although the negative solution to the
problem of measurement shows that strictly speaking
FQF', nevertheless one wants F F'. Such proposals
raise questions concerning the nature of the suggested
approximation and concerning the class of measure-
ments that will exhibit these approximations. Weidlich"
suggests that the approximations satisfy the following
requirements:

F=F'+X
and for all states f,

Since
(X~f 4)&&(F'4,4) .

0& (F'P,tf) &1,

(15)

(16)

(Xf,if))0. (17)

condition (15) might be construed as requiring that
(Xit,f) be negligible compared with (F'f,it), provided
it were the case that for all iP

F;=P w. Pie,„], (9) But since X=F—F' and tr(F) =tr(F') =1, one has

where P,„=U(&,37.„)QH,SH„'l„l, for i =1, 2. If
y=~ryi+~ses(l ~il'+ I

~s I'=1 a;Wo) then for
F=U(PiqlSW )U ' we have

tl (X)=0.
But (17) and. (18) imply that

X=o,

(18)

(19)
F=Pw„P [s„],

where p„=U (yIgly„) QH, l@H„(„).
But

U(4v )= U(4 7-)+ U(4 87 ) (11)

and (10) cannot hold unless p'(e) =p'(e) =p(e) for all
n. If these identities were to obtain, however, then
although Plq, l, Piq, l are O-distinguishable, F, and. Fs

The preceding account is based on the assumption that 0 has a
discrete spectrum. It does, however, a)low for multiplicity. See
Ref. 7.

i.e., that F=F' which, by the results of Sec. VI, we
know cannot be the case. It follows that (17) will not
hold for every state vector if. Thus condition (15)
that %eidlich imposes on the approximation ca@not
guarantee that the difference between F and F' is
negligibly small.

'A. Daneri, A. Loinger, and G. M. Prosperi, Nucl. Phys. 33,
297 (1962); Nuovo Cimento 448, 119 (1966)."J.Bub, Nuovo Cimeuto 578, 503 (1968), is a careful critique
of the proposals of Ref. 9.

"W. Weidlich, Z. Physik 205, 199 (1967); also F. Haake and
W. Weidlich, ibid. 213, 451 (1968).

~ W. Weidlich, Ref. 11, p. 208.
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Since quite generally there will be P in H for which
the difference between tr(P~~~F) and tr(P~p~F') is not
negligible, if one still wants to maintain that in some
sense F F', then clearly one must hold that such a P
(or the corresponding observable Pi~~) is "inachnis-
sible. " Quite generally, therefore, proposals for an
approximate solution to the problem of measurement
would seem to involve the following elements. Select
a set 5 of observables on H and de6ne

F F' (mod S) if and only if tr(SF) =tr(SF')
for all SQS.i3 (20)

The sense of the approximation would then be that one
cannot discriminate between F and F' by computing
the average value of observables in S. Presumably one
would want this to guarantee tha, t no observations
whatsoever couM discriminate between F and F'." '"'

It should be appa, rent that this guarantee cannot be
provided by observations, experimental evidence, or
the like. For the issue here is precisely to determine
how to make the connection between theory and
observation. Before we have settled on how that con-
nection is to be made, we are not in a position to bring
observational evidence to bear on matters theoretical.
I suggest, therefore, that proposals for an approximate
solution to the problem of measurement are in fact
proposals for changing the usual interpretative rules
of quantum theory. "More precisely, they propose that
states F and F', which are heM to be distinct on the
usual understanding of quantum theory, should be
considered as having the same observational signi6-
cance; namely, they are both theoretical expressions
of the situation which obtains when the joint system
is such that the apparatus observable A does have one
of its values. and indeed has the value p„with proba-
bility tr(lA„F) =tr(ICSA„F'). To understand pro-
posals for approximate solutions in this way is not,
of course, to forswear the supporting of such proposals.
It does, of course, locate the type of support that is
appropriate; viz. , support in terms of consistency,
economy, scope, simplicity, and the like.

Let me conclude this section with some remarks on
how approximate solutions may go.

(a) Let g be the class of observables S=I88 for
B on H, such that for some measura, ble function f,
f (A) =B.Then F~F' (mod S).For then 8 = Pf (ii„)A„
is the spectra, l resolution of 8, and

tr(SF) =Pf(p„) tr(i@A„F)
=Qf(p„) tr(lA„F') =tr(SF'). (2l)

The scope of this approximation is, however, very
'3 J. M. Jauch, foundations of Quantum Mechanics {Addison-

Wesley, Reading, Mass. , 1968), Chap. 11, calls this relation
"equivalence with respect to S."

"This is the gist of Jauch's way of dissolving the problem of
measurement. See Ref. 13, and also J. M. Jauch, E. P. Wigner,
and M. M. Yanase, Nuovo Cimento 48, 144 (1967).

~5 K. Gottfried, Quantum 3fechanics (Benjamin, New York,
1966), Vol. I, Sec. 20, pp. 173—189.

limited since not all the physically signi6cant observ-
ables on H are functions of A.

(b) It is sometiines suggested that for a macroscopic
system there can be no incompatible observables; i.e.,
that all the observables commute. In line with this
suggestion, one might like to enlarge the above example
by letting g be the class of observables 5=188 where
BA=AB. Unfortunately& one no longer has F~F'
(mod S). Sufficient for this approximation to obtain,
however, is that A has a multiplicity-free spectrum.
On this assumption, if 8=gn„B„ is the spectral
resolution of 8 then we can write each B„asa sum of
the 1-dimensional projections A„. Since one has
tr(laA F) =tr(lA„F') for every e, it follows that
tr(ISB„F)=tr(lB„F') for every n and hence that
tr(la BF)= tr(18 BF').

(c) Both (a) and (b) restrict the admissible observ-
ables to those of the form (IS8). Let 8 be the class of
all such observables; then it would be of interest to
characterize the class of W, filters U such that
F=U(W, W )U ' and the corresponding F' satisfyF~F' (mod g). In this regard one might notice tha, t
any von Neumann —type measurement yields this
approximation. '7

(d) There is, finally, some question concerning the
time stability of these approximations. If F~F' (mod S)
at time to (i.e., for U,.), then if the joint system is left
to evolve without interference (i.e., according to the
dynamical group t~ U,) will the approximation con-
tinue to hold for times t)to? Thus if (20) holds, need
UiFU( ' U,F'U,—' (mod s)?

This requires

tr(SU, FU, ') = tr(SU, F'U,—') (22)

VI. DISCUSSION

I have tried to show that there is a problem about
quantum measurements that cannot be resolved within
the usual theoretical framework. The upshot of this

"A. Peres and N. Rosen, Phys. Rev. 135, 31486 (1964), make
explicit the interpretative character of approximative solutions.
Oddly, they would nevertheless seek to show the experimental
indistinguishability of F and F'.

'7 For the notion of a von Neumann-type measurement, see
Ref. 7, Sec. 4, pp. 119-121.

for all SQS. Commuting we get, equivalent to (22),

tr(U 'SU F) = tr(U 'SU,F') . (23)

If g is closed under the dynamical group, that is, if

SQS implies that U& 'SU&&S, (24)

then (23) follows froin the approximation condition
F F' (mod s).

It seems reasonable to expect that if 5 is the family
of all "physically significant" observables on H, then
S is closed under the dynamical group and hence that
a,pproximations modulo S are stable in time. It should
be noted, however, that the families 8 of (a)—(c) above
are not closed.
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demonstration, if cogent, is very far reaching. For the
crux of the demonstration is to show that according to
theory certain macroscopic observables, corresponding
to the end product of a measurement (e.g., pointer
positions), can talte on no value whatsoever. The
implication of this is that no laboratory observations
can be cited in support of the quantum theory; e.g.,
the fact that an interference pattern emerges from a
typical diffraction grating experiment is in contradiction
with the theory. Surely, no one can take this seriously.
The occurrence of an interference pattern, for example,
is universally taken as supporting the theory. Thus in
practice one treats the final superposed state of the
joint object-apparatus system as having the same
observational significance as some corresponding mixed
state. The enormous difference between the two, which
is the difference between the pointer aiming at some

position or other in the mixed state but at no position
at all in the superposed state, is treated as though it
were no difference. This strategy of ignoring the diGer-
ence is what I have referred to as an "approximate
solution" to the measurement problem. It is the
strategy adopted by all practitioners of the quantum
theory, for it is the one that makes experimental sup-
port for the theory possible. There are, nevertheless,
problems concerning the implementation of this
strategy. These problems center around a precise
formulation of alternative versions of the strategy, the
scope and consistency of the interpretive rules embodied
in these versions, and the type of support available for
choosing one alternative over another. In Sec. U I have
tried to lay the groundwork for discussing some of these
issues. A clear and general statement of the proposed
interpretive rules remains to be given.
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The diffusion of cosmic-ray particles in a finite volume of space with a simultaneous diffusion and/or
transport in energy is considered. The solution of the appropriate differential equation may be expressed as
an expansion in eigenfunctions of the differential operator. If one approximates the solution by keeping
only the lowest or fundamental eigenfunction, one obtains the common "leakage-lifetime" approximation.
In some situations this approximation can be justified, but in others (e.g., synchrotron or inverse-Compton
losses) it cannot. The reason for the failure in this case can be seen from the point of view of the expansion.
The solution of the general case of Fermi acceleration, synchrotron losses, and energy Ructuation acting
together is also obtained by this method,

I. INTRODUCTION

'HERE has been recent discussion in the literature
as to the correct method of treating the loss of

particles from a region of space where spatial diffusion
and energy transport and/or diffusion are occurring
simultaneously. A common method of treating this
situation when it has arisen in the field of cosmic physics
has been to describe it by an inhomogeneous, partial
differential equation

Bp(E,t) p(E, t)
+Z&p(E,I)+ —=q(E,I). (1)

In Eq. (1), gs is a differential operator in energy that
describes the various energy-changing processes at work
within the region, 7. is the average lifetime of a particle
against a variety of loss mechanisms, including leakage
from the boundary, and q(E, t) describes the energy
distribution of the particles when they are introduced
into the region; the inhomogeneous term q is often re-
ferred to as the injection spectrum.

Solutions of this equation are usually sought for the
steady-state case Bp/BI=0 for a variety of energy-
transport mechanisms and injection spectra. In his
now classic papers, Fermi' ' in essence solved this equa-
tion for the case Zrrp= B(aEp)/BE. In his first paper, '
he considered w= z„ the lifetime against nuclear colli-
sions of the cosmic-ray particles. In his second paper, '
he had come to the opinion that diffusive leakage from
the galaxy was the most significant loss mechanism and
hence considered v.=~, or the "leakage lifetime. " At
present it is not believed to be very likely that Fermi's
mechanism offers the correct explanation of cosmic
rays; however, it is generally believed that he presented
a correct treatment of a plausible process that should,
in fact, occur even though it might not produce cosmic
rays.

The time-independent form of Eq. (1) has been used
extensively to calculate equilibrium spectra for a wide
variety of problems in cosmic physics. Energy loss as

' E. Fermi, Phys. Rev. '7S, 1169 (1949).
2 E. Ferm&, Astrophys. J. 119, 1 (1954).


