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For the case of closed empty universes it is established (up to a uniqueness conjecture) that the action
functional of general relativity is a Riemannian path length in superspace, an infinite-dimensional manifold
whose points represent three-dimensional geometries. Each procedure for representing spacetimes by
trajectories in superspace yields a corresponding superspace metric. These metrics are just the “geodesic
sheaf” metrics found by DeWitt. A general expression for all of these metrics is obtained in terms of arbi-
trary coordinates on superspace. The expression requires an explicit and unique solution to the spacelike
constraints (G%=0, ¢=1, 2, 3) of general relativity. Supertrajectories are separated into ‘‘timelike” ones
which are permitted because they have real actions and ‘‘spacelike” ones which are forbidden because
their actions are imaginary. By varying the path-length action, one finds that solutions of Einstein’s source-
free field equations correspond to a class of timelike geodesics in superspace. This class of geodesics is
subject to conserved constraints which are homogeneous and quadratic in time derivatives. The truncated
superspace which contains the empty ‘‘mixmaster” universes studied by Misner is discussed as an appli-
cation of the supergeometric approach. The approach is particularly useful for analyzing the maximum
expansion stage of the universe. Universes at this stage of their evolution encounter a real singularity of
superspace. Time-symmetric universes end their supertrajectories on this singularity, while all other uni-
verses penetrate it in a well-defined way. The singularity, together with the causal structure of superspace,
limits the anisotropy of empty mixmaster universes which are a finite number of e-foldings from the stage
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of maximum expansion.

I. INTRODUCTION

UPERSPACE is the name which Wheeler has
given to a manifold whose points represent three-
dimensional geometries.!> Arnowitt, Deser, and Misner,?
as well as Baierlein, Sharp, and Wheeler,* have shown
that spacetimes can usefully be regarded as trajectories
in such a superspace. Each point along a superspace
trajectory represents the intrinsic three-geometry of a
spacelike hypersurface in the corresponding spacetime.
This paper will consider only single-parameter trajec-
tories—curves in superspace.® Along such a trajectory,
a point at parameter value ¢ represents the intrinsic
geometry of the hypersurface Z () defined in the corre-
sponding spacetime by the equation x°=:.

DeWitt has noted that trajectories corresponding to
solutions of Einstein’s field equations may be regarded
as geodesics in superspace.® Taken by itself, this fact
is not surprising, because a large class of dynamical
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Phys. Rev. 177, 1929 (1969).

6 B. S. DeWitt, in Relativity: Proceedings of the Relativity Con-
fer%ie in the Midwest, edited by L. Witten (Plenum, New York,
1970).

systems may be geometrized by a trivial procedure (see
Appendix A). The present paper will show that there
is one important respect in which the superspace
geometrization of general relativity differs from the
trivial cases: The physical action functional of general
relativity is a path length in a hyperbolic metric.
Because the physical action functional can only be
real valued, trajectories with imaginary path lengths
are forbidden. This causal structure gives physical
meaning to the concept of spacelike and timelike
trajectories in superspace and is a strong argument for
the superspace geometrization of general relativity.

Each distinct procedure for defining the equal-time
hypersurfaces Z(¢) in a given spacetime provides a
distinct mapping of spacetimes into superspace trajec-
tories and a superspace metric in which the action
functional of general relativity is a path length. These
superspace metrics are just the ones defined by DeWitt
—the metrics in which Einstein spacetimes appear as
sheafs of geodesics.® The results of the present paper
can be used to find any one of these metrics provided
that one has an expression for the three-dimensional
metric tensor as a function of space coordinates and
supercoordinates (coordinates which identify points in
superspace) and provided that one can solve the space-
like constraints of general relativity. In the general
case, these provisions are difficult to meet. However,
there are interesting subspaces of superspace which
lend themselves to straightforward analysis.

The truncated superspace which contains Misner’s
“mixmaster” universes provides a simple application
of the supergeometry approach to general relativity.
Here one finds the basic singularity structure of super-
space, the determination of superspace topology from
the path-length form of the action, causality in super-
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2 ACTION FUNCTIONAL OF GENERAL RELATIVITY---

space, and finally, a demonstration of the power of
supergeometry to analyze complex solutions of
Einstein’s equations.

This paper shows that a closed empty universe may
be thought of as a “particle” moving freely in a curved
superspace geometry. This curved superspace possesses
some of the familiar properties of ordinary spacetime—
light cones and local causality. In the absence of
gravitational effects, it is the Minkowski spacetime of
special relativity which provides the fixed geometrical
framework of physics. For the purely gravitational
physics of closed empty universes, it is curved super-
space which provides the fixed geometrical framework.

II. NOTATION

The notation of this paper is essentially that of Refs.
1 and 3. The time coordinate in a spacetime is denoted
by «° while space coordinates are «!, 2% and «%. Greek
indices run from O to 3 while lower-case Latin indices
run from 1 to 3. Spacetime-covariant objects which do
not contain 0 or Greek-letter indices are prefixed by a
superscript 4 to distinguish them from the correspond-
ing space-covariant objects. The spacetime metric
tensor components g,, have the space-covariant
representation

4g,;= g;;/=1intrinsic metric on Z(¢),
goi= N ;=shift vector,
goo=N;Ni—N?,
where
N= (g

is called the lapse function and g%, the matrix inverse
of gij, is used to raise all lower-case Latin indices.
Space-covariant derivatives are defined in terms of the
metric g;; and are denoted by vertical bars, as in NV;;.
The determinant of g;; is written as g and the invariant
three-volume element d®x g'/? is denoted by o. In
addition to the extrinsic curvature tensor K;; and the
momenta

1[".-".5 g1/2 (giJKrr _Kw)

defined by Arnowitt, Deser, and Misner?, this paper
adopts a “velocity tensor” which is defined by

V= 0gi;/ 9t —Nijj—Nj:.

The extrinsic curvature K; is related to this velocity
tensor by

Vij = '—'ZNK”

In this paper, some further conventions are adopted.
Capital Latin indices run from 1 to o« in expressions
describing the full superspace and from 1 to the appro-
priate number in truncations of superspace. Terms
containing repeated capital Latin indices are to be
summed over the appropriate range. Matrix expressions
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are interpreted according to the rules

(A)i=A; for A covariant,
=4, for A mixed,
=A% for A contravariant,
A=gid,, |A|2=A4,4%,

(AB)i;= (A)i»(B),;-

The total derivative dx/dt of a function x with respect
to a parameter £ along a curve in superspace will be
denoted by 2. The curve parameter is denoted by ¢
only when it is arbitrary. When the parameter is not
arbitrary but is fixed by some constraint, it will be
denoted by a Greek letter such as w and # will denote
dx/dw.

III. PATH-LENGTH FORM OF ACTION

Because of its general covariance, the action func-
tional of general relativity is already a path length in
the most general sense: It is an invariant integral
along a curve in superspace. However, the invariance
of this integral under the time parameter changes
t— T'(¢) is not manifest because it depends upon the
transformation properties of the go and go;. To find out
if the path length is Riemannian and to evaluate the
corresponding supermetric tensor components, one
must make the parameter independence explicit. One
could solve the full set of constraint equations for the
N and N;, thus ensuring the correct transformation
properties for go and go;. However, that approach
would require fixing the spacelike hypersurfaces = (¢)
by a particular coordinate condition. This paper solves
the spacelike constraints [see Eq. (3) below] for the
N;, thus fixing the shift

(AL =2 () +NAL

of spatial coordinates along any hypersurface-
orthogonal trajectory, but leaving the hypersurfaces
themselves unrestricted. With the spacelike constraints
solved, the generator of position-independent time-
parameter changes can be found easily. This generator
is essentially the fofal Hamiltonian of general relativity.
Solving the single constraint which sets this generator
equal to zero then ensures a manifestly parameter-
independent form of the action functional. The Hamil-
tonian constraints which remain are to be solved after
varying the action.

The action functional of general relativity is

= /d4x(—4g)1/2(4R) .
It may be written in the space-covariant form?’

2
4I=/ dt/a[—2K+22\7”K|b+N(R+K2+1K['—’):|
1

-[ " JEEC S f oK+2 [ oK.

?D. R. Brill and R. H. Gowdy, Rept. Progr. Phys. (to be pub-
lished).
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The end-point terms can be dropped without affecting
the dynamics. Indeed, these end-point terms must be
dropped in order to obtain Einstein’s field equations
from variations which hold only the initial and final
hypersurface three-geometries fixed. Thus, the action
functional of general relativity can be taken to be

I=/dtL, 1)

1
L= / a[~(|v[2—v2)+NR:l. @
AN

Varying this action with respect to N and N, yields
the constraint equations and varying it with respect to
gi; yields the dynamical equations of general relativity.®
This action is the physical action of the gravitational
field in the sense that the action of a system with both
gravitational and nongravitational degrees of freedom
is just the sum of this gravitational action and the
action which describes the nongravitational variables.
Here we assume that the nongravitational action is
expressed in units such that ¢/16mwk=1. If one chose a
different gravitational action such as I’=+/I, this
simple addition of actions would not work for non-
gravitational actions obtained by the usual minimal-
coupling arguments.®

Throughout this paper, it is assumed that the space-
like constraints

81 /6N ;=X

=N (g =)y

=0 3)
have been solved and used to eliminate superfluous
degrees of freedom. All variations are assumed to be
subject to these three constraints per space point.
However, the Hamiltonian constraints

oI /6N=3C

=g""L(1/4N?) (= [v]*)+R]
=0

where

are not assumed to be solved.

To obtain the generator for the position-independent
time-parameter changes {— 7'(f), note that §,; trans-
forms according to the rule

g/ 0t — T1ag./ 0t

and use the spacelike constraints (3) and the position
independence of T to find

Vi — T_I‘Z}ij.
Finally, use the rule dt— dT=7Tdt to obtain the
8 See Ref. 3 for the appropriate 341 form of these equations.
® Here, minimal coupling means that nongravitational actions

should be of minimal differential order in g,, and should reduce to
their special relativity values in a Minkowski spacetime.
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transformed Lagrangian

1
L=/a|:——T—1(v2— [v] 2)—-TNR]
AN

Because the unsolved constraints 3¢(P) =0 all commute
with one another when the spacelike constraints are
satisfied, one can generate canonical transformations
with ordinary Poisson brackets.!® The momentum
conjugate to the variable T can then be found from the
textbook formula
H=9L/dT,
which yields

H=/d3x N3C

[ L ompai]

when it is applied to the transformed Lagrangian and T
is set equal to £. By solving the single constraint H=0,
one can ensure the explicit time-parameter invariance
of the action.

To solve the H=0 constraint, express the lapse
function IV as the product of a function # and a posi-
tion-independent lapse scale factor s: N=sn. For the
lapse scale factor s to be well defined, the function »
must be normalized in some way. Thus, we call # the
normalized lapse function. One way to normalize » is to
require that the universal time parameter ¢ agree with
the proper time of a particular observer at rest (i.e.,
on a hypersurface-orthogonal trajectory) at a space
point P,. One would then require #(Pg) =1/s. However,
the choice of normalization for » is purely a matter of
convenience. All of the equations in this section leave
this normalization arbitrary. Now reexpress L and H in
a way which displays their dependence upon s by
defining a kinetic term

r= | a[g;(ivl = 0

and a potential term

V= —/cnR. (5)

The resulting expressions for L and H are

L=57—50 (6)
and
H=—(s17450)=0. (7)
Use Eq. (7) to obtain Z in the form
L=25s717. ©)

10 A discussion of the canonical formalism of general relativity
and further references may be found in B. S. DeWitt, Phys. Rev.
160, 1113 (1967); and also T. Kimura, Progr. Theoret. Phys.
(Kyoto) 27, 747 (1962).
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To eliminate the H=0 constraint, solve it for the lapse
scale factor

s==(—=T/0)2. )
Now combine Egs. (9) and (8) to obtain
+2(—07)V? for T>0

L= (10)

=207 for <0,

where the sign of L is fixed by the sign in Eq. (9).

Equation (10) shows L to be the square root of a
quadratic in the velocity tensor v;. If Ldt is to be a
Riemannian line element on superspace, then v;; must
be linear and homogeneous in the total derivatives of
supercoordinates with respect to the time parameter ¢.
To show that v;; actually has this structure, one must
first express dg;;/9¢ in terms of coordinates on super-
space and then solve the spacelike constraints for the
shift components V.

Let the functionals S4 be coordinates on part of
superspace. Describe the geometry G(S) which is located
at the supercoordinate values (S.,S%...) by choosing
space-coordinate functions #!, %2 and «* on G(s) and
displaying the corresponding metric components
g:;(«,S). When a spacetime is represented as a curve in
superspace, all of the time dependence of g;; is carried
by the supercoordinates and one has

agij/at-——g,-,-,ASA. (11)

Here, the subscript (,4) denotes partial differentiation
with respect to 54, with x and S (Bs£4) held fixed.

From Eq. (11), the spacelike constraints (3) can be
presented in the form

2G5 (0N 1) 1= SAG T (W7 gre, ) 17,

where DeWitt’s notation
GijrsE%(girg;'s+gisgjr_2gijgrs)

has been adopted.® These constraints may be regarded
as a system of inhomogeneous differential equations
for the shift components ;. Because the source terms
are all linear in the S4, there is a particular solution of
the form

(12)

Ni={ia(x,5)84.

To obtain the general solution of Eq. (12), let #; solve
the homogeneous system

G (™ ny)4) =0 (13)
and take

N; =§'iASA+ni- (14)
Equations (11) and (14) together with the definition of
v;; yield
(15)

At this point, one must ask if Eq. (14) can supply
a unigue solution to Eq. (12) for a given set of boundary
conditions on the shift vector ;. The conjecture that

V3= (gij,a —$ia)i—$ia1) 84 —na j—nj)4.

27717

the solution is unique up to a Killing vector is part of
what is often called the “thin-sandwich conjecture.”
The full thin-sandwich conjecture requires that both
N and N; be determined by the Hamiltonian and space-
like constraints.!2# The full conjecture leads to a non-
linear and singular Cauchy problem." Here we are not
concerned with determining the lapse function and have
only a regular, linear Cauchy problem. In the closed
universes being considered by this paper, the “unique
shift conjecture” means that Eq. (13) has only trivial
(zero or Killing-vector) solutions so that 7, +u,,
must always vanish. The validity of this conjecture as
well as other aspects of the spacelike constraints will
be treated in a later paper. The present paper adopts
the unique shift conjecture without proof.

From Egs. (4), (10), (15), and the unique shift
conjecture, one obtains the path-length form of the
action for closed empty universes:

I= / z, (16)
where
d2?=GapdS4dSE (17
and
GAB=—’O/o[n“G””(gij‘A——zg‘u“.)
X (grs,5—=25-15)]. (18)

This form of the action functional is to be varied with
respect to the supertrajectory which is specified by the
functions S4(#) to obtain the dynamical equations of
general relativity as geodesic equations in superspace.
The Hamiltonian constraints which remain after =0
has been eliminated are obtained by varying I with
respect to the normalized lapse function #. These
constraints

SA[8G 45/6n(P)]JSE=0 for all positions P (19)

are similar in structure to the null condition which is
imposed upon the trajectories of massless particles in
spacetime. Like the null condition, these constraints
are preserved by the geodesic equations.

It is useful to relate distance in superspace to the
proper time of an observer at rest at a space point P.
By evaluating the lapse scale factor

s=(—T/0)V?
dz

=+— /0
dt

and using the relation
dr(P)=N(P)dt=sn(P)dt,
one obtains the desired relation
dr(P)=0V"n(P)dZ. (20)

1 E. P. Belasco and H. C. Ohanian, J. Math. Phys. 10, 1503
(1969) ; A. Komar, ¢bid. 11, 820 (1970).
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8+=0 I16. 1. Three-geometry be-

\ longing to the mixmaster trun-

\ cation of superspace is repre-

\ sented by the point (8,,8-) in

\ the 8 plane. The length of the

\ (B, B-) position vector shown is a mea-

\ sure of the total anisotropy of

the geometry—the departure of

— —B-=0 the metric from that of the

/ three-sphere. The angle x mea-

/ sures the departure from axial

/ isotropy. Axially isotropic ge-

/ ometries which are space sec-

tions of Taub universes may be

found along the dashed lines in
this figure.

Equations (17) and (18) define a Riemannian metric
on superspace for each choice of the normalized lapse
function. These metrics are just the ones that DeWitt
finds by requiring that the Hamilton-Jacobi equation
of general relativity yields an eikonal equation in super-
space.® All of these metrics contain the conformal
factor U which vanishes everywhere on a hypersurface
in superspace. This superhypersurface will be called
the nodal surface. It includes the supersurface R(P)=0
which is the locus of time-symmetry points and the
superhypersurface defined by /"o =0, which is the locus
of the final collapse of the universe as well as its initial
“big bang”.

The supermetric described by Egs. (17) and (18) is
hyperbolic and leads to three distinct classes of super-
curves: limelike curves for which fdZ is real, null
curves for which f'dZ is zero, and spacelike curves for
which f'dZ is imaginary. An important feature of the
supergeometric approach to general relativity is that the
spacelike curves are dynamically forbidden. By adopt-
ing the substitution 4°— 44 in spacetime coordinates,
one can identify these forbidden supercurves with
geometries of signature (+4---). Timelike super-
curves represent geometries with the signature
(+4+—) of spacetime. It is important to realize that
this definition of “timelike” and ‘“‘spacelike” depends
only on the sign of dZ2. As the following example
demonstrates, there can be several independent time-
like directions in superspace and these directions are
not necessarily those associated with the “minority”
sign in the signature of the supermetric.

IV. TRUNCATED SUPERSPACE OF
MIXMASTER UNIVERSES

Superspace is an infinite-dimensional manifold pos-
sessed of an infinite variety of metrics. To analyze this
vast structure, one can truncate it by choosing a
particular subspace of superspace and a particular set
of normalized lapse functions. The most general type
of truncation produces trajectories which correspond
to approximate solutions of Einstein’s equations.
However, there is a simple way to construct exact
truncations: If one chooses a truncated superspace
which contains e/l three-geometries with a given group
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of motions and restricts the normalized lapse function
to have the same group of motions, then the symmetry-
preserving character of general relativity guarantees
that solutions of the truncated geodesic equations and
constraints will solve all of the supergeodesic equations
and all of the constraints. An exact truncation which
contains the closed mixmaster universes studied by
Misner will now be considered.??

Description of Mixmaster Universes

The three-geometries which will be allowed in the
mixmaster truncation of superspace are topologically
three-spheres. They are homogeneous with respect to
a three-dimensional group of motions—the SU(2)
group of left translations of unit quaternions—but are
not isotropic. The homogeneity requirement forces # to
be a constant which can be set equal to 1. In this
truncation constraints (19) are already solved by the
symmetry assumptions which leave no freedom to vary
n. Because the homogeneity group SU(2) is a covering
group for the rotation group SO(3), it is convenient to
follow Misner in adopting the extended Euler angle
coordinates 0L y<4wr, 0K6<w, 0<¢<2r on each
three-geometry. In terms of the inexact differential
forms

o1=sinydf — cosy sinfd¢ ,
s =cosydf-+-siny sinfde ,
g3=—(dy+-cosbds),
the three-geometries are described by the line elements
(21)

where a is the effective radius of the geometry
(S'o=3%a%fo1AdsA03=27%3) and B is a position-
independent traceless matrix which measures the anisot-
ropy of the geometry (8=0 corresponds to complete
isotropy).!? The orientation of the space coordinates can
be further specified by requiring o1, 03, and o3 to be the
forms which are dual to the principal directions of 8.
The off-diagonal elements of 8 then vanish. The diago-
nal elements of 8 are conveniently expressed in the form

611=ﬁ++‘/318—: Ba2=01— 3»8—, )633="‘25+-

The three numbers a, 84, and B_ are supercoordinates
on this truncation of superspace.

It is helpful to understand in detail the way in which
the supercoordinates 8, and S_ characterize the anisot-
ropy of a three-geometry. Consider the geometry
represented in Fig. 1 as a point in the (8;,8-) plane.
The length |B|=(8,2+B-2)2 of the position vector
shown is a measure of the total anisotropy of the
geometry. At the origin of the 8 plane is found the
metric of a three-sphere—a completely isotropic

2 C. W. Misner, Gravity Award Essay, Gravity Research Foun-
dation, New Boston, New Hampshire, 1967 (unpublished); C. W.
Misner, Phys. Rev. 186, 1319 (1969) ; and also I. M. Khalatnikov

and E. M. Lifshitz, Zh. Eksperim. i Teor. Fiz. Pis’'ma v Redaktsiyu
11, 200 (1970) [JETP Letters 11, 123 (1970)].

ds2=ia2 (621“]) 2005,
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geometry. The angle which the position vector makes
with the 8, axis measures what may be called the axial
anisotropy of the geometry—the departure from the
case where there is, at each point in space, one axis
about which the geometry is isotropic. Axial isotropy
occurs when two of the eigenvalues of 8 are equal. At
xk=0°, £=120°, one finds “oblate” axially isotropic geom-
etries for which the two equal eigenvalues are positive.
At k=180°, +£60° are the “prolate” axially isotropic
geometries for which the two equal eigenvalues are
negative.’® Along these six directions in superspace lie
those three-geometries which are space sections of
Taub universes.

It is important to notice that the only distinction
between geometries which lie in different 60° intervals
of k is the orientation of their coordinate systems. By
adopting B and B_ as unbounded coordinates on super-
space, one imposes a particular topology on superspace.
In this topology, each distinct three-geometry is
represented by several points (either three or six) in
superspace. A superspace with this type of topology is
called an exfended superspace. It is a covering space for
simple superspace which has only one point for each
three-geometry.® From the point of view of this paper,
the simplest justification for the extended topology is
that it leads to the most regular superspace metric.
However, there is a deeper reason—the existence of
strata in simple superspace.* In a simple superspace,
those points which represent geometries with larger
symmetry groups have different neighborhood struc-
tures than points with smaller symmetry groups. In
mixmaster superspace, simple superspace is the region
defined by 0<«<60°. Within this region, the ¢ axis
is a stratum representing isotropic geometries while the
k=0 half-plane is a stratum made up of axially iso-
tropic geometries. This region is not a manifold because
each point of the x=0 half-plane has only half a neigh-
borhood and, within the k=0 half-plane, the @ axis
has only half a neighborhood. DeWitt has proposed
that a manifold be constructed by joining many copies
of simple superspace along their strata.® Here, six
copies join together to make up the mixmaster super-
space manifold.

Metric on Mixmaster Superspace

Now compute the metric tensor on the mixmaster
truncation of superspace. Because of homogeneity, the
conformal factor U in Eq. (18) is just U=—R f¢. But
the 8 matrix is traceless so that the volume element
o=d% g% is unaffected by the values of 3} and B_.
The volume o is just that of a three-sphere—2x%¢%.

13 C. W. Misner, in Relativity: Proceeding of the Relativity Con-
ference in the Midwest, edited by L. Witten (Plenum, New York,
1970); D. J. Okerson, B. S. thesis, Princeton University, 1969
(unpublished).

4 For more about strata, see Ref. 7 as well as A. E. Fischer,
Ph.D. thesis, Princeton University, 1969 (unpublished); and A. F.
Fischer, in Relativity: Proceedings of the Relativity Canferem:e in the
Midwest, edited by L. Witten (Plenum,'New York, 1970).
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THE NODAL TUBE

®=0
e

Z
B—
B-PLANE

AT a=0

B4=p-=0

F1G. 2. Nodal surface (defined by dEZ‘O) in mixmaster super-
space is sketched here. The plane at ¢=0 is the site of spacetime
smgulantles The nodal tube is the place where all time-symmetric
trajectories end and separates the “inside” region, where 8, and
B are the timelike coordinates, from the “outside” region, where a
is the timelike coordinate. The maximum expansion stage of the
universe always occurs within the nodal tube. This sketch shows
the corners of the tube meeting at a finite distance from the ¢ axis.
Actually they meet at infinity.

The scalar curvature R may be computed easily by
using the moving-frame techniques described by
Flanders's and by Misner.!s It may also be computed
using results obtained by Khalatnikov and Lifshitz.!?
It is given by
R=(6/a*)®,
where
d=1 Tr(2e26—¢b).

The positive definite “potential” V used by Misner'
is related to ® by V=1—®. The functions {;4 which
appear in Eq. (18) vanish because, in these homogeneous
universes, the spacelike constraints (12) are solved
by N,=0. To perform the rest of the calculations
called for by Eq. (18), use homogeneity to evaluate
the space integral and obtain the derivatives gi;,4 from
Eq. (21). The line element on mixmaster superspace
is then

d2?= (6w%2)*®du?, (22)
where

= (dB+)*+ (dB-)— (ada)*.

The form of du? suggests replacing ¢ by its logarithm.
To agree with Misner’s choice of supercoordinates,!?:!8
one can define a coordinate @ which is related to ¢ by

(6m)Pa=¢2 (24)

5 H. Flanders, Differential Forms with Applications to the Physi-
cal Sciences (Academic, New York, 1963), pp. 127-136.

16 C, W. Misner, J. Math. Phys. 4, 924 (1963) (in an appendix).

17 E. M. Lifshitz and I. M. Khalatnikov, Advan. Phys. 12, 185
(1963).

18 C, W. Misner, Phys. Rev. Letters 22, 1071 (1969).

(23)
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Frc. 3. Two ways to imbed an ¢=const section of mixmaster
superspace in three dimensions. Those parts of the section which
lie outside of the nodal tube are shaded. If the metric du? is to be
preserved, then the section imbeds as a plane. A circular piece of
this plane is shown. The straight dashed lines shown here corre-
spond to the dashed lines in Fig. 1. If the metric d22 is to be pre-
served, then the conformal factor ® shrinks distances along the
nodal tube to zero. Thus, the section imbeds as a “bag” with the
neck containing all of the points which are on the nodal tube. The
heavy line which is wending its way among the folds of the bag
corresponds to one of the dashed lines in the circular figure. It is
the a=const projection of the trajectory of a Taub universe.

The collapse singularity at ¢=0 is then removed from
the supercoordinate patch and occurs at Q=

The key to understanding the geometry of this
truncated superspace is the function ®(8,,8_). This
function has an absolute maximum value of 1 at the
origin of the 8 plane. The level curves for $>0 are
continuous and enclose the origin. For <0, the level
curves lie at finite distance from the origin in all
directions except for x=0, =4=%mw, where they go to
infinity. In the latter three directions, ® is positive and
approaches zero as the distance from the origin of the
B plane increases. A detailed description of the function
® (actually, the related potential V) may be found
elsewhere.:13.18.19 The curve defined by ®=0 is of par-
ticular interest. In the full (a,8) space, this curve traces
out a nearly triangular tube which encloses the ¢ axis.
The resulting surface will be called the nodal tube.?® It

¥ R. A. Matzner, L. C. Shepley, and J. B. Warren, Ann. Phys.
(N. Y.) (to be published); M. P. Ryan, Ph.D. thesis, University
of Maryland, 1970 (unpublished).

20 The surface consists of three infinite sheets which form a tube
if they are regarded as meeting at |8] =, x=0°, 3=120°,
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is displayed in Fig. 2 along with the branch of the
nodal surface which lies at a=0. The figure does not
show the edges of the tube in their proper location at
infinity. Figure 3 shows an a=const section of the
superspace. The ®=0 hypersurface separates the
superspace into two regions: The “outside” region is
defined by <0 and is shaded in the figure. The
“inside” region, defined by ®>0, is not shaded in the
figure. Figure 3 also shows how an e¢=const section of
superspace may be imbedded in a flat three-space.
Equations (22) and (23) show that, inside the nodal
tube, a is a spacelike coordinate while 8, and 8_ are
timelike. Outside of the nodal tube it is ¢ which is the
timelike coordinate while 8, and B_ are spacelike.

Superspace Causality

Some of the properties of mixmaster universes can
be deduced solely from the casual structure of super-
space. It is this structure which outlaws empty iso-
tropic universes—their trajectories all lie on the a axis
and are spacelike. The point of maximum expansion of
the universe can occur only within the nodal tube, where
B4+ and B_ are timelike. Because the nodal tube is of
limited extent in the B plane, the anisotropy of the
universe at maximum expansion is correspondingly
limited. Figure 4 shows how one can construct a null
surface from the maximum expansion stage backwards
towards ¢=0 or Q= to obtain similar limitations
on the anisotropy of the universe at any given number
of e-foldings from maximum expansion. Because of the
shape of the nodal tube these limitations restrict only
the type of anisotropy and not its total amount. Taub-
like universes (at k=0° #120°) can have arbitrarily
large amounts of anisotropy near maximum expansion.

Supergeodesic Equations

To obtain further information about mixmaster
universes it is necessary to investigate the super-
geodesic equations. A difficulty of principle appears as
soon as one asks how to extend geodesics across the
nodal tube. There is no way to read this information
from the supermetric. Suppose, in Fig. 3, one asserts
that geodesics are to cross the neck of the bag as
smoothly in the imbedding space as possible. Now
twist the bag about its neck by any angle and the
prescription has been changed without altering the
intrinsic metric of the mixmaster superspace. For-
tunately, general relativity provides the additional
information which is needed to cross the nodal tube
uniquely: The three-geometry must evolve smoothly
in universal proper time. By setting the curve parameter
¢ equal to proper time 7, one can obtain a correct set of
geodesic equations which remain regular across the
nodal tube. A still more regular form of the correct
geodesic equations can be obtained by setting ¢ equal
to a parameter w, which is related to = by 2dr==adw.
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So long as @ is finite, smoothness in 7 implies smoothness
in w.

From Egs. (20), (22), and (23), the choice of w as a
curve parameter corresponds to the constraint

B2 +B2—2=3.

Now write the path-length action in the form

= / iz
du
= / (61r2a2‘1>1/ L—)dw .
dw

Varying this action with respect to Q yields the equation

(25)

du d du
—2a%®12— ~<02<I>”2Q——> =0.
do dw dw

Now use constraint (25) in the form du/dw=3®"? to
obtain one of the geodesic equations:

Q=2(d4+2). (26)

Use constraint (25) again to find the alternate equation
$=2(8:2+6-2). @

Similarly, varying the action with respect to 8; and
B— yields the remaining geodesic equations in the form

Be—208.=108/8B4

=—30V/0Bs. (28)

It is not difficult to show that the constraint (26) is
conserved by the geodesic equations (26)—(28). Appen-
dix B shows that these geodesic equations may be ob-
tained from Misner’s Hamiltonian formulation of mix-
master dynamics.

Properties of Geodesics in Mixmaster Superspace

Equation (27) shows that all supertrajectories
experience an acceleration in the +Q direction. The
expansion rate of the universe must always be slowing
until a maximum expansion point is reached. There
must then be an accelerating collapse. By comparing
Eqgs. (26) and (27) one can also see that the following
conditions are all equivalent. (1) Maximum expansion
occurs on the nodal tube. (2) The maximum expansion
occurs at a point of time symmetry. (3) The radius of
the universe has an inflection point (2=0) at the
instant of maximum expansion.? Trajectories satisfying
any one of these equivalent conditions are of particular
interest. They are the time-symmetric solutions of
Einstein’s equations. At the point where it touches the
nodal tube, such a trajectory has Q=g;=8_=0 and

% These conditions are a special case of a general result which
may be found in D. R. Brill, Nuovo Cimento Suppl. 2, 3 (1964).
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T1c. 4. This diagram shows
how superspace causality limits
the anisotropy parameters (8 REGION

and B_) of a universe which isa ™\
finite number of e-foldings (unit ~ °
increments of ) from maxi-
mum volume.

~ FORMIDDEN ~ REGION

its direction is given by the second derivatives  and
By. From Egs. (26) and (28), it can be seen that the
trajectory is orthogonal to the nodal tube. This direc-
tion is permitted only when B84 and B_ are timelike.
Therefore, the time-symmetric trajectory must ap-
proach the nodal tube from within. The trajectory must
stop on the nodal tube because there is no way to ex-
tend it further without violating superspace causality.
The dynamical parameter w reverses itself smoothly at
the stopping point so that the collapse phase of the
universe retraces the trajectory of the expansion phase.

The geodesic equations (28) reveal that the term
—2Q acts as a damping coefficient or viscosity while

ONe)

T S J ) T
Los b,

F1c. 5. Trajectories in mixmaster superspace. The symbols T
and S at the bottom of the diagram indicate ‘“‘timelike” and
“spacelike,’” respectively. The nodal tube at =0 must be crossed
in a lightlike direction. All trajectories are accelerated upward in
this diagram. They lose energy during their downward travel and
regain it as they fall upward. Trajectory 1 achieves its turn-
around inside of the nodal tube and proceeds without interruption.
Trajectory 2 achieves its minimum on the nodal tube. It cannot
continue without violating superspace causality. Trajectory 1 cor-
responds to a universe undergoing expansion and collapse in a
time-asymmetric way while trajectory 2 represents a time-sym-
metric universe—expanding as the trajectory is traced downward
and collapsing as the trajectory is traced upward.
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}V is a potential function. Because V" has the form of a
well with steep walls (except for channels at k=0°,
+120°), B8, and B_ execute oscillations about the origin
of the 8 plane. During the expansion phase of the
universe, —2{ is positive and the oscillations are
damped. During contraction the oscillations are ampli-
fied. As the ¢ =0 singularity of superspace is approached,
the oscillations become arbitrarily large and arbitrarily
close together in proper time 7. This is the character-
istic mixmaster singularity studied by Misner.!?:18

The form of Eq. (28) suggests an anisotropy energy
of the form

2E=B2+B 24V,

This is essentially the anisotropy energy defined by
Misner.218 During expansion, E is dissipated. During
contraction, E increases again. Constraint (25) may be
used to show that 2E never drops below 1 so that
trajectories always have enough energy to climb out of
the nodal tube. Figure 5 shows that trajectories which
approach the nodal tube with 2E greater than 1 survive
the reversal of spacelike and timelike coordinates by
accelerating to the “speed of light.” However, trajec-
tories approaching the nodal tube from within with 2
equal to 1 are stopped by the singularity.

V. CONCLUSIONS

The physical action functional of general relativity,
the action which is to be added to actions describing
nongravitational degrees of freedom, may be regarded
as a Riemannian path length in curved superspace.
In this picture, the metric on curved superspace de-
pends upon the lapse function N which measures the
normal separation of equal-time hypersurfaces in
spacetime. Einstein spacetimes are represented by
timelike geodesics subject to conserved constraints in
superspace. All of the superspace metrics are singular
where S'¢NR vanishes. The mixmaster truncation of
superspace displays the two fixed branches of this
singularity, the collapse branch at ¢=0 and the nodal
tube which is the locus of time-symmetry points. In
more complicated truncations of superspace one will
also find singular hypersurfaces which depend upon the
choice one makes for the lapse function V.

The basic virtue of the supergeometric approach to
general relativity is that it brings the powerful tools
of Riemannian geometry to bear upon the solution of
Einstein’s field equations, The familiar mathematical
concepts that apply to particles moving in a curved
spacetime may be used to analyze the dynamics of
spacetime itself.
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APPENDIX A: TRIVIAL GEOMETRIZATION

Consider a system with dynamical variables «’
(i=1, 2, ..., n) and Lagrangian

dxt da? dx*

L=mij(%)— —— — U (@) +Ru(x)—
mii(x) o (@) +R(x) o

Now take the time ¢ to be a variable on the same footing
as the «7 by defining

x°=t, mOOE—U, 2m0kERk.
The Lagrangian is then
da* da’
=My T,
dt dt

where u and » are to be summed from 0 to #. Because
the value of L is preserved whenever the equations of
motion are satisfied, one can adopt the new Lagrangian
L'=IL'2 without altering the equations of motion.
The resulting action functional J"L'dt is a path length
for the metric tensor m,, and solutions of the equations
of motion are geodesics for this metric.

The idefinite metric m,, introduces a distinction
between timelike and spacelike trajectories. However,
in this trivial geometrization, L’ is not the physical
Lagrangian and the spacelike trajectories are allowed.
To eliminate the spurious light-cone structure, one can
add an infinite constant to the potential U. The
apparent speed of light then becomes infinite.?

APPENDIX B: DERIVING GEODESIC EQUATIONS
FROM MISNER’S HAMILTONIAN

In the canonical formalism of Arnowitt, Deser, and
Misner, the Hamiltonian conjugate to Q time is

H=(p>—ka'®)'?, (B1)
where £=06m and
P'=ptp.
Hamilton’s equations are then
By'=H"p., (B2)
p+'=—0H/0B4, (B3)

where primes denote derivatives with respect to €.
From Egs. (B1) and (B2) one obtains

p=Fay’8", (B4)
where
y=[®/(B*—1]". (BS)
The numerical value of H is then given by
H=rFka*y (B6)
and py. has the expression
pr=kavBy (B7)

2 P, Havas, Rev. Mod. Phys. 36, 938 (1964).
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when Eq. (B2) is satisfied. Equation (B3) can then be
written in the form

a2y (a*yBy") = —30V/9Bx. (B8)

To see if Eq. (B8) is equivalent to the geodesic
equation (28), transform the curve parameter from
Q to w. Constraint (25) yields the equation

dQ/dw=+7, (B9)
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which connects the parameters @ and w. It is then a
straightforward matter to compute d°Q/dw? aud show
that the first geodesic equation (27) follows from the
definition of w alone. By using Eq. (B9) one can then
show that

o~ (aBy) =0~y (B
so that Eq. (B8) reduces to the remaining geodesic
equations (28).
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The problem of whether a measurement interaction can leave the joint object-apparatus system in a
mixture of states, in each state of which the apparatus’s observable displays a definite value, is set within
the most general quantum-theoretic framework for treating measurements. It is shown that the question
posed by this problem admits only a negative answer. Some schemes for approximating the true object-
apparatus state by means of such mixtures are examined. It is argued that such schemes constitute funda-
mental changes in the interpretation of quantum theory.

I. INTRODUCTION

HE quantum theory of measurement pursues the
idealization where the measured object, the mea-
suring apparatus, and the interaction between the two
are each treated within the formalism of quantum
theory. If both object and apparatus have, as measure-
ment begins, a pure state, then, since the interaction
between them is represented by a unitary motion on
the joint object-apparatus space, the terminal state of
the joint object-apparatus system will be a pure case
in which, generally, neither the object nor the appa-
ratus has a definite state. If one thinks of the apparatus
as a macroscopic device—say, a pointer and scale—
then the result that the apparatus has no state func-
tion is unacceptable. One may try to avoid this result
by treating the initial state of the apparatus (more
realistically, one may argue) as a mixed state and then
hoping that the final state of the joint system will be a
mixture of pure states in each of which the apparatus
is itself in a pure state. The question of whether this
can successfully be done is known as “the problem of
measurement.” For measurements satisfying von
Neumann’s account,! Wigner has shown that the
problem of measurement cannot be solved affirma-
tively.? D’Espagnat® and Earman and Shimony* have

* Work supported by NFS under Grant No. GS-2034.

1J. von Neumann, Mathematical Foundations of Quantum
Mechanics, translated by Robert T. Beyer (Princeton U.P.,
Princeton, 1955), Chaps. 5 and 6.

2E. P. Wigner, Am. J. Phys. 31, 6 (1963). The same result is
contained in A. Komar, Phys. Rev. 126, 135 (1962).

3 B. d’Espagnat, Nuovo Cimento Suppl. 4, 828 (1966).

generalized Wigner’s argument for the broader class
of measurements that fall under Landau’s analysis.’ I
shall outline below the most general theory of measure-
ment consistent with elementary quantum theory, an
account which includes as special cases the theories of
von Neumann and Landau, and by a somewhat
different argument I shall show that no affirmative
solution to the problem of measurement is possible.
The remaining section will investigate the prospects
for an approximate solution.

II. PROBLEM

We shall consider an object system with associated
Hilbert space H, and an apparatus system with space
H,. An apparatus observable A with spectral resolution
A=3"u,A, will be used to measure an object observable
O with spectral resolution O =3\, 0O,. The interaction
will be treated in the tensor product space H=H,®@H,.
For generality, “states” will always be mixed, unless
otherwise indicated, and the density operator-trace
formalism will be used. Thus if initially the object has
state W, and the apparatus has state W,, the joint
system will have state W,@W,. The measurement is
effected by means of a unitary motion U on H so that
when the measurement terminates, the joint system
has state UW,QW,) U™

It is widely believed that there are no measurements
that will leave both object and apparatus in definite

4J. Earman and A. Shimony, Nuovo Cimento 54B, 332 (1968).

5 L. Landau and R. Peierls, Z. Physik 69, 56 (1931); L. Landau

and E. Lifshitz, Quantum Mechanics (Pergamon, London, 1958),
pp- 21-24.



